| 1.        | /20 |
|-----------|-----|
| 2.        | /20 |
| 3.        | /20 |
| 4.        | /20 |
| <u>5.</u> | /20 |
|           |     |

Name:

# CM3120 Wednesday 20 January 2021

#### **Rules:**

Exam 1

- Closed book, closed notes.
- Two-page 8.5" by 11" study sheet allowed, double sided; you may use a calculator; you may not search the internet or receive help from anyone.
- Please text clarification questions to Dr. Morrison 906-487-9703. I will respond if I am able.
- All work submitted for the exam must be your own.
- Do not discuss the contents of the exam with anyone before midnight Wednesday 20 January 2021.
- Please copy the following Honors Pledge onto the first page of your exam submission and sign and date your agreement to it.

Honor's Pledge:

On my honor, I agree to abide by the rules stated on the exam sheet.

Signature \_\_\_\_\_

Date

#### **Exam Instructions:**

- i. You may work on the exam for up to two hours and 15 minutes (135 minutes).
- ii. Please be neat. Only neat answers will be granted partial credit. Please use a dark pencil or pen so that your work is readable once scanned.
- iii. Significant figures always count.
- iv. Please box your final answers.
- v. Submit your work as a single PDF file; put your name on every page. (Genius Scan is a free app that can create a PDF from photos taken by your phone). If you take photos of your work, insert them into Word or Google Docs and create a PDF.
- vi. Submit your exam study sheet as a separate PDF file; put your name on the first page (at a minimum)

1. (20 points) Saturated steam at  $98^{\circ}C$  condenses in the outside chamber of a double pipe heat exchanger. The mass flow rate of the condensate is 1.5 g/s. What is the rate of heat flow from this stream? Give your answer in kW. A portion of the steam tables is included below.

| T(oC) | Vapor    | Specific     | Specific   | Enthalpy | Enthalpy | Entropy | Entropy |
|-------|----------|--------------|------------|----------|----------|---------|---------|
|       | Pressure | Volume       | Volume     | (kJ/kg)  | (kJ/kg)  | (kJ/    | (kJ/    |
|       | (kPa)    | $(m^{3}/kg)$ | $(m^3/kg)$ |          |          | kg K)   | kg K)   |
|       |          | Liquid       | Sat'd      | Liquid   | Sat'd    | Liquid  | Sat'd   |
|       |          |              | Vapor      |          | Vapor    |         | Vapor   |
| 90    | 70.14    | 0.0010360    | 2.361      | 376.92   | 2660.1   | 1.1925  | 7.4791  |
| 95    | 84.55    | 0.0010397    | 1.9819     | 397.96   | 2668.1   | 1.2500  | 7.4159  |
| 100   | 101.35   | 0.0010435    | 1.6729     | 419.04   | 2676.1   | 1.3069  | 7.3549  |

### 2. (20 points)

- a. What is the definition of thermal conductivity? Give the units and the usual symbol.
- b. What is the definition of heat capacity? Give the units and the usual symbol.

## More problems on the following pages (5 problems total)

- 3. (20 points) A common boundary condition in heat transfer occurs when a liquid is in contact with a solid and the bulk fluid temperature is known. The boundary condition is called *Newton's law of cooling*; this "law" serves as the definition of the heat transfer coefficient *h*.
  - a. What is the equation for Newton's law of cooling?
  - b. For one-dimensional radial heat conduction in an annulus (that is, a pipe, shown here), we can solve for the temperature profile in the pipe wall by simplifying and integrating the microscopic energy balance.



The result is the equation below for temperature as a function of radial position r, written in terms of two arbitrary constants of integration,  $C_1$  and  $C_2$ .

$$T(r) = C_1 \ln(r) + C_2$$

If the surface at  $R_1$  is in contact with a fluid at temperature  $T_{b1}$ , and the surface at  $R_2$  is in contact with a fluid at temperature  $T_{b2}$ , what are two equations we can write that will allow us to solve for  $C_1$  and  $C_2$ ? You do not need to solve for the integration constants; write the two equations in a form that can be solved directly for  $C_1$  and  $C_2$ .

4. (20 points) What shaft work would be needed to be supplied by the pump to move water  $(25^{\circ}C)$  through the apparatus shown below at 2.5 *gpm*? There is a total of 105m of straight pipe in the apparatus. Do not neglect the friction of the straight pipe. Give your answer in *W*.



3

5. (20 points) What is the steady state temperature distribution T(z) in a long, wide, rectangular nickel slab if the top is held at  $T_{top}$  and the bottom is held at  $T_{bot}$  (see figure below). The slab is of thickness H. Use the coordinate system shown and indicate the steps and assumptions that allow you to determine your answer.

