
Appendix D

Special Topics

D.1 Microscopic Energy Balance

A fundamental law of nature is that energy is conserved. The first law of thermodynamics
relates the time rate-of-change of energy of a body to the heat flow into the system and the
work done by the system[176].

First law of thermodynamics:
Energy of a body is conserved

dEB

dt
= Qin,B −Wby,B (D.1)

The term Qin,B is the total rate of heat flow into the body, Wby,B is the total rate of work
done by the body, and EB is the total energy of the body, comprised of internal, kinetic, and
potential energy[186, 176] (Figure 6.3):

EB = U + Ek + Ep (D.2)

We discuss the meaning of these terms and how to quantify them in Chapter 6.

To write equation D.1 on fluid systems, we need to adapt this expression from being
the energy balance on a body to being an energy balance on a control volume. We carry out
this derivation in this section of the web appendix. At the end of the discussion below, we
arrive at equation 6.78 in the text, which is equation D.31 below.

We seek to write the energy balance on a control volume rather than on a body. As with
the mass and momentum balances on a control volume (equations 6.28 and 6.29), changing
from the balance on a body to the balance on a control volume results in the addition of
a convective term. The analysis of Chapter 3 (Figure 3.22) that resulted in the Reynolds
transport theorem can be carried out for energy balances too. The correct convective energy
term that emerges is analogous to the convective term for mass, with energy per unit volume
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ρÊ replacing density ρ (mass per unit volume).

Energy balance on a CV
(First law of thermodynamics;
Reynolds transport theorem

for energy)

dECV

dt
= Qin,CV −Wby,CV +

∫∫

CS

−(n̂ · v)ρÊ dS (D.3)

In this equation ECV is the total energy of the control volume, Ê is the energy per unit
mass of the fluid, Ê = Û + Êk + Êp, and the terms Qin,CV and Wby,CV are the rate of heat
addition to the control volume and the rate of work done by the control volume, respectively.
The convective term (the integral) represents the net flow of energy into the control volume
per unit time. Equation D.3 has the same form as the mass balance on a control volume
(equation 6.28) and the momentum balance on a control volume (equation 6.29). The three
balance equations written for a body and for a control volume are compared in Figure 6.4.

In fluid mechanics, the energy balance in equation D.3 applied to macroscopic control
volumes leads to important relationships between pressure, fluid velocity, and work by engi-
neering devices such as pumps and turbines (see discussions of the mechanical energy balance
and the Bernoulli equation in Chapter 9). Equation D.3 applied to a microscopic control
volume gives the microscopic energy balance, which is a fundamental relationship used to
calculate properties in non-isothermal flows. In this text we concentrate on isothermal flows,
and thus the microscopic energy balance is not of central importance to us. We derive the mi-
croscopic energy balance here for completeness and as background to the macroscopic energy
balance discussion in Chapter 9. For more on non-isothermal flows see the literature[18].

To apply the energy balance given in equation D.3 to the arbitrary, microscopic control
volume in Figure 6.1, we work term by term to write the indicated quantities as volume and
surface integrals, and we subsequently perform mathematical manipulations similar to those
used in deriving the microscopic mass and momentum equations. Beginning at the left of
equation D.3, the rate-of-change-of-energy term written for the arbitrary control volume
becomes an integral over the arbitrary control volume CV .

ECV =

∫∫∫

CV

ρÊ dV (D.4)

dECV

dt
=

d

dt

∫∫∫

CV

ρÊ dV (D.5)

=

∫∫∫

CV

∂

∂t

(

ρÊ
)

dV (D.6)

We have used Leibniz rule for a constant volume to bring the time derivative inside the
integral.

The heat flow into a control volume Qin,CV is due to conduction and source terms.
Source terms are, for example, the heat generated by reaction or the heat generated by
electrical dissipation in a wire.

Qin,CV = Qin,conduction +Qin,sources (D.7)



c© 2013 Faith A. Morrison, all rights reserved. 37

Conduction appears as a flux of energy through a surface. First we define the vector energy
flux as q̃.

Energy flux
due to conduction

in q̂ direction
q̃ =

( energy

area · time

)

q̂ (D.8)

where q̂ is the direction of the energy flux. To write net conduction into the arbitrary control
volume of Figure 6.1, we consider small pieces of the tangent plane ∆Si with outwardly
pointing unit normal n̂. Only the portion of q̃ that is normal to ∆Si brings conducted
energy across the surface. Thus,

Energy flux through ∆Si

due to conduction
(n̂ normal to ∆Si)

= [n̂ · q̂] ∆Si (D.9)

We can write the total conductive energy into CV as a sum over the fluxes through these
small pieces of the tangent plane ∆Si.

Heat flow into CV
due to conduction

Qin,conduction ≈ −
∑

control
surfaces
∆Si

∆Si

[

n̂ · q̃
]

i
(D.10)

The negative sign changes the outflow (due to the sign convention on n̂) to inflow. Following
the derivations early in Chapter 6 on similar quantities, we observe that equation D.10 is in
the form of equation 6.8; thus

Qin,conduction = − lim
∆A−→0

[

N
∑

i=1

∆Si

[

n̂ · q̃
]

i

]

(D.11)

= −
∫∫

CS

(n̂ · q̃) dS (D.12)

= −
∫∫∫

CV

∇ · q̃ dV (D.13)

where we have used the divergence theorem to arrive at the volume integral from the surface
integral.

The heat flow into a control volume due electrical sources is a straightforward term
that may be written as an integral over the control volume.

Heat flow in
due to chemical

or electrical sources
Qin,sources =

∫∫∫

CV

(source energy

time · volume

)

dV (D.14)

Qin,sources =

∫∫∫

CV

Se dV (D.15)
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where Se is the energy produced per time per volume by the sources.

The rate-of-work done by the fluid in the control volume Wby,CV may be calculated
from the definition of work, the inner (dot) product of force and displacement; rate-of-work
is force dotted with velocity[186].

Work defined (force) · (displacement) = f · x (D.16)

Rate-of-work defined W ≡ f · v (D.17)

The forces on the control volume were identified during the momentum-balance discussion:
the surface contact forces due to molecular interactions and the body forces. Body force
(gravity) has already been accounted for in equation D.3 in the d ˆ(mE)CV /dt term by virtue
of including the potential energy there. This leaves just the work done the molecular forces
to be included in Wby,CV . We showed in Chapter 4 that the molecular force F on a surface
S may be written as

F =

∫∫

S

[

n̂ · Π̃
]

at surface
dS (D.18)

The rate-of-work done by these forces is therefore





rate of work
on CV due to

molecular forces



 Wby,molecularforces = −
∫∫

CS

(n̂ · Π̃) · v dS (D.19)

Note that since F is the molecular force on the control volume, we must introduce a negative
sign to indicate work by the fluid in the control volume. As usual, we can break the total
molecular stress Π̃ up into two parts, −pI and τ̃ . With the assistance of Table B.1 we obtain

Wby,molecularforces = −
∫∫

CS

(

n̂ · (−pI + τ̃)
)

· v dS (D.20)

=

∫∫

CS

pn̂ · v dS −
∫∫

CS

n̂ ·
(

τ̃ · v
)

dS (D.21)

=

∫∫∫

CV

∇ · (pv) dV −
∫∫∫

CV

∇ ·
(

τ̃ · v
)

dV (D.22)

Again we have used the divergence theorem to arrive at the final expression above.

We now assemble the individual terms we have derived into the energy balance on a
microscopic control volume, equation D.3; our development parallels the derivation of the
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microscopic mass and momentum balances.

Energy balance on CV
dECV

dt
= Qin,CV −Wby,CV +

∫∫

CS

−(n̂ · v)ρÊ dS (D.23)

dECV

dt
= Qin,conduction +Qin,sources

−Wby,molecularforces

+

∫∫

CS

−(n̂ · v)ρÊ dS (D.24)

∫∫∫

CV

∂ρÊ

∂t
dV = −

∫∫∫

CV

∇ · q̃ dV +

∫∫∫

CV

Se dV

−
∫∫∫

CV

∇ · (pv) dV +

∫∫∫

CV

∇ ·
(

τ̃ · v
)

dV

−
∫∫∫

CV

∇ ·
(

vρÊ
)

dV (D.25)

We have applied the divergence theorem to the convective term. Combining the terms of
equation D.25 under one integral we obtain,

∫∫∫

CV





∂
(

ρÊ
)

∂t
+∇ · q̃ − Se +∇ · (pv)−∇ ·

(

τ̃ · v
)

+∇ ·
(

vρÊ
)



 dV = 0 (D.26)

Because the control volume, which serves as the limits of the integration, is arbitrary, the
integrand must be everywhere zero, resulting in a microscopic energy balance.

∂
(

ρÊ
)

∂t
+∇ · q̃ − Se +∇ · (pv)−∇ ·

(

τ̃ · v
)

+∇ ·
(

vρÊ
)

= 0 (D.27)

Microscopic
energy balance

∂
(

ρÊ
)

∂t
+∇ ·

(

vρÊ
)

= −∇ · q̃ −∇ · (pv) +∇ ·
(

τ̃ · v
)

+ Se (D.28)

Equation D.28 is the microscopic energy balance, but a more useful form maybe derived
by working a bit on several terms. The left-hand side of equation D.28 may be simplified
if both the time and spatial derivative expressions are expanded using the product rule of
differentiation. Using Einstein notation we can show that the left-hand side of equation D.28
is equivalent to (see Table B.1 and problem 6.14)

∂
(

ρÊ
)

∂t
+∇ ·

(

vρÊ
)

= ρ
∂Ê

∂t
+ Ê

[

∂ρ

∂t
+∇ · (ρv)

]

+ ρ
(

v · ∇Ê
)

(D.29)

= ρ

(

∂Ê

∂t
+ v · ∇Ê

)

(D.30)
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The terms in square brackets in equation D.29 are all the terms of the continuity equation
(equation 6.41), and thus this combination sums to zero. The energy equation is thus

Microscopic
energy
balance

ρ

(

∂Ê

∂t
+ v · ∇Ê

)

= −∇ · q̃ −∇ · (pv) +∇ ·
(

τ̃ · v
)

+ Se (D.31)
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Equation D.31 expresses the balance of total energy at a point in a flow. The time rate-
of-change of the energy plus the net convection in is balanced by heat flow in (due to
conduction and sources) and work done by the fluid (through pressure/volume changes or
through viscous action). This is the first law of thermodynamics applied at a point.

The left-hand side of equation D.31 is the substantial derivative of specific energy
Ê = Û + Êk + Êp. If we compare this equation to the microscopic mass balance (continuity
equation) and the microscopic momentum balance (Cauchy momentum equation), we see
that these too have substantial derivatives on the left-hand side (see Figure 6.5). The sub-
stantial derivative is composed of the time-rate-of-change of the function and the convective
term. As discussed in section 1.3, the substantial derivative represents the changes taking
place along a very particular path, the path of a particle of fluid traveling along a streamline
in the flow. From our derivations we know that the convective term arises in all three micro-
scopic balances from converting the balance equations from balances on a body to balances
on a control volume (Figure 6.4). Further development of the microscopic energy balance is
given in section D.2.

The behavior of isothermal flows is mostly determined by the mass and momentum
balances, and the energy balance is of limited use. One important use is that the energy
balance on an arbitrary control volume (equation D.3) is the starting point for the derivation
of the macroscopic energy balances of Chapters 1 and 9, including the mechanical energy
balance and the macroscopic Bernoulli equation. The main value of the microscopic energy
balance in equation D.31 is in non-isothermal flow problems to account for the interaction
of the flow field with the temperature field. An in-depth discussion of non-isothermal flow
problems is beyond the scope of this text; the reader is encouraged to consult the literature
for more on this topic[18, 23].
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D.2 Further Development of the Microscopic Energy

Equation

In section D.1 we derived the microscopic energy balance (equation D.31):

Microscopic
energy
balance

ρ

(

∂Ê

∂t
+ v · ∇Ê

)

= −∇ · q̃ −∇ · (pv) +∇ · τ̃ · v + Se (D.32)
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The left-hand side gives the time rate-of-change and the convective rate-of-change of the
specific energy Ê = Êk + Êp + Û . These terms together are the substantial derivative of Ê
(section 1.3.3). On the right-hand side of equation D.32 there are terms to account for heat
flow in due to conduction, work done by the fluid due to pressure and viscous forces, and
heat flow in due to sources such as reaction or electrical current.

We can also write individual expressions for the rate of change of internal, kinetic, and
potential energy, and we do this in this section. As we see below, writing the expressions
for the individual types of energy shows us that there are some extra terms that appear
in these individual expressions. When the different energy terms are summed together, the
total energy balance equation D.32 is recovered. Writing the individual rate of change of
energy expressions helps us to understand the energy exchanges that occur in a fluid among
the three types of energy.

D.2.1 Kinetic Energy

Kinetic energy is the energy associated with the fluid’s velocity. To find the kinetic energy,
we begin then with the momentum balance; we choose the form that includes the stress
tensor (the Cauchy momentum equation).

Cauchy momentum equation
(microscopic momentum balance)

ρ
∂v

∂t
+ ρv · ∇v = −∇p +∇ · τ̃ + ρg (D.33)

Energy is the capacity to do work, and work is force times displacement[186]. To convert
the force terms of the microscopic momentum balance into work terms, we need to dot the
Cauchy momentum equation with the velocity v[18].

Rate of work defined: W = f · v (D.34)
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v ·
(

ρ
∂v

∂t
+ ρv · ∇v = −∇p +∇ · τ̃ + ρg

)

(D.35)

ρv · ∂v
∂t

+ ρv · (v · ∇v) = −v · ∇p+ v ·
(

∇ · τ̃
)

+ ρv · g (D.36)

We can identify the left-hand side of the result in equation D.36 as the total rate of change of
the kinetic energy, both the time derivative and the convective term; the derivation follows.
The quantity 1

2
mBv

2 is the kinetic energy associated with a body of mass mB moving with
a speed v. For fluid of density ρ moving with velocity v the kinetic energy per unit mass is
given by

Kinetic energy
per unit mass

Êk =
1

2
v2 =

1

2
v · v =

1

2
v2 (D.37)

where v2 = v ·v. Through vector manipulations, the left-hand side of equation D.36 becomes

ρ
∂
(

1
2
v2
)

∂t
+ ρv ·

(

1

2
v2
)

= −v · ∇p+ v ·
(

∇ · τ̃
)

+ ρv · g (D.38)

ρ

(

∂Êk

∂t
+ v · ∇Êk

)

= −v · ∇p+ v ·
(

∇ · τ̃
)

+ ρv · g (D.39)

where Êk = v2/2. The right-hand side of equation D.39 may be expanded by using the
following two identities from Table B.1, which result from applying the product rule of
differentiation to the appropriate quantities.

∇ · (pv) = p(∇ · v) + v · ∇p (D.40)

∇ ·
(

τ̃ · v
)

= τ̃T : ∇v + v ·
(

∇ · τ̃
)

(D.41)

Solving for the terms that appear in equation D.39 and substituting these into the that
equation we obtain

Kinetic
energy
equation

ρ

(

∂Êk

∂t
+ v · ∇Êk

)

= −∇ · (pv) + p(∇ · v)

+∇ ·
(

τ̃ · v
)

− τ̃T : ∇v

+ρv · g (D.42)

Equation D.42 is an equation for the kinetic energy changes in the fluid. The left-hand
side is the substantial derivative of Êk. The right-hand side terms describe changes in kinetic
energy due to two types of pressure effects, two types of viscous effects, and due to kinetic
energy storage into gravitational potential energy. We can distinguish between the two types
of pressure and viscous effects later in our discussion, once we have arrived at the equation
for internal energy.
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D.2.2 Potential Energy

We can isolate the potential energy effects by considering the term ρv · g, which appears in
the kinetic energy equation (equation D.42). This term represents the kinetic energy to be
gained or lost as fluid moves in a gravity potential field; in this context the acceleration due
to gravity is a force per unit mass.

f
gravity

= mBg (D.43)

force

mass
= g (D.44)

and thus rate-of-work f · v of gravity per unit volume is ρ(g · v). For a conservative force
such as gravity[186], we can relate the force per unit mass g to the gradient of an associated

potential energy Êp:

Potential energy
due to gravity

g = −∇Êp (D.45)

If we now dot multiply v on both sides of equation D.45 and multiply by ρ we obtain

ρv · ∇Êp = −ρv · g (D.46)

Since the potential energy field (the gravity field) does not change with time, ∂Êp/∂t = 0.
It does no harm, therefore, to incorporate the time-derivative of potential energy into our
equations. Multiplying ∂Êp/∂t = 0 by ρ and adding it to both sides of equation D.46 we
obtain

Potential energy equation ρ

(

∂Êp

∂t
+ v · ∇Êp

)

= −ρv · g (D.47)

which is an equation for the substantial derivative of potential energy. Equation D.47 is
analogous to the kinetic energy equation, equation D.42.

D.2.3 Internal Energy

Internal energy is the energy that is stored in the temperature of the material or in the
material’s chemical arrangement, such as whether the material is a solid, a liquid, or a gas
or what chemical structure the material has. We can obtain the expression for the rate-of-
change of the internal energy of a fluid by subtracting the previously determined expressions
for kinetic and potential energy.

Before proceeding to this subtraction, we first work a bit on the conductive-flux term
of the total energy balance, equation D.32. The first term on the right-hand side of equa-
tion D.32 is the heat flow in due to conduction. The conductive flux term may be written
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in terms of temperature by using Fourier’s law of heat conduction[17],

Fourier’s law of heat conduction q̃ = −k∇T (D.48)

where k is the thermal conductivity. Fourier’s law is one of the fundamental transport laws
of nature[18] and tells us the direction of the heat flux – heat moves down a temperature
gradient. Fourier’s law for one-dimensional heat conduction is analogous to Newton’s law of
viscosity for unidirectional flow.

Newton’s law of viscosity1

(unidirectional flow in 3-direction)
− τ̃13 = τ13 = −µ

∂v3
∂x1

(D.49)

Fourier’s law of conduction q̃1 = −k
∂T

∂x1

(D.50)

The analogy between Newton’s and Fourier’s laws results from a shared physics: heat con-
duction and Newtonian momentum flux are byproducts of Brownian motion. Brownian
motion is the microscopic thermal motion of molecules. This motion, when combined with
a gradient – of temperature for energy conduction, or of velocity for momentum transfer –
causes flux of energy or momentum. Diffusion of a chemical species down a concentration
gradient is also caused by Brownian motion, and mass transport is the third of the transport
processes. For more on transport phenomena, see the literature[18].

Returning to the conductive term of the energy balance, we can incorporate Fourier’s
law to write ∇· q̃ in terms of temperature. With the definition ∇·∇T = ∇2T , the conduction
term of the microscopic energy balance becomes

−∇ · q̃ = −∇ · (−k∇T )

= k∇2T (D.51)

The thermal conductivity k is constant.

The final rate-of-change of energy expression we seek is for the internal energy. With
equations D.42 and D.47 we have expressions for the substantial derivative of kinetic and
potential energies; we can subtract these equations from the overall energy equation (equa-
tion D.32) to isolate an equation for the internal energy Û .

Thermal
energy
equation

ρ

(

∂Û

∂t
+ v · ∇Û

)

= k∇2T − p(∇ · v) + τ̃T : ∇v + Se (D.52)

The thermal energy equation indicates that the changes in internal energy are due to: con-
duction; one type of pressure effect; one type of viscous effect; and heat flow into a point
due to sources (current or chemical reaction).
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The appearance of p(∇ · v) and τ̃T : ∇v in both the kinetic and internal energy
equations but with opposite signs helps us to identify the meaning of these terms. These two
terms represent pathways by which kinetic energy is transformed into internal energy. The
term p(∇·v), which may be positive or negative, represents energy exchange between kinetic
and internal energy by virtue of volume change. The term τ̃T : ∇v, which is always positive
(this is not shown here, but may be easily shown using Einstein notation, problem 6.15) and
is therefore irreversible, represents kinetic energy conversion to internal energy by viscous
dissipation.

The other instance of one type of energy converting to another is the conversion of
kinetic energy into potential energy: the term ρv · g appears in the kinetic energy equation
and with the opposite sign in the potential energy equation. When a portion of fluid moves
upward against gravity, its energy converts from kinetic to potential; if the fluid moves
downward pulled by gravity, its energy reverses and goes from potential to kinetic. This
term does not appear in the total energy equation because no overall change of energy
occurs; rather, energy switches between two types of energy through this contribution.

The microscopic energy balance and the equations for the three contributing energies,
internal, kinetic, and potential, are summarized in Figure D.1. In the next section we develop
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Figure D.1: The balance of energy on a control volume is governed by the first law of
thermodynamics. Individual equations for internal, kinetic, and potential energy are derived
in this section.

one additional energy equation, that for internal energy under some conditions that are quite
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common for incompressible fluids.

D.2.4 Thermal Energy Equation

One final version of the microscopic energy balance is worth mentioning. For certain cir-
cumstances, we can arrive at a version of the microscopic energy balance that is explicit in
temperature. A common circumstance is to consider an incompressible fluid (∇ · v = 0)
under constant pressure. For this circumstance we can write the internal energy in terms
of the temperature and the heat capacity at constant pressure, Û = ĈpT [176]. With these
assumptions, the left-hand-side of equation D.52 becomes

ρ

(

∂Û

∂t
+ v · ∇Û

)

= ρĈp

(

∂T

∂t
+∇ · T

)

(D.53)

If we further neglect viscous dissipation (τ̃T : ∇v ≈ 0), equation D.52 becomes

Thermal energy equation
(no viscous dissipation,

fluid at constant p or ρ 6= ρ(T ))
ρĈp

(

∂T

∂t
+ v · ∇T

)

= k∇2T + Se (D.54)

The thermal energy equation is a single equation, which may be written in any coor-
dinate system, as shown below for Cartesian coordinates for the version in equation D.54.
The thermal energy equation written in cylindrical and spherical coordinates is listed in
Table B.12.

Cartesian
∂T

∂t
+

(

vx
∂T

∂x
+ vy

∂T

∂y
+ vz

∂T

∂z

)

=
k

ρĈp

[

∂2T

∂x2
+

∂2T

∂y2
+

∂2T

∂z2

]

+
S

ρĈp

(D.55)

The meaning of each term in the energy equations are summarized in Table D.1.

D.3 Momentum Transport in Moving Control Vol-

umes

In Chapter 3 we were able to derive a version of Newton’s second law that applied to fixed,
stationary control volumes (Figure D.2). The result was the Reynolds transport theorem as
applied to momentum transport.

Reynolds
Transport
Theorem

∑

on
CV

f =
dP
dt

+

∫∫

S

(n̂ · v) ρv dS (D.56)
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