

Note: the *r*-component of the Navier-Stokes equation in spherical coordinates may be simplified by adding $0 = \frac{2}{2}\nabla \cdot \underline{v}$ to the component shown above. This term is zero due to the continuity equation (mass conservation). See Bird et. al. Equation of Motion for incompressible, Newtonian fluid (Navier-Stokes equation) 3 components in Cartesian Equation of Motion for incompressible, Newtonian fluid (Navier-Stokes equation), 3 components in spherical Equation of Motion for incompressible, Newtonian fluid (Navier-Stokes equation), 3 components in cylin-2. R. B. Bird, R. C. Armstrong, and O. Hassager, Dynamics of Polymeric Fluids: Volume 1 Fluid Mechanics, $\rho\left(\frac{\partial v_{\theta}}{\partial t} + v_{r}\frac{\partial v_{\theta}}{\partial r} + \frac{v_{\theta}}{r}\frac{\partial v_{\theta}}{\partial \theta} + \frac{v_{r}v_{\theta}}{r} + v_{z}\frac{\partial v_{\theta}}{\partial z}\right) = -\frac{1}{r}\frac{\partial P}{\partial \theta} + \mu\left(\frac{\partial}{\partial r}\left(\frac{1}{r}\frac{\partial(rv_{\theta})}{\partial r}\right) + \frac{1}{r^{2}}\frac{\partial^{2}v_{\theta}}{\partial \theta^{2}} + \frac{\partial^{2}v_{\theta}}{\partial z^{2}}\right) + \rho_{\theta}$ $\rho\left(\frac{\partial v_r}{\partial t} + v_r\frac{\partial v_r}{\partial r} + \frac{v_\theta}{r}\frac{\partial v_r}{\partial \theta} - \frac{v_\theta^2}{r} + v_z\frac{\partial v_r}{\partial z}\right) = -\frac{\partial P}{\partial r} + \mu\left(\frac{\partial}{\partial r}\left(\frac{1}{r}\frac{\partial(rv_r)}{\partial r}\right) + \frac{1}{r^2}\frac{\partial^2 v_r}{\partial \theta^2} - \frac{2}{r^2}\frac{\partial v_\theta}{\partial \theta} + \frac{\partial^2 v_r}{\partial z^2}\right) + \rho g_r$ $= -\frac{\partial P}{\partial r} + \mu \left(\frac{\partial}{\partial r} \left(\frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 v_r \right) \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial v_r}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2 v_r}{\partial \phi^2} \\ - \frac{2}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(v_\theta \sin \theta \right) - \frac{2}{r^2 \sin \theta} \frac{\partial v_\theta}{\partial \phi} \right) + \rho g_r$ $+\frac{2}{r^2\sin\theta}\frac{\partial v_r}{\partial\phi}+\frac{2\cot\theta}{r^2\sin\theta}\frac{\partial v_\theta}{\partial\phi}\Big)+\rho g_\phi$ $+\frac{2}{r^2}\frac{\partial v_r}{\partial \theta}-\frac{2\cot\theta}{r^2\sin\theta}\frac{\partial v_\phi}{\partial \phi}\Big)+\rho g_\theta$ 1. R. B. Bird, W. E. Stewart, and E. N. Lightfoot, Transport Phenomena, 2nd edition, Wiley: NY, 2002. $\rho\left(\frac{\partial v_z}{\partial t} + v_r\frac{\partial v_z}{\partial r} + \frac{v_\theta}{r}\frac{\partial v_z}{\partial \theta} + v_r\frac{\partial v_z}{\partial z}\right) = -\frac{\partial P}{\partial z} + \mu\left(\frac{1}{r}\frac{\partial}{\partial r}\left(r\frac{\partial v_z}{\partial r}\right) + \frac{1}{r^2}\frac{\partial^2 v_z}{\partial \theta^2} + \frac{\partial^2 v_z}{\partial z^2}\right) + \rho g_z$ $= -\frac{1}{r\sin\theta}\frac{\partial P}{\partial\phi} + \mu \left(\frac{1}{r^2}\frac{\partial}{\partial r} \left(r^2\frac{\partial v_{\phi}}{\partial r}\right) + \frac{1}{r^2}\frac{\partial}{\partial\theta} \left(\frac{1}{\sin\theta}\frac{\partial}{\partial\theta} \left(v_{\phi}\sin\theta\right)\right) + \frac{1}{r^2\sin^2\theta}\frac{\partial^2 v_{\phi}}{\partial\phi^2}$
$$\begin{split} \rho\left(\frac{\partial v_x}{\partial t} + v_x \frac{\partial v_x}{\partial x} + v_y \frac{\partial v_x}{\partial y} + v_z \frac{\partial v_x}{\partial z}\right) &= -\frac{\partial P}{\partial x} + \mu\left(\frac{\partial^2 v_x}{\partial x^2} + \frac{\partial^2 v_x}{\partial y^2} + \frac{\partial^2 v_x}{\partial z^2}\right) + \rho g_x\\ \rho\left(\frac{\partial v_y}{\partial t} + v_x \frac{\partial v_y}{\partial x} + v_y \frac{\partial v_y}{\partial y} + v_z \frac{\partial v_y}{\partial z}\right) &= -\frac{\partial P}{\partial y} + \mu\left(\frac{\partial^2 v_y}{\partial x^2} + \frac{\partial^2 v_y}{\partial y^2} + \frac{\partial^2 v_y}{\partial z^2}\right) + \rho g_y\\ \rho\left(\frac{\partial v_z}{\partial t} + v_x \frac{\partial v_z}{\partial x} + v_y \frac{\partial v_z}{\partial y} + v_z \frac{\partial v_z}{\partial z}\right) &= -\frac{\partial P}{\partial z} + \mu\left(\frac{\partial^2 v_z}{\partial x^2} + \frac{\partial^2 v_z}{\partial y^2} + \frac{\partial^2 v_z}{\partial z^2}\right) + \rho g_z \end{split}$$
 $= -\frac{1}{r}\frac{\partial P}{\partial \theta} + \mu\left(\frac{1}{r^2}\frac{\partial}{\partial r}\left(r^2\frac{\partial v_\theta}{\partial r}\right) + \frac{1}{r^2}\frac{\partial}{\partial \theta}\left(\frac{1}{\sin\theta}\frac{\partial}{\partial \theta}\left(v_\theta\sin\theta\right)\right) + \frac{1}{r^2\sin^2\theta}\frac{\partial^2 v_\theta}{\partial \phi^2}$ $\rho\left(\frac{\partial v_{\phi}}{\partial t} + v_{r}\frac{\partial v_{\phi}}{\partial r} + \frac{v_{\theta}}{r}\frac{\partial v_{\phi}}{\partial \theta} + \frac{v_{\phi}}{r\sin\theta}\frac{\partial v_{\phi}}{\partial \phi} + \frac{v_{r}v_{\phi}}{r} + \frac{v_{\phi}v_{\phi}}{r} + \frac{v_{\phi}v_{\theta}}{r}\right)$ $\rho\left(\frac{\partial v_{\theta}}{\partial t} + v_r \frac{\partial v_{\theta}}{\partial r} + \frac{v_{\theta}}{r} \frac{\partial v_{\theta}}{\partial \theta} + \frac{v_{\phi}}{r \sin\theta} \frac{\partial v_{\theta}}{\partial \phi} + \frac{v_r v_{\theta}}{r} - \frac{v_{\phi}^2 \cot\theta}{r}\right)$ $\rho\left(\frac{\partial v_r}{\partial t} + v_r\frac{\partial v_r}{\partial r} + \frac{v_\theta}{r}\frac{\partial v_r}{\partial \theta} + \frac{v_\theta}{r}\frac{\partial v_r}{\partial \theta} + \frac{v_\phi}{r\sin\theta}\frac{\partial v_r}{\partial \phi} - \frac{v_\theta^2 + v_\phi^2}{r}\right)$ Wiley: NY, 1987. drical coordinates References: coordinates coordinates $\rho\left(\frac{\partial v_{\theta}}{\partial t} + v_{r}\frac{\partial v_{\theta}}{\partial r} + \frac{v_{\theta}}{r}\frac{\partial v_{\theta}}{\partial \theta} + \frac{v_{\theta}v_{r}}{r} + v_{z}\frac{\partial v_{\theta}}{\partial z}\right) = -\frac{1}{r}\frac{\partial P}{\partial \theta} + \left(\frac{1}{r^{2}}\frac{\partial(r^{2}\tilde{x}_{\theta})}{\partial r} + \frac{1}{r}\frac{\partial\tilde{x}_{\theta\theta}}{\partial\theta} + \frac{\partial\tilde{x}_{z}}{\partial z} + \frac{\tilde{x}_{\theta}r - \tilde{x}_{r\theta}}{r}\right) + \rho_{\theta\theta}$ The Equation of Continuity and the Equation of Motion in Cartesian, cylindrical, and spherical coordinates $= -\frac{1}{r\sin\theta}\frac{\partial P}{\partial\phi} + \left(\frac{1}{r^3}\frac{\partial(r^3\bar{r}_{r\phi})}{\partial r} + \frac{1}{r\sin\theta}\frac{\partial(\bar{r}_{\theta\phi}\sin\theta)}{\partial\theta} + \frac{1}{r\sin\theta}\frac{\partial\bar{r}_{\theta\phi}}{\partial\phi} + \frac{1}{\bar{r}}\frac{\bar{r}_{\bar{r}}}{r} + \frac{\bar{r}_{\phi\sigma}\cot\theta}{r}\right) + \rho_{\theta\phi}^{2}$ $= -\frac{1}{r}\frac{\partial P}{\partial \theta} + \left(\frac{1}{r^3}\frac{\partial(r^3\tilde{\tau}_{r\theta})}{\partial r} + \frac{1}{r\sin\theta}\frac{\partial(\tilde{\tau}_{r\theta}\sin\theta)}{\partial\theta} + \frac{1}{r\sin\theta}\frac{\partial\tilde{\tau}_{r\theta}}{\partial\phi} + \frac{\tilde{\tau}_{\theta}r - \tilde{\tau}_{r\theta}}{r} - \frac{\tilde{\tau}_{\phi\phi}\cot\theta}{r}\right) + \rho_{\theta\theta}$ $\rho\left(\frac{\partial v_r}{\partial t} + v_r \frac{\partial v_r}{\partial r} + \frac{v_\theta}{r} \frac{\partial v_r}{\partial \theta} - \frac{v_\theta^2}{r} + v_z \frac{\partial v_r}{\partial z}\right) = -\frac{\partial P}{\partial r} + \left(\frac{1}{r} \frac{\partial (r\tilde{\tau}_{rr})}{\partial r} + \frac{1}{r} \frac{\partial \tilde{\tau}_{\theta r}}{\partial \theta} - \frac{\tilde{\tau}_{\theta \theta}}{r} + \frac{\partial \tilde{\tau}_{zr}}{\partial z}\right) + \rho_{\theta r}$
$$\begin{split} \rho\left(\frac{\partial v_x}{\partial t} + v_x \frac{\partial v_x}{\partial x} + v_y \frac{\partial v_x}{\partial y} + v_z \frac{\partial v_x}{\partial z}\right) &= -\frac{\partial P}{\partial x} + \left(\frac{\partial \tilde{r}_{xx}}{\partial x} + \frac{\partial \tilde{r}_{yx}}{\partial z} + \frac{\partial \tilde{r}_{xx}}{\partial z}\right) + \rho g_x \\ \rho\left(\frac{\partial v_y}{\partial t} + v_x \frac{\partial v_y}{\partial x} + v_y \frac{\partial v_y}{\partial y} + v_z \frac{\partial v_y}{\partial z}\right) &= -\frac{\partial P}{\partial y} + \left(\frac{\partial \tilde{r}_{xy}}{\partial x} + \frac{\partial \tilde{r}_{yy}}{\partial y} + \frac{\partial \tilde{r}_{xy}}{\partial z}\right) + \rho g_y \\ \rho\left(\frac{\partial v_z}{\partial t} + v_x \frac{\partial v_z}{\partial x} + v_y \frac{\partial v_z}{\partial y} + v_z \frac{\partial v_z}{\partial z}\right) &= -\frac{\partial P}{\partial z} + \left(\frac{\partial \tilde{r}_{xx}}{\partial x} + \frac{\partial \tilde{r}_{yy}}{\partial x} + \frac{\partial \tilde{r}_{xy}}{\partial z}\right) + \rho g_z \end{split}$$
Equation of Motion for an incompressible fluid, 3 components in cylindrical coordinates $\rho\left(\frac{\partial v_z}{\partial t} + v_r \frac{\partial v_z}{\partial r} + \frac{v_\theta}{r} \frac{\partial v_z}{\partial \theta} + v_z \frac{\partial v_z}{\partial z}\right) = -\frac{\partial P}{\partial z} + \left(\frac{1}{r} \frac{\partial (r\tilde{\tau}_{rz})}{\partial r} + \frac{1}{r} \frac{\partial \tilde{\tau}_{\theta z}}{\partial \theta} + \frac{\partial \tilde{\tau}_{zz}}{\partial z}\right) + \rho_{\theta z}$ $= -\frac{\partial P}{\partial r} + \left(\frac{1}{r^2}\frac{\partial(r^2\tilde{r}_{rr})}{\partial r} + \frac{1}{r\sin\theta}\frac{\partial(\tilde{r}_{\theta}\sin\theta)}{\partial\theta} + \frac{1}{r\sin\theta}\frac{\partial\tilde{r}_{\theta}\omega}{\partial\phi} + \frac{1}{r}\frac{\partial\tilde{r}_{\theta}\omega}{\partial\phi} + \frac{1}{\rho}\theta,$ Equation of Motion for an incompressible fluid, 3 components in Cartesian coordinates Equation of Motion for an incompressible fluid, 3 components in spherical coordinates $\frac{\partial\rho}{\partial t} + \left(v_x \frac{\partial\rho}{\partial x} + v_y \frac{\partial\rho}{\partial y} + v_z \frac{\partial\rho}{\partial z}\right) + \rho \left(\frac{\partial v_x}{\partial x} + \frac{\partial v_y}{\partial y} + \frac{\partial v_z}{\partial z}\right) = 0$ $\frac{\partial\rho}{\partial t} + \frac{1}{r^2} \frac{\partial(\rho r^2 v_r)}{\partial r} + \frac{1}{r \sin \theta} \frac{\partial(\rho v_\theta \sin \theta)}{\partial \theta} + \frac{1}{r \sin \theta} \frac{\partial(\rho v_\theta)}{\partial \phi} = 0$ $\rho \left(\frac{\partial v_{\phi}}{\partial t} + v_r \frac{\partial v_{\phi}}{\partial r} + \frac{v_{\theta}}{r} \frac{\partial v_{\phi}}{\partial \theta} + \frac{v_{\phi}}{r \sin \theta} \frac{\partial v_{\phi}}{\partial \phi} + \frac{v_r v_{\phi}}{r} + \frac{v_{\phi} v_{\theta} \cot \theta}{r} \right)$ $\rho\left(\frac{\partial u_{\theta}}{\partial t} + v_{r}\frac{\partial u_{\theta}}{\partial r} + \frac{v_{\theta}}{r}\frac{\partial u_{\theta}}{\partial \theta} + \frac{v_{\phi}}{r\sin\theta}\frac{\partial u_{\theta}}{\partial \phi} + \frac{v_{r}u_{\theta}}{r} - \frac{v_{\phi}^{2}\cot\theta}{r}\right)$ $\rho\left(\frac{\partial v_r}{\partial t} + v_r\frac{\partial v_r}{\partial r} + \frac{v_\theta}{r}\frac{\partial v_r}{\partial \theta} + \frac{v_\phi}{r}\frac{\partial v_r}{\partial \theta} + \frac{v_\phi}{r\sin\theta}\frac{\partial v_r}{\partial \phi} - \frac{v_\theta^2 + v_\phi^2}{r}\right)$ CM3110 Fall 2011 Faith A. Morrison $\frac{\partial \rho}{\partial t} + \frac{1}{r} \frac{\partial (\rho r v_r)}{\partial r} + \frac{1}{r} \frac{\partial (\rho v_{\theta})}{\partial \theta} + \frac{\partial (\rho v_z)}{\partial z} = 0$ Continuity Equation, cylindrical coordinates Continuity Equation, Cartesian coordinates Continuity Equation, spherical coordinates

The Equation of Energy in Cartesian, cylindrical, and spherical coordinates for Newtonian fluids of constant density, with source term S. Source could be electrical energy due to	The Equation of Energy for systems with constant K
current flow, chemical energy, etc. Two cases are presented: the general case where thermal conductivity may be a function of temperature (vector flux $\tilde{q} = q/A$ appears in the equations); and the more usual case, where thermal conductivity is constant.	Microscopic energy balance , constant thermal conductivity; Gibbs notation
Fall 2013 Faith A. Morrison, Michigan Technological University	$ ho \hat{\mathcal{L}}_p\left(rac{\partial T}{\partial t} + \underline{v} \cdot \nabla T ight) = k \nabla^2 T + S$ Microscopic energy balance, constant thermal conductivity; Cartesian coordinates
Microscopic energy balance, in terms of flux, Gibbs notation $\rho\hat{C}_p\left(\frac{\partial T}{\partial t}+\underline{\nu}\cdot\nabla T\right)=-\nabla\cdot\bar{q}+S$	$\rho \hat{\mathcal{L}}_p \left(\frac{\partial T}{\partial t} + v_x \frac{\partial T}{\partial x} + v_y \frac{\partial T}{\partial y} + v_z \frac{\partial T}{\partial z} \right) = k \left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} + \frac{\partial^2 T}{\partial z^2} \right) + S$
Microscopic energy balance, in terms of flux, Cartesian coordinates $\rho \hat{c}_p \left(\frac{\partial T}{\partial t} + v_x \frac{\partial T}{\partial x} + v_y \frac{\partial T}{\partial y} + v_x \frac{\partial T}{\partial x} \right) = - \left(\frac{\partial \hat{q}_x}{\partial x} + \frac{\partial \hat{q}_y}{\partial y} + \frac{\partial \hat{q}_x}{\partial z} \right) + S$	$\rho \hat{c}_p \left(\frac{\partial T}{\partial t} + v_r \frac{\partial T}{\partial r} + \frac{v_\theta}{r} \frac{\partial T}{\partial \theta} + v_z \frac{\partial T}{\partial z} \right) = k \left(\frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial T}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 T}{\partial \theta^2} + \frac{\partial^2 T}{\partial z^2} \right) = S \left(\frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial T}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 T}{\partial \theta^2} + \frac{\partial^2 T}{\partial z^2} \right) = S \left(\frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial T}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 T}{\partial \theta^2} + \frac{\partial^2 T}{\partial z^2} \right) = S \left(\frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial T}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 T}{\partial \theta^2} + \frac{\partial^2 T}{\partial z^2} \right) = S \left(\frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial T}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 T}{\partial \theta^2} + \frac{\partial^2 T}{\partial z^2} \right) = S \left(\frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 T}{\partial \theta^2} + \frac{\partial^2 T}{\partial z^2} \right) = S \left(\frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 T}{\partial \theta^2} + \frac{\partial^2 T}{\partial z^2} \right) = S \left(\frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial}{\partial r} \right) + \frac{1}{r^2} \frac{\partial}{\partial \theta^2} + \frac{\partial}{\partial r^2} \right)$
Microscopic energy balance, in terms of flux; cylindrical coordinates $\rho \hat{c}_p \left(\frac{\partial T}{\partial t} + v_r \frac{\partial T}{\partial r} + \frac{v_\theta}{r} \frac{\partial T}{\partial \theta} + v_z \frac{\partial T}{\partial z} \right) = -\left(\frac{1}{r} \frac{\partial (r \hat{q}_r)}{\partial r} + \frac{1}{r} \frac{\partial \hat{q}_\theta}{\partial z} + \frac{\partial \hat{q}_z}{\partial z} \right) + S$	$\rho \hat{c}_p \left(\frac{\partial T}{\partial t} + v_r \frac{\partial T}{\partial r} + \frac{v_\theta}{v} \frac{\partial T}{\partial \theta} + \frac{v_\theta}{r \sin \theta} \frac{\partial T}{\partial \phi} \right)$
Microscopic energy balance, in terms of flux; spherical coordinates $\alpha^{\hat{n}} \left(\frac{\partial T}{\partial t} + n \frac{\partial T}{\partial t} + \frac{v_{\theta}}{2} \frac{\partial T}{\partial t} + \frac{v_{\phi}}{2} \frac{\partial T}{\partial t} \right)_{= -} - \left(\frac{1}{2} \frac{\partial (r^2 \tilde{q}_{\tau})}{\partial t} + \frac{1}{2} \frac{\partial (\tilde{q}_{\theta} sin\theta)}{\partial sin\theta} + \frac{1}{2} \frac{\partial \tilde{q}_{\phi}}{\partial t} \right)_{+} \varsigma$	$= k \left(\frac{r^2}{r^2} \frac{\partial r}{\partial r} \left(r^2 \frac{\partial r}{\partial r} \right) + \frac{r^2}{r^2} \frac{\sin \theta}{\sin \theta} \frac{\partial \theta}{\partial \theta} \left(\sin \theta \frac{\partial \theta}{\partial \theta} \right) + \frac{r^2}{r^2} \frac{\partial \theta}{\sin^2 \theta} \frac{\partial \phi^2}{\partial \phi^2} \right) + S$
$\rho^{cp}(\partial t^{-v}\partial r^{-v}\partial r^{-v}r\partial \theta^{-v}r\partial \theta^{-v}r\sin\theta\partial\phi)^{-v}$	
Fourier's law of heat conduction, <code>Gibbs</code> notation: $ar{q}=-k abla T$	
Fourier's law of heat conduction, Cartesian coordinates: $\begin{pmatrix} \widehat{q}_x \\ \widehat{q}_y \\ \widehat{q}_z \end{pmatrix}_{xyz} = \begin{pmatrix} -k \frac{\partial T}{\partial x} \\ -k \frac{\partial T}{\partial y} \\ -k \frac{\partial T}{\partial z} \end{pmatrix}_{xyz}$	
Fourier's law of heat conduction, cylindrical coordinates: $\begin{pmatrix} \tilde{q}_r \\ \tilde{q}_r \\ \tilde{q}_z \end{pmatrix}_{yyz} = \begin{pmatrix} -k \frac{\partial r}{\partial r} \\ -k \frac{\partial T}{\partial \sigma} \\ -k \frac{\partial T}{\partial \sigma} \end{pmatrix}_{r\thetaz}$	
Fourier's law of heat conduction, spherical coordinates: $\begin{pmatrix} \tilde{q}_r \\ \tilde{q}_{\theta} \\ \tilde{q}_{\theta} \end{pmatrix}_{xyz} = \begin{pmatrix} -k \frac{\partial T}{\partial r} \\ -\frac{k \frac{\partial T}{\partial \theta}}{\partial \theta} \end{pmatrix}_{r\theta\phi}$	Reference: F. A. Morrison, "Web Appendix to <i>An Introduction to Fluid Mechanics,</i> " Cambridge University Press, New York, 2013. On the web at <u>www.chem.mtu.edu/~fmorriso/IFM_WebAppendixCD2013.pdf</u>
1	2

Т (°С)	Т (К)	р (kg/m³)	$(kJ/kg \cdot K)$	$\mu \times 10^{3}$ (Pa · s, or kg/m · s)	k (₩/m • K)	Npr	$eta imes 10^4$ (1/K)	$(g\beta\rho^{2}/\mu^{2}) \times 10^{-8} \ (1/K \cdot m^{3})$
0	273.2	999.6	4.229	1.786	0.5694	13.3	-0.630	
15.6	288.8	998.0	4.187	1.131	0.5884	8.07	1.44	10.93
26.7	299.9	996.4	4.183	0.860	0.6109	5.89	2.34	30.70
37.8	311.0	994.7	4.183	0.682	0.6283	4.51	3.24	68.0
65.6	338.8	981.9	4.187	0.432	0.6629	2.72	5.04	256.2
93.3	366.5	962.7	4.229	0.3066	0.6802	1.91	6.66	642
121.1	394.3	943.5	4.271	0.2381	0.6836	1.49	8.46	1300
148.9	422.1	917.9	4.312	0.1935	0.6836	1.22	10.08	2231
204.4	477.6	858.6	4.522	0.1384	0.6611	0.950	14.04	5308
260.0	533.2	784.9	4.982	0.1042	0.6040	0.859	19.8	11 030
315.6	588.8	679.2	6.322	0.0862	0.5071	1.07	31.5	19 260

A.2-11 Heat-Transfer Properties of Liquid Water, SI Units

A.2-11 Heat-Transfer Properties of Liquid Water, English Units

Т (°F)	$\frac{\rho}{\left(\frac{lb_m}{ft^3}\right)}$	$\left(\frac{btu}{lb_m\cdot {}^\circ F}\right)$	$\frac{\mu \times 10^3}{\left(\frac{lb_m}{ft \cdot s}\right)}$	$\frac{k}{\left(\frac{btu}{h\cdot ft\cdot {}^\circ F}\right)}$	N _{Pr}	$eta imes 10^4 \ (1/^{\circ}R)$	$(g\beta\rho^2/\mu^2) \times 10^{-6} \ (1/^{\circ}R \cdot ft^3)$
32	62.4	1.01	1.20	0.329	13.3	-0.350	
60	62.3	1.00	0.760	0.340	8.07	0.800	17.2
80	62.2	0.999	0.578	0.353	5.89	1.30	48.3
100	62.1	0.999	0.458	0.363	4.51	1.80	107
150	61.3	1.00	0.290	0.383	2.72	2.80	403
200	60.1	1.01	0.206	0.393	1.91	3.70	1010
250	58.9	1.02	0.160	0.395	1.49	4.70	2045
300	57.3	1.03	0.130	0.395	1.22	5.60	3510
400	53.6	1.08	0.0930	0.382	0.950	7.80	8350
500 .	49.0	1.19	0.0700	0.349	0.859	11.0	17 350
600	42.4	1.51	0.0579	0.293	1.07	17.5	30 300

Geankoplis, 4th edition

NOTE: Equate the label to the provided quantity in the supplied units. For example, for <u>water</u> at $0^{o}C$:

$$\mu \times 10^3 = 1.786 Pa s$$

 $\mu = 1.786 \times 10^{-3} Pa s$

T (°C)	Т (К)	ρ (kg/m³)	c _p (kJ/kg·K)	µ. × 10 ⁵ (Pa · s, or kg/m · s)	k (W/m · K)	Npr	$\beta \times 10^3$ $(1/K)$	$\frac{g\beta\rho^2/\mu^2}{(1/K\cdot m^3)}$
-17.8	255.4	1.379	1.0048	1.62	0.02250	0.720	3.92	2.79×10^{8}
0	273.2	1.293	1.0048	1.72	0.02423	0.715	3.65	2.04×10^{8}
10.0	283.2	1.246	1.0048	1.78	0.02492	0.713	3.53	1.72×10^{8}
37.8	311.0	1.137	1.0048	1.90	0.02700	0.705	3.22	1.12×10^{8}
65.6	338.8	1.043	1.0090	2.03	0.02925	0.702	2.95	0.775×10^{8}
93.3	366.5	0.964	1.0090	2.15	0.03115	0.694	2.74	0.534×10^{8}
121.1	394.3	0.895	1.0132	2.27	0.03323	0.692	2.54	0.386×10^{8}
148.9	422.1	0.838	1.0174	2.37	0.03531	0.689	2.38	0.289×10^{8}
176.7	449.9	0.785	1.0216	2.50	0.03721	0.687	2.21	0.214×10^{8}
204.4	477.6	0.740	1.0258	2.60	0.03894	0.686	2.09	0.168×10^{8}
232.2	505.4	0.700	1.0300	2.71	0.04084	0.684	1.98	0.130×10^{8}
260.0	533.2	0.662	1.0341	2.80	0.04258	0.680	1.87	0.104×10^{8}

A.3-3 Physical Properties of Air at 101.325 kPa (1 Atm Abs), SI Units

A.3-3 Physical Properties of Air at 101.325 kPa (1 Atm Abs), English Units

	ρ	c_{ρ}		k			
T (°F)	$\left(\frac{lb_m}{ft^3}\right)$	$\left(\frac{btu}{lb_m\cdot {}^{\circ}F}\right)$	μ (centipoise)	$\left(\frac{btu}{h \cdot ft \cdot {}^{\circ}F}\right)$	N _{Pr}	$\beta \times 10^{3}$ $(1/^{\circ}R)$	$g\beta\rho^2/\mu^2$ $(1/^{\circ}R\cdot ft^3)$
0	0.0861	0.240	0.0162	0.0130	0.720	2.18	4.39 × 10 ⁶
32	0.0807	0.240	0.0172	0.0140	0.715	2.03	3.21×10^{6}
50	0.0778	0.240	0.0178	0.0144	0.713	1.96	2.70×10^{6}
100	0.0710	0.240	0.0190	0.0156	0.705	1.79	1.76×10^{6}
150	0.0651	0.241	0.0203	0.0169	0.702	1.64	1.22×10^{6}
200	0.0602	0.241	0.0215	0.0180	0.694	1.52	0.840×10^{6}
250	0.0559	0.242	0.0227	0.0192	0.692	1.41	0.607×10^{6}
300	0.0523	0.243	0.0237	0.0204	0.689	1.32	0.454×10^{6}
350	0.0490	0.244	0.0250	0.0215	0.687	1.23	0.336×10^{6}
400	0.0462	0.245	0.0260	0.0225	0.686	1.16	0.264×10^{6}
450	0.0437	0.246	0.0271	0.0236	0.674	1.10	0.204×10^{6}
500	0.0413	0.247	0.0280	0.0246	0.680	1.04	0.163×10^{6}

Source: National Bureau of Standards. Circular 461C, 1947; 564, 1955: NBS-NACA. Tables of Thermal Properties of Gases. 1949; F. G. Keyes, Trans. A.S.M.E., 73, 590, 597 (1951); 74, 1303 (1952); D. D. Wagman, Selected Values of Chemical Thermodynamic Properties. Washington, D.C.: National Bureau of Standards. 1953.

Geankoplis, 4th edition

NOTE: Equate the label to the provided quantity in the supplied units. For example, for <u>air</u> at $0^{\circ}C$:

 $\mu \times 10^5 = 1.72 Pa s$ $\mu = 1.72 \times 10^{-5} Pa s$

Heat Transfer Data Correlations for Exami	nations	
CM3110 Transport Phenomena I Michigan Technological University Professor Faith A. Morrison 1 December 2020		Log mean driving force
L Forced Convection Through Pines		II. Forced Conve
In forced convection, we determined from dimensional analy function of at most Re, Pr , L/D , and viscosity ratio.	sis that the Nusselt number is a	In heat transfer taking cylinder with wall tem
Prandtl number $\Pr{\left({{\rm{fluid}}\;{\rm{pr}} \equiv \frac{{{{\cal{L}}}_p}\mu}{k} \right)}$	(1)	Film temperat
In pipe flow with heat transfer taking place, the fluid enters a at T_{bo} . T_w is the temperature of the wall. For Nu data correls pipes, all fluid material properties except $\mu_w = \mu(T_w)$ are everthe ensured by the mean bulk temperature is given by	t bulk fluid temperature T_{bi} and exits ations in forced convection through alloated at the mean bulk temperature.	The data correlation fo Outside Cylinder
Mean bulk temperature $\bar{T}_b \equiv \frac{T_{bi} + T_{bo}}{2}$	(2)	Wall-bulk driving force
A. Laminar Flow in Pipes		The values of ${\cal C}$ and m
Sieder and Tate's correlation (Geankoplis, p260) for laminar f	low is	
Laminar flow $Nu_{a} = \frac{h_{a}D}{k} = 1.86 \left(\text{RePr} \frac{D}{L} \right)$	$\frac{3}{4} \left(\frac{\mu_D}{\mu_W} \right)^{0.14} \tag{3}$	
$q = h_a A \Delta T_a$	(4)	
Arithmetic mean ${{\varDelta T}_{a}}=rac{\left(T_{w}-T_{bi} ight) +\left(T_{w}-T$	$-T_{bo}$ (5)	
B. Turbulent Flow in Pipes		
Sieder and Tate's correlation (Geankoplis, p261) for turbulent	t flow is	
Turbulent flow $Nu_{lm} = rac{h_{lm}D}{k} = 0.027 { m Re}^{0.8} { m Pl}$	$\frac{1}{3} \left(\frac{\mu_{\rm b}}{\mu_{\rm w}} \right)^{0.14}$ (6)	
$q = h_{tm} A \Delta T_{m}$	(2)	
	1	

(8)

Forced Convection Around the Outside of a Cylinder

: transfer taking place between a fluid at bulk temperature T_b flowing perpendicular to a sr with wall temperature T_w , the material properties are evaluated at the film temperature.

Film temperature
$$T_f \equiv \frac{T_w + T_b}{2}$$
 (9)

ta correlation for Nusselt number in this case is

tside Cylinder
$$Nu = \frac{hD}{k} = CRe^m Pr^{\frac{1}{3}}$$
 (10)

$$q = hA(T_w - T_b) \tag{11}$$

lues of C and m depend on the Reynolds number (Geankoplis, Table 4.6-1, p272). These are valid for ${\rm Pr}>0.6.$

J	0.989	0.911	0.683	0.193	0.0266
E	0.330	0.385	0.466	0.618	0.805
Re	1 - 4	4 - 40	40 - 4,000	$4,000 - 4 \times 10^4$	$4 \times 10^4 - 2.5 \times 10^5$

2

TABLE 4.7-2. Simplified Equations for Natural Convection from Various Surfaces ,		$\begin{array}{cccc} h = b u / h^2 \cdot F & h = W/m^2 \cdot K \\ L = \beta h \Delta T = {}^\circ F & L = m, \Delta T = K \\ Physical Geometry & N_{Gr} N_{\rm Pr} & D = \beta & D = m \\ \end{array}$	A is at 101 23 1-De (1 atm) also arrange	Vertical planes and $10^{4}-10^{9}$ h = $0.28(\Delta TL)^{14}$ h = $1.37(\Delta TL)^{14}$ (P1) cylinders $>10^{9}$ h = $0.18(\Delta T)^{13}$ h = $1.24\Delta T^{13}$ (P1)	Horizontal cylinders $10^{2}-10^{9}$ $h = 0.27(\Delta T/D)^{1/4}$ $h = 1.32(\Delta T/D)^{1/4}$ (M1) $>10^{9}$ $h = 0.18(\Delta T)^{1/3}$ $h = 1.24 \Delta T^{1/3}$ (M1)	Horizontal plates Horizontal plates Heated plate facing $10^5 - 2 \times 10^7$ $h = 0.27 (\Delta T/L)^{14}$ $h = 1.32 (\Delta T/L)^{14}$ (M1) upward or cooled $2 \times 10^7 - 3 \times 10^{10}$ $h = 0.22 (\Delta T)^{13}$ $h = 1.52 \Delta T^{13}$ (M1) nlate facing $0.22 (\Delta T)^{13}$ $h = 1.52 \Delta T^{13}$ (M1)	part atom bound	Heated plate facing $3 \times 10^{5} - 3 \times 10^{10}$ $h = 0.12(\Delta T/L)^{14}$ $h = 0.59(\Delta T/L)^{14}$ (M1)	downward or cooled plate	facing upward Water at 70°F (294 K)	Vertical planes and $10^4 - 10^9$ $h = 26(\Delta T/L)^{1/4}$ $h = 127(\Delta T/L)^{1/4}$ (P1)	cylinders	Organic liquids at 70°F (294 K) \oplus	Vertical planes and $10^{-10^{\circ}}$ $n = 1.2(\Delta I/L)^{\circ}$ $n = 3.9(\Delta I/L)^{\circ}$ (r1) cylinders									Reference : C. I. Geankonlis. Transport Processes and Generation Process Principles. 4 th Edition	reference: c. J. Geannopins, inansport modesses and separation modes a minicipites, 4 – curron, Prentice Hall, 2003.	
	,	isional	(12)	(13)		ations			Ref.		(B3)	(cr) (IM)	(M1)			(P3)	(P3)	(P3)	(P3)	(M1)	(сл)	(M1) (M1)	(++++)	(F1)	
		en found by dimer.			, elder ni silnodnee	earing of the corre		ion	a m		36 1	.59 5 4	.13 1			.49 0	$.71 \frac{1}{25}$	$\frac{1}{10}$.09 ⁵	.53 4 ⁴	<u>£</u> cr.	.54 14		.58 <u>1</u> 3	
ometries		s from various surfaces have be ollows:	$\frac{hL}{h} = a(\text{Gr Pr})^m$	$\kappa = \frac{L^3 \rho^2 g \beta \Delta T}{2}$	μ^{z}	recty, values may be round in o kt pages) provides simplified ve anic liquids).		q. (4.7-4) for Natural Conveci	$N_{ m Gr} N_{ m Pr}$		104	$\sim 10^{4} - 10^{9}$ 0.	>10 ⁹ 0.			<10 ⁻⁵ 0.	$10^{-5} - 10^{-3}$ 0.	10 ⁻³ -1 1.	1-104 1.	10 ⁴ -10 ⁷ 0.	-01~	$10^{5}-2 \times 10^{7} \qquad 0.$ 2 × 10 ⁷ -3 × 10 ¹⁰ 0		$10^{5}-10^{11}$ 0.	
III. Natural Convection from Various Ge		Natural convection heat transfer coefficients analysis and experimentally to correlate as ft	Natural convection Nu =	(various geometries) Grashof number Gr	The valuet for a and m denend on the server	ine values for us and increption on the geometry of (p278, shown below). Table 4.7-2 (p280, ney specialized to common fluids (air, water, org	; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	TABLE 4.7-1. Constants for Use with Eq.	Physical Geometry	Vertical planes and cylinders [vertical height $I < 1 \text{ m} (3 \text{ ft})$]				Horizontal cylinders Idiameter D used for	L and D < 0.20 m (0.66 ft)]	-					Horizontal nlates	Upper surface of heated plates or lower surface of cooled nlates	I ower surface of heated plates or	upper surface of cooled plates	

Material	<u>8</u>
Aluminum foil	0.04
Asbestos board	0.96
Polished brass	0.03
Cast iron, turned and heated	0.60-0.70
Concrete	0.85
Ice, smooth	0.966
Ice, rough	0.985
Plaster	0.98
Roofing paper	0.91
Sand	0.76
Steel, Oxidized	0.79
Wrought Iron	0.94

Table 1: Emissivity ε of solids (300K)

Stephan-Boltzman Constant:

$$\sigma = 0.1712 \times 10^{-8} \frac{BTU}{h f t^2 R^4}$$
$$\sigma = 5.676 \times 10^{-8} \frac{W}{m^2 K^4}$$

Reference: Engineering Toolbox, <u>www.engineeringtoolbox.com/emissivity-coefficients-d_447.html</u>

Mechanism	$h, \frac{BTU}{hr ft^{2^{o}F}}$	$h, \frac{W}{m^{2}K}$
Condensing steam	1000-5000	5700-28,000
Condensing organics	200-500	1100-2800
Boiling liquids	300-5000	1700-28,000
Moving water	50-3000	280-17,000
Moving hydrocarbons	10-300	55-1700
Still air	0.5-4	2.8-23
Moving air	2-10	11.3-55

Reference: C. J. Geankoplis, Magnitude of Some Heat-Transfer Coefficients, page 241

Typical values of the convection heat transfer coefficient. From Incropera et al., Fundamentals of Heat and Mass Transfer, 6th edition, Wiley, 2007.

Process		$h\left(\frac{W}{m^2K}\right)$
Free convection	Gases	2-25
	Liquids	50-1000
Forced convection	Gases	25-250
	Liquids	100-20,000
Convection with	Boiling or	2500-10 ⁵
phase change	condensation	

FIGURE 5.3-10. Chart for determining the temperature at the center of a sphere for unsteady-state heat conduction. [From H. P. Heisler, Trans. A.S.M.E., 69, 227 (1947). With permission.] From Geankpolis, 4th edition, page 374

FIGURE 5.3-5. Unsteady-state heat conduction in a large flat plate. [From H. P. Gurney and J. Lurie, Ind. Eng. Chem., 15, 1170 (1923).]

© Faith A. Morrison, Michigan Tech U

Gurney and Lurie Charts

		Specific Volume		Enthalpy		Entropy				
	Temper-	Vapor	(m ³ /	/kg)	(k	J/kg)	(k)	/kg·K)		
and the second	ature (°C)	(kPa)	Liquid	Sat'd Vapor	Liquid	Sat'd Vapor	Liquid	Sat'd Vapor	ana ina ka kata na kana kana ka	an a
	0.01	0.6113	0.0010002	206 136	÷ 0.00	2501.4	0 0000	0 1562		
	2	0.0115	0.0010002	168 132	12 57	2501.4	0.0000	9.1302		
	- - 	0.7377	0.0010001	137 734	25.20	2500.2	0.0437	9,0003		
	0	1 1/77	0.0010001	113 386	37.80	2512.4	0.0912	8 9253		
a anta e a anante e ana anta da da anta da	12	1.1477	0.0010005	03 784	50.41	2523.4	0.1302	8 8524		
	12	1.4022	0.0010005	77 926	62.99	2525.4	0.2245	8 7814		
	18	2 0640	0.0010014	65.038	75 58	2534.4	0.2679	8.7123		
	21	2.0040	0.0010020	54,514	88 14	2539.9	0.3109	8.6450		
	24	2.985	0.0010027	45.883	100.70	2545.4	0.3534	8.5794		
	24	3 169	0.0010029	43 360	104.89	2547.2	0.3674	8,5580		
	25	3 567	0.0010035	38 774	113.25	2550.8	0.3954	8 51 56		
	30	4 246	0.0010043	32 894	125.79	2556.3	0.4369	8.4533		
	33	5 034	0.0010053	28 011	138 33	2561.7	0.4781	8.3927		
	36	5 947	0.0010055	23.940	150.55	2567 1	0.5188	8.3336		
	<u>4</u> 0	7 384	0.0010078	19 523	167 57	2574.3	0.5725	8 2570		
	40	0 503	0.0010000	15 258	188.45	2583.2	0.6387	8,1648		
3	50	12 3/10	0.0010000	12 032	209.33	2505.2	0.7038	8 0763		
	55	15 758	0.0010121	9 568	230.23	2600.9	0.7679	7 9913		
	22	10.040	0.0010140	7 671	250.25	2600.2	0.7072	7 9096		
	65	25.03	0.0010172	6 107	272.06	2618.3	0.0012	7.8310		
	70	25.05	0.0010102	5.042	202.00	2626.8	0.0535	7.0510		
	70	28.59	0.0010228	J.042	313.03	2625.3	1 0155	7 6824		
	80	AT 30	0.0010233	3 407	334 01	2643.7	1.0155	7.0024		<u>8</u>
	85	57.83	0.0010291	2.407	355.90	2651.0	1 1343	7.5445		
	00	7 0 14	0.0010325	2.828	376.92	2660.1	1.1975	7 4701		
	90	84 55	0.0010300	1 9819	307.06	2668 1	1.1525	7 4150		
	100	101 35	0.0010327	1.5015	419.04	2676.1	1 3060	7 3540		
	100	101.55	0.0010455	1.0725	440 15	2670.2	1 3630	7 2058	10	
	105	1/2 27	0.0010475	1.7107	461 30	2601.5	1 4185	7.2250		
<u>,</u>	115	140.06	0.0010510	1.2102	487.48	2600 0	1.4105	7 1833		
	120	109.00	0.0010553	0.8010	503 71	2000.0	1.5276	7.1000		
	120	190.33	0.0010640	0.0919	52/ 00	2700.5	1.5270	7.1200		
Ţ.	120	232.1	0.0010049	0.7700	5/6 31	2713.5	1.5015	7.0269		
	135	212.0	0.0010097	0.5822	567.69	2720,5	1.6970	6 9777		
5	, 140 [®]	316.3	0.0010740	0.5022	580 13	2727.5	1 7301	6 9299		
	140	J10.J	0.0010757	0.3009	610 63	2735.5	1 7907	6.8833		
	145	415.4	0.0010850	0.3028	632.20	2746.5	1 8418	6 8379		
	155	47J.0 5/2 1	0.0010905	0.3468	653.84	2740.J 2752 A	1.0410	6 7035		
	160	617 Q	0.0010901	0.2400	675 55	2752.4	1 9427	6 7502		
	165	700 5	0.0011020	0.3071	607 3/	2750.1	1 0025	6 7078		
	170	701.5	0.0011000	0.2121	710 71	2769.2	2 0/10	6 6663		
	175	191.1	0.0011143	0.2420	7/1 17	2100.1 2772 6	2.0419	6 6256		
	190	092.0 1002 1	0.0011274	0.2100	762 22	2113.0 2778 2	2.0309	6 5 8 57		
	100	1002.1	0.0011274	0.19403	807 67	27786 1	2.1350	6 5070		
	790 730	1234.4	0.0011565	0.10004	857 15	2100.4	7 2200 7 2200	6 1272		
	200	2540	0.0011000	0.12/30	046 70	2173.2	2.2209	67507		
	223	2072	0.0011992	0.07849	900.78	2003.3	צנטנ.ג ררחד ר	6 0720		
	230	5042 ⁰	0.0012312	0.02070	1010 07	2001.3	2.1921	5 2020		
	213	3942 0501	0.0010426	0.05279	1210,07	2700.0	2.0208	5 7045		
	300	8281	0.0010436	0.02167	1544.0	2749.0	3.2334	5.7045		

A.2-9 Properties of Saturated Steam and Water (Steam Table), SI Units

Source: Abridged from J. H. Keenan, F. G. Keyes, P. G. Hill, and J. G. Moore, Steam Tables-Metric Units. New York: John Wiley & Sons, Inc., 1969. Reprinted by permission of John Wiley & Sons, Inc.

Typo in value of α_{Cu} corrected, 24Feb2019.

Appendix H

Physical Properties of Solids

~		ρ		c _p		α	k (Btu/h ft°F)			(W/m⋅K)			
Material	(lb _m /ft ³) (68°F)	(kg/m ³) (293 K)	(Btu/lb _m °F) (293 K)	(J/kg · 1K) ×10 ⁻² (293K)	(ft²/h) (68°F)	$(m^2/s) \cdot 10^5$ (293k)	(68)	°F (212)	(572)	(293)	K (373)	(;	573)
Metals					*****	********							
Aluminum	168.6	2,701.1	0.224	9.383	3.55	9.16	132	133	133	229	229	23	0
Copper	555	8,890	0.092	3.854	3.98	11.27	223	219	213	386	379	36	9
Gold	1206	19,320	0.031	1.299	4.52	11.66	169	170	172	293	294	29	8
Iron	492	7,880	0.122	5.110	0.83	2.14	42.3	39	31.6	73.2	68	5	4
Lead	708	11,300	0.030	1.257	0.80	2.06	20.3	19.3	17.2	35.1	33.4	2	9.8
Magnesium	109	1,750	0.248	10.39	3.68	9.50	99.5	96.8	91.4	172	168	15	8
Nickel	556	8,910	0.111	4.560	0.87	2.24	53.7	47.7	36.9	93.0	82.6	6	3.9
Platinum	1340	21,500	0.032	1.340	0.09	0.23	40.5	41.9	43.5	70.1	72.5	7	5.3
Silver	656	10,500	0.057	2,388	6.42	16.57	240	237	209	415	410	36	52
Tin	450	7.210	0.051	2.136	1.57	4.05	36	34		62	59	-	
Tungsten	1206	19.320	0.032	1.340	2.44	6.30	94	87	77	160	150	13	10
Uranium	1167	18,700	0.027	1.131	0.53	1.37	16.9	17.2	19.6	29.3	29.8	3	3.9
Zinc	446	7,150	0.094	3,937	1.55	4 00	65	63	58	110	110	10	0
Allovs		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0.09 1	0.001	1100	1.00	00	00	50	110	110		
Aluminum 2024	173	2,770	0.230	9.634	1.76	4 54	70.2			122			
Brass	532	8,520	0.091	3 812	1 27	3.28	61.8	73 9	853	107	128	14	18
(70% Cu. 30% Ni)	002	0,020	0.071	5.012	1.201	5.20	01.0	12.2	00.0	107	120	1-	
Constantan (60% Cu, 40% Ni)	557	8,920	0.098	4.105	0.24	0.62	13.1	15.4		22.7	26.7		
Iron, cast	455	7.920	0.100	4.189	0.65	1.68	29.6	26.8		51.2	46.4		
Nichrome V	530	8,490	0.106	4.440	0.12	0.31	7.06	7.99	9.94	12.2	13.8	1	72
Stainless steel	488	7.820	0.110	4.608	0.17	0.44	9.4	10.0	13	16	173	2	3
Steel, mild (1% C)	488	7,820	0.113	4.733	0.45	1.16	24.8	24.8	22.9	42.9	42.9	3	39.0
Nonmetals													
Ashestos	36	590	0.25	10.5			0.000	0.11	0.12	0.1	50 O	100	0.21
Prick (fra alay)	144	2 2 1 0	0.23	0.22			0.092	0.11	0.12		1 1	12	0.21
Drick (mesonat)	106	1,510	0.22	9.22			0.29	0.05	•	0.6	۰. د	15	
Drick (masoniy)	100	2,010	0.20	0.00			0.56	0.67		0.00	, 1	16	
Brick (chrome)	100	3,010	0.20	8.38			0.70	0.07		1.0	1.	10	
Concrete	144	2,310	0.21	8.80			0.70	-		1.2	12		
Corkboard	10	100	0.4	17			0.023)		0.04	+ <i>3</i>		
earth, powdered	14	220	0.2	8.4			0.03			0.0.	5		
Glass, window	170	2,720	0.2	8.4			0.45			0.7	3		
Glass, Pyrex	140	2,240	0.2	8.4			0.63	0.67	0.84	4 1.0	9 1.	.16	1.45
Kaolin firebrick	19	300							0.0	52			0.09
85% Magnesia	17	270					0.038	3 0.04	1	0.0	56 0.	.071	
Sandy loam, 4% H ₂ O	104	1,670	0.4	17			0.54			0.94	1		
Sandy loam,	121	1,940					1.08			1.8	7		
Rock wool	10	160	0.2	84			0.023	3 0.03	3	0.0	40 0	.057	
Wood, oak ⊥	51	820	0.57	23.9			0.12	. 0.05.	-	0.2	1		
Wood, oak II to grain	51	820	0.57	23.9			0.23			0.4	0		

	Tempe	rature	Diffusivity		
System	°C	K	$[(m^2/s)10^r$ or $cm^2/s]$	Ref.	
Air-NH ₃	0	273	0.198	(W1	
Air-H ₂ O	0	273	0.220	(N2	
	25	298	0.260	(L1)	
	42	315	0.288	(M1	
Air-CO ₂	3	276	0.142	(H1	
	44	317	0.177		
Air-H ₂	0	273	0.611	(N2	
Air-C ₂ H ₅ OH	25	298	0.135	(M1	
	42	315	0.145		
Air-CH ₃ COOH	0	273	0.106	(N2	
Air-n-hexane	21	294	0.080	(C1	
Air-benzene	25	298	0.0962	(L1	
Air-toluene	25.9	298.9	0.086	(G1	
Air-n-butanol	0	273	0.0703	(N2	
	25.9	298.9	0.087		
$H_2 - CH_4$	25	298	0.726	(C2	
$H_2 - N_2$	25	298	0.784	(B1	
	85	358	1.052		
H ₂ -benzene	38.1	311.1	0.404	(H2	
H ₂ -Ar	22.4	295.4	0.83	(W2	
H_2-NH_3	25	298	0.783	(B1	
$H_2 - SO_2$	50	323	0.61	(S1	
$H_2 - C_2 H_5 OH$	67	340	0.586	(T1	
He-Ar	25	298	0.729	(S2	
He-n-butanol	150	423	0.587	(S2	
He-air	44	317	0.765	(H1	
He−CH₄	25	298	0.675	(C2	
He-N ₂	25	298	0.687	(S2	
$He-O_2$	25	298	0.729	(S2	
Ar-CH ₄	25	298	0.202	(C2	
$CO_2 - N_2$	25	298	0.167	(W3	
$CO_2 - O_2$	20	293	0.153	(W4	
N ₂ -n-butane	25	298	0.0960	(B2	
H_2O-CO_2	34.3	307.3	0.202	(\$3	
CO-N ₂	100	373	0.318	(A1	
CH ₃ Cl-SO ₂	30	303	0.0693	(C3	
$(C_{2}H_{3})_{2}O-NH_{3}$	26.5	299.5	0.1078	(S4	

TABLE 6.2-1.Diffusion Coefficients of Gases at
101.32 kPa Pressure

From Geankoplis, 4th Edition, Prentice Hall, 2003

		Tempere	alure	Diffusivity	
Solute	Solvent	°C	K	$r = [(m^2/s)10^{5}]$ or $(cm^2/s)10^{5}]$	Ref.
NH ₃	Water	12	285	1.64	(N2)
		15	288	1.77	
O ₂	Water	18	291	1.98	(N2)
		25	298	2.41	(V1)
CO ₂	Water	25	298	2.00	(V1)
H ₂	Water	25	298	4.8	(V1)
Methyl alcohol	Water	15	288	1.26	(J1)
Ethyl alcohol	Water	10	283	0.84	(J1)
		25	298	1.24	(J1)
n-Propyl alcohol	Water	15	288	0.87	(J1)
Formic acid	Water	25	298	1.52	(B4)
Acetic acid	Water	9.7	282.7	0.769	(B4)
		25	298	1.26	(B4)
Propionic acid	Water	25	298	1.01	(B4)
HCl (9 g mol/liter) (2.5 g mol/liter)	Water	10 10	283 283	3.3 2.5	(N2) (N2)
Benzoic acid	Water	25	298	1.21	(C4)
Acetone	Water	25	298	1.28	(A2)
Acetic acid	Benzene	25	298	2.09	(C5)
Urea	Ethanol	12	285	0.54	(N2)
Water	Ethanol	25	298	1.13	(H4)
KCI	Water	25	298	1.870	(P2)
KCI	Ethylene glycol	25	298	0.119	(P2)

TABLE 6.3-1. Diffusion Coefficients for Dilute Liquid Solutions

p431

 TABLE 6.4-1.
 Diffusion Coefficients for Dilute Biological Solutes in Aqueous Solution

	Tempo	erature				
Solute	°C	K	Diffusivity (m²/s)	Molecular Weight	Ref.	
Urea	20 25	293 298	1.20×10^{-9} 1.378×10^{-9}	60.1	(N2) (G5)	
Glycerol	20	293	0.825×10^{-9}	92.1	(G3)	
Glycine	25	298	1.055×10^{-9}	75.1	(L3)	
Sodium caprylate	25	298	8.78×10^{-10}	166.2	(G6)	
Bovine serum albumin	25	298	6.81×10^{-11}	67 500	(C6)	
Urease	25 20	298 293	4.01×10^{-11} 3.46×10^{-11}	482 700	(C7) (S6)	
Soybean protein	20	293	2.91×10^{-11}	361 800	(S6)	
Lipoxidase	20	293	5.59×10^{-11}	97 440	(S6)	
Fibrinogen, human	20	293	1.98×10^{-11}	339 700	(S6)	
Human serum albumin	20	293	5.93×10^{-11}	72 300	(S6)	
γ -Globulin, human	20	293	4.00×10^{-11}	153 100	(S6)	
Creatinine	37	310	1.08×10^{-9}	113.1	(C8)	
Sucrose	37 20	310 293	0.697×10^{-9} 0.460×10^{-9}	342.3	(C8) (P3)	

ATOMIC WEIGHTS AND NUMBERS

Atomic weights apply to naturally occurring isotopic compositions and are based on an atomic mass of ${}^{12}C = 12$

Element	Symbol	Atomic Number	Atomic Weight	Element	Symbol	Atomic Number	Atomic Weight	
Actinium	Ac	89		Iridium	Ir	77	192.2	
Aluminum	Al	13	26.9815	Iron	Fe	26	55.847	
Americium	Am	95		Krypton	Kr	36	83.80	
Antimony	Sb	51	121.75	Lanthanum	La	57	138.91	
Argon	Ar	18	39.948	Lawrencium	Lr	103		_
Arsenic	As	33	74.9216	Lead	Pb	82	207.19	
Astatine	At	85		Lithium	Li	3	6.939	
Barium	Ba	56	137.34	Lutetium	Lu	71	174.97	
Berkelium	Bk	97		Magnesium	Mg	12	24.312	
Beryllium	Be	4	9.0122	Manganese	Mn	25	54.9380	
Bismuth	Bi	83	208.980	Mendelevium	Md	101		
Boron	В	5	10.811	Mercury	Hg	80	200.59	
Bromine	Br	35	79.904	Molybdenum	Мо	42	95.94	
Cadmium	Cd	48	112.40	Neodymium	Nd	60	144.24	
Calcium	Ca	20	40.08	Neon	Ne	10	20.183	
Californium	Cf	98		Neptunium	Np	93		
Carbon	С	6	12.01115	Nickel	Ni	28	58.71	
Cerium	Ce	58	140.12	Niobium	Nb	41	92.906	
Cesium	Cs	55	132.905	Nitrogen	N	7	14.0067	
Chlorine	Cl	17	35.453	Nobelium	No	102		
Chromium	Cr	24	51.996	Osmium	Os	75	190.2	
Cobalt	Co	27	58.9332	Oxygen	0	8	15.9994	
Copper	Cu	29	63.546	Palladium	Pd	46	106.4	
Curium	Cm	96		Phosphorus	Р	15	30.9738	
Dysprosium	Dv	66	162.50	Platinum	Pt	78	195.09	_
Einsteinium	Es	99	102.00	Plutonium	Pu	94	1,0101	
Erbium	Er	68	167.26	Polonium	Po	84		
Europium	Eu	63	151.96	Potassium	K	19	39.102	
Fermium	Fm	100		Praseodymium	Pr	59	140.907	
Fluorine	F	9	18.9984	Promethium	Pm	61		
Francium	Fr	87		Protactinium	Pa	91		12000
Gadolinium	Gd	64	157.25	Radium	Ra	88		
Gallium	Ga	31	69.72	Radon	Rn	86		
Germanium	Ge	32	72.59	Rhenium	Re	75	186.2	
Gold	Au	79	196.967	Rhodium	Rh	45	102.905	_
Hafnium	Hf	72	178.49	Rubidium	Rb	37	84.57	
Helium	He	2	4.0026	Ruthenium	Ru	44	101.07	
Holmium	Ho	67	164.930	Samarium	Sm	62	150.35	_
Hydrogen	Н	1	1.00797	Scandium	Sc	21	44.956	
Indium	In	49	114.82	Selenium	Se	34	78.96	
Iodine	Ι	53	126.9044	Silicon	Si	14	28.086	
Silver	Ag	47	107.868	Tin	Sn	50	118.69	
Sodium	Na	11	22.9898	Titanium	Ti	22	47.90	
Strontium	Sr	38	87.62	Tungsten	W	74	183.85	
Sulfur	S	16	32.064	Uranium	U	92	238.03	
Tantalum	Ta	73	180.948	Vanadium	V	23	50.942	
Technetium	Tc	43		Xenon	Xe	54	131.30	
Tellurium	Te	52	127.60	Ytterbium	Yb	70	173.04	
Terhium	Th	65	158 924	Yttrium	Y	30	88.905	
Thallium	TI	81	204 37	Zinc	Zn	30	65 37	
Thorium	Th	00	232 028	Zirconium	Zr	10	01.22	
Thulium	Tm	69	168.934	Litcolliulli	21	40	71.44	

FRONT OF PURPLE

The Equation of Species Mass Balance in Cartesian, cylindrical, and spherical

coordinates for binary mixtures of A and B. Two cases are presented: the general case, where the mass flux with respect to mass-average velocity (\underline{J}_A) appears (p. 1), and the more usual case (p. 2), where the diffusion coefficient is constant and Fick's law has been incorporated.

Spring 2019 Faith A. Morrison, Michigan Technological University

Microscopic species mass balance, in terms of mass flux; Gibbs notation

$$\rho\left(\frac{\partial\omega_A}{\partial t} + \underline{v}\cdot\nabla\omega_A\right) = -\nabla\cdot\underline{j}_A + r_A$$

Microscopic species mass balance, in terms of mass flux; Cartesian coordinates

$$\rho\left(\frac{\partial\omega_A}{\partial t} + v_x\frac{\partial\omega_A}{\partial x} + v_y\frac{\partial\omega_A}{\partial y} + v_z\frac{\partial\omega_A}{\partial z}\right) = -\left(\frac{\partial j_{A,x}}{\partial x} + \frac{\partial j_{A,y}}{\partial y} + \frac{\partial j_{A,z}}{\partial z}\right) + r_A$$

Microscopic species mass balance, in terms of mass flux; cylindrical coordinates

$$\rho\left(\frac{\partial\omega_{A}}{\partial t} + v_{r}\frac{\partial\omega_{A}}{\partial r} + \frac{v_{\theta}}{r}\frac{\partial\omega_{A}}{\partial\theta} + v_{z}\frac{\partial\omega_{A}}{\partial z}\right) = -\left(\frac{1}{r}\frac{\partial(rj_{A,r})}{\partial r} + \frac{1}{r}\frac{\partial j_{A,\theta}}{\partial\theta} + \frac{\partial j_{A,z}}{\partial z}\right) + r_{A}$$

Microscopic species mass balance, in terms of mass flux; spherical coordinates

$$\rho\left(\frac{\partial\omega_{A}}{\partial t} + v_{r}\frac{\partial\omega_{A}}{\partial r} + \frac{v_{\theta}}{r}\frac{\partial\omega_{A}}{\partial\theta} + \frac{v_{\phi}}{r\sin\theta}\frac{\partial\omega_{A}}{\partial\phi}\right) = -\left(\frac{1}{r^{2}}\frac{\partial(r^{2}j_{A,r})}{\partial r} + \frac{1}{r\sin\theta}\frac{\partial(j_{A,\theta}\sin\theta)}{\partial\theta} + \frac{1}{r\sin\theta}\frac{\partial j_{A,\phi}}{\partial\phi}\right) + r_{A}$$

Fick's law of diffusion, Gibbs notation: $\underline{J}_A = -\rho D_{AB} \nabla \omega_A$

$$= \rho \omega_{A} (\underline{v}_{A} - \underline{v})$$
Fick's law of diffusion, Cartesian coordinates: $\begin{pmatrix} j_{A,x} \\ j_{A,y} \\ j_{A,z} \end{pmatrix}_{xyz} = \begin{pmatrix} -\rho D_{AB} \frac{\partial \omega_{A}}{\partial x} \\ -\rho D_{AB} \frac{\partial \omega_{A}}{\partial y} \\ -\rho D_{AB} \frac{\partial \omega_{A}}{\partial z} \end{pmatrix}_{xyz}$
Fick's law of diffusion, cylindrical coordinates: $\begin{pmatrix} j_{A,r} \\ j_{A,\rho} \\ j_{A,z} \end{pmatrix}_{r\theta z} = \begin{pmatrix} -\rho D_{AB} \frac{\partial \omega_{A}}{\partial r} \\ -\rho D_{AB} \frac{\partial \omega_{A}}{\partial z} \end{pmatrix}_{r\theta z}$
Fick's law of diffusion, spherical coordinates: $\begin{pmatrix} j_{A,r} \\ j_{A,\rho} \\ j_{A,\phi} \end{pmatrix}_{r\theta\phi} = \begin{pmatrix} -\rho D_{AB} \frac{\partial \omega_{A}}{\partial r} \\ -\rho D_{AB} \frac{\partial \omega_{A}}{\partial z} \end{pmatrix}_{r\theta\phi}$

1

BACK (purple)

The Equation of Species Mass Balance, constant $ho D_{AB}$. For binary

systems, and Fick's law has been incorporated. Good for dilute liquid solutions at constant temperature and pressure.

Microscopic species mass balance, constant thermal conductivity; Gibbs notation

$$\rho\left(\frac{\partial\omega_A}{\partial t} + \underline{v}\cdot\nabla\omega_A\right) = \rho D_{AB}\nabla^2\omega_A + r_A$$

Microscopic species mass balance, constant thermal conductivity; Cartesian coordinates

$$\rho\left(\frac{\partial\omega_{A}}{\partial t}+v_{x}\frac{\partial\omega_{A}}{\partial x}+v_{y}\frac{\partial\omega_{A}}{\partial y}+v_{z}\frac{\partial\omega_{A}}{\partial z}\right)=\rho D_{AB}\left(\frac{\partial^{2}\omega_{A}}{\partial x^{2}}+\frac{\partial^{2}\omega_{A}}{\partial y^{2}}+\frac{\partial^{2}\omega_{A}}{\partial z^{2}}\right)+r_{A}$$

Microscopic species mass balance, constant thermal conductivity; cylindrical coordinates

$$\rho\left(\frac{\partial\omega_{A}}{\partial t} + v_{r}\frac{\partial\omega_{A}}{\partial r} + \frac{v_{\theta}}{r}\frac{\partial\omega_{A}}{\partial\theta} + v_{z}\frac{\partial\omega_{A}}{\partial z}\right) = \rho D_{AB}\left(\frac{1}{r}\frac{\partial}{\partial r}\left(r\frac{\partial\omega_{A}}{\partial r}\right) + \frac{1}{r^{2}}\frac{\partial^{2}\omega_{A}}{\partial\theta^{2}} + \frac{\partial^{2}\omega_{A}}{\partial z^{2}}\right) + r_{A}$$

Microscopic species mass balance, constant thermal conductivity; spherical coordinates

$$\rho \left(\frac{\partial \omega_A}{\partial t} + v_r \frac{\partial \omega_A}{\partial r} + \frac{v_\theta}{r} \frac{\partial \omega_A}{\partial \theta} + \frac{v_\phi}{r \sin \theta} \frac{\partial \omega_A}{\partial \phi} \right) \\ = \rho D_{AB} \left(\frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial \omega_A}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial \omega_A}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2 \omega_A}{\partial \phi^2} \right) + r_A$$

$$cx_A = c_A = \frac{1}{M_A}(\rho_A) = \frac{1}{M_A}(\rho\omega_A) \qquad \left(\text{units: } c[=]\frac{mol\ mix}{vol\ soln}; \rho[=]\frac{mass\ mix}{vol\ soln}; c_A[=]\frac{mol\ A}{vol\ soln}; \rho_A[=]\frac{mass\ A}{vol\ soln}\right)$$

 $\underline{J}_A \equiv \text{mass flux of species } A$ relative to a mixture's mass average velocity, \underline{v}

(units: $\underline{J}_A[=] \frac{mass A}{area \cdot time}$)

$$= \rho_A(\underline{v}_A - \underline{v})$$

 $\underline{J}_A + \underline{J}_B = 0$, i.e. these fluxes are measured relative to the mixture's center of mass

 $\underline{n}_A \equiv \rho_A \underline{v}_A = \underline{j}_A + \rho_A \underline{v} = \text{ combined mass flux relative to stationary coordinates}$

$$\underline{n}_A + \underline{n}_B = \rho \underline{v}$$

 $\underline{v}_A \equiv$ velocity of species A in a mixture, i.e. average velocity of all molecules of species A within a small volume

 $\underline{v} = \omega_A \underline{v}_A + \omega_B \underline{v}_B \equiv$ mass average velocity; same velocity as in the microscopic momentum and energy balances

FRONT OF GREEN

The Equation of Species Mass Balance in Terms of Combined

Molar quantities in Cartesian, cylindrical, and spherical coordinates for binary mixtures of A and B.

The general case, where the combined molar flux with respect to molar velocity (\underline{N}_A) , is given on page 1.

Spring 2019 Faith A. Morrison, Michigan Technological University

Microscopic species mass balance, in terms of molar flux; Gibbs notation

$$\frac{\partial c_A}{\partial t} = -\nabla \cdot \underline{N}_A + R_A$$

Microscopic species mass balance, in terms of combined molar flux; Cartesian coordinates

$$\frac{\partial c_A}{\partial t} = -\left(\frac{\partial N_{A,x}}{\partial x} + \frac{\partial N_{A,y}}{\partial y} + \frac{\partial N_{A,z}}{\partial z}\right) + R_A$$

Microscopic species mass balance, in terms of combined molar flux; cylindrical coordinates

$$\frac{\partial c_A}{\partial t} = -\left(\frac{1}{r}\frac{\partial (rN_{A,r})}{\partial r} + \frac{1}{r}\frac{\partial N_{A,\theta}}{\partial \theta} + \frac{\partial N_{A,z}}{\partial z}\right) + R_A$$

Microscopic species mass balance, in terms of combined molar flux; spherical coordinates

$$\frac{\partial c_A}{\partial t} = -\left(\frac{1}{r^2}\frac{\partial (r^2 N_{A,r})}{\partial r} + \frac{1}{r\sin\theta}\frac{\partial (N_{A,\theta}\sin\theta)}{\partial \theta} + \frac{1}{r\sin\theta}\frac{\partial N_{A,\phi}}{\partial \phi}\right) + R_A$$

Fick's law of diffusion, Gibbs notation: $\underline{N}_A = x_A(\underline{N}_A + \underline{N}_B) - cD_{AB}\nabla x_A$

$$= c_A \underline{v}^* - c D_{AB} \nabla x_A$$

Fick's law of diffusion, Cartesian coordinates:
$$\binom{N_{A,x}}{N_{A,y}}_{xyz} = \begin{pmatrix} x_A (N_{A,x} + N_{B,x}) - cD_{AB} \frac{\partial x_A}{\partial x} \\ x_A (N_{A,y} + N_{B,y}) - cD_{AB} \frac{\partial x_A}{\partial y} \\ x_A (N_{A,z} + N_{B,z}) - cD_{AB} \frac{\partial x_A}{\partial z} \end{pmatrix}_{xyz}$$

$$\begin{aligned} \text{Fick's law of diffusion, cylindrical coordinates:} & \binom{N_{A,r}}{N_{A,\theta}}_{r\theta z} = \begin{pmatrix} x_A (N_{A,r} + N_{B,r}) - cD_{AB} \frac{\partial x_A}{\partial r} \\ x_A (N_{A,\theta} + N_{B,\theta}) - \frac{cD_{AB}}{r} \frac{\partial x_A}{\partial \theta} \\ x_A (N_{A,z} + N_{B,z}) - cD_{AB} \frac{\partial x_A}{\partial z} \end{pmatrix}_{r\theta z} \end{aligned}$$

$$\begin{aligned} \text{Fick's law of diffusion, spherical coordinates:} & \binom{N_{A,r}}{N_{A,\theta}}_{r\theta \phi} = \begin{pmatrix} x_A (N_{A,r} + N_{B,r}) - cD_{AB} \frac{\partial x_A}{\partial r} \\ x_A (N_{A,\theta} + N_{B,\theta}) - \frac{cD_{AB}}{r} \frac{\partial x_A}{\partial r} \\ x_A (N_{A,\theta} + N_{B,\theta}) - \frac{cD_{AB}}{r} \frac{\partial x_A}{\partial \theta} \\ x_A (N_{A,\theta} + N_{B,\theta}) - \frac{cD_{AB}}{r} \frac{\partial x_A}{\partial \theta} \\ x_A (N_{A,\phi} + N_{B,\phi}) - \frac{cD_{AB}}{r} \frac{\partial x_A}{\partial \theta} \\ \end{pmatrix}_{r\theta \phi} \end{aligned}$$

BACK (green)

NOTES:

- If component A has no sink, $\underline{N}_A = 0$.
- If A diffuses through stagnant B, $\underline{N}_B = 0$.
- If a binary mixture of A and B are undergoing steady equimolar counterdiffusion, $\underline{N}_A = -\underline{N}_B$.
- If, for example, two moles of A diffuse to a surface at which a rapid, irreversible reaction coverts it to one mole of B, then at steady state $-0.5N_A = N_B$.

$$cx_{A} = c_{A} = \frac{1}{M_{A}}(\rho_{A}) = \frac{1}{M_{A}}(\rho\omega_{A}) \qquad \left(\text{units: } c[=]\frac{mol\ mix}{vol\ soln}; \rho[=]\frac{mass\ mix}{vol\ soln}; c_{A}[=]\frac{mol\ A}{vol\ soln}; \rho_{A}[=]\frac{mass\ A}{vol\ soln}\right)$$
$$\underbrace{J_{A}^{*}}_{A} \equiv \text{molar flux relative to a mixture's molar average velocity, } \underline{v}^{*} \qquad \left(\text{units: } \underline{J}_{A}^{*}[=]\frac{mol\ A}{area\cdot time}\right)$$
$$= c_{A}(\underline{v}_{A} - \underline{v}^{*})$$

$$\underline{J}_A^* + \underline{J}_B^* = 0$$

 $\underline{N}_A \equiv c_A \underline{v}_A = \underline{J}_A^* + c_A \underline{v}^* = \text{ combined molar flux relative to stationary coordinates}$ $\underline{N}_A + \underline{N}_B = c \underline{v}^*$

 $\underline{v}_A \equiv$ velocity of species A in a mixture, i.e. average velocity of all molecules of species A within a small volume $\underline{v}^* = x_A \underline{v}_A + x_B \underline{v}_B \equiv$ molar average velocity

Reference: R. B. Bird, W. E. Stewart, and E. N. Lightfoot, *Transport Phenomena*, 2nd edition, Wiley, 2002. (p. 515, 584)

FRONT OF PINK

The Equation of Species Mass Balance in Terms of Molar

quantities in Cartesian, cylindrical, and spherical coordinates for binary mixtures of A and B. Two cases are presented: the general case, where the molar flux with respect to molar velocity (J_A^*) appears (p. 1), and the more usual case (p. 2), where the diffusion coefficient is constant and Fick's law has been incorporated.

Spring 2019 Faith A. Morrison, Michigan Technological University

Microscopic species mass balance, in terms of molar flux; Gibbs notation

$$c\left(\frac{\partial x_A}{\partial t} + \underline{\nu}^* \cdot \nabla x_A\right) = -\nabla \cdot \underline{J}_A^* + (x_B R_A - x_A R_B)$$

Microscopic species mass balance, in terms of molar flux; Cartesian coordinates

$$c\left(\frac{\partial x_A}{\partial t} + v_x^*\frac{\partial x_A}{\partial x} + v_y^*\frac{\partial x_A}{\partial y} + v_z^*\frac{\partial x_A}{\partial z}\right) = -\left(\frac{\partial J_{A,x}^*}{\partial x} + \frac{\partial J_{A,y}^*}{\partial y} + \frac{\partial J_{A,z}^*}{\partial z}\right) + (x_B R_A - x_A R_B)$$

Microscopic species mass balance, in terms of molar flux; cylindrical coordinates

$$c\left(\frac{\partial x_A}{\partial t} + v_r^*\frac{\partial x_A}{\partial r} + \frac{v_\theta^*}{r}\frac{\partial x_A}{\partial \theta} + v_z^*\frac{\partial x_A}{\partial z}\right) = -\left(\frac{1}{r}\frac{\partial (rJ_{A,r}^*)}{\partial r} + \frac{1}{r}\frac{\partial J_{A,\theta}^*}{\partial \theta} + \frac{\partial J_{A,z}^*}{\partial z}\right) + (x_BR_A - x_AR_B)$$

Microscopic species mass balance, in terms of molar flux; spherical coordinates

$$c\left(\frac{\partial x_A}{\partial t} + v_r^*\frac{\partial x_A}{\partial r} + \frac{v_\theta^*}{r}\frac{\partial x_A}{\partial \theta} + \frac{v_\phi^*}{r\sin\theta}\frac{\partial x_A}{\partial \phi}\right) = -\left(\frac{1}{r^2}\frac{\partial (r^2 J_{A,r}^*)}{\partial r} + \frac{1}{r\sin\theta}\frac{\partial (J_{A,\theta}^*\sin\theta)}{\partial \theta} + \frac{1}{r\sin\theta}\frac{\partial J_{A,\phi}^*}{\partial \phi}\right) + (x_B R_A - x_A R_B)$$

Fick's law of diffusion, Gibbs notation: $J_A^* = -cD_{AB}\nabla x_A$

$$= c x_A (\underline{v}_A - \underline{v}^*)$$

Fick's law of diffusion, Cartesian coordinates:
$$\begin{pmatrix} J_{A,x}^* \\ J_{A,y}^* \\ J_{A,z}^* \end{pmatrix}_{xyz} = \begin{pmatrix} -cD_{AB} \frac{\partial x_A}{\partial x} \\ -cD_{AB} \frac{\partial x_A}{\partial y} \\ -cD_{AB} \frac{\partial x_A}{\partial y} \\ -cD_{AB} \frac{\partial x_A}{\partial y} \end{pmatrix}$$

Fick's law of diffusion, cylindrical coordinates:
$$\begin{pmatrix} J_{A,r}^{*} \\ J_{A,\theta}^{*} \\ J_{A,z}^{*} \end{pmatrix}_{r\theta z} = \begin{pmatrix} -cD_{AB} \frac{\partial x_{A}}{\partial r} \\ -\frac{cD_{AB} \frac{\partial x_{A}}{\partial \varphi}}{r \frac{\partial \varphi}{\partial z}} \\ -cD_{AB} \frac{\partial x_{A}}{\partial z} \end{pmatrix}$$
Fick's law of diffusion, spherical coordinates:
$$\begin{pmatrix} J_{A,r}^{*} \\ J_{A,\theta}^{*} \\ J_{A,\phi}^{*} \end{pmatrix}_{r\theta\phi} = \begin{pmatrix} -cD_{AB} \frac{\partial x_{A}}{\partial r} \\ -\frac{cD_{AB} \frac{\partial x_{A}}{\partial \varphi}}{r \frac{\partial \varphi}{\partial \varphi}} \\ -\frac{cD_{AB} \frac{\partial x_{A}}{\partial \varphi}}{r \frac{\partial \varphi}{\partial \varphi}} \end{pmatrix}_{r\theta\phi}$$

rθΦ

BACK (pink)

The Equation of Species Mass Balance in Terms of Molar

Quantities, constant cD_{AB} . For binary systems, and Fick's law has been incorporated. Good

for low density gases at constant temperature and pressure.

Microscopic species mass balance, constant thermal conductivity; Gibbs notation

$$c\left(\frac{\partial x_A}{\partial t} + \underline{v}^* \cdot \nabla x_A\right) = cD_{AB}\nabla^2 x_A + (x_BR_A - x_AR_B)$$

Microscopic species mass balance, constant thermal conductivity; Cartesian coordinates

$$c\left(\frac{\partial x_A}{\partial t} + v_x^*\frac{\partial x_A}{\partial x} + v_y^*\frac{\partial x_A}{\partial y} + v_z^*\frac{\partial x_A}{\partial z}\right) = cD_{AB}\left(\frac{\partial^2 x_A}{\partial x^2} + \frac{\partial^2 x_A}{\partial y^2} + \frac{\partial^2 x_A}{\partial z^2}\right) + (x_BR_A - x_AR_B)$$

Microscopic species mass balance, constant thermal conductivity; cylindrical coordinates

$$c\left(\frac{\partial x_A}{\partial t} + v_r^*\frac{\partial x_A}{\partial r} + \frac{v_\theta^*}{r}\frac{\partial x_A}{\partial \theta} + v_z^*\frac{\partial x_A}{\partial z}\right) = cD_{AB}\left(\frac{1}{r}\frac{\partial}{\partial r}\left(r\frac{\partial x_A}{\partial r}\right) + \frac{1}{r^2}\frac{\partial^2 x_A}{\partial \theta^2} + \frac{\partial^2 x_A}{\partial z^2}\right) + (x_BR_A - x_AR_B)$$

Microscopic species mass balance, constant thermal conductivity; spherical coordinates

$$c\left(\frac{\partial x_A}{\partial t} + v_r^* \frac{\partial x_A}{\partial r} + \frac{v_\theta^*}{r} \frac{\partial x_A}{\partial \theta} + \frac{v_\phi^*}{r \sin \theta} \frac{\partial x_A}{\partial \phi}\right)$$
$$= cD_{AB}\left(\frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial x_A}{\partial r}\right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial x_A}{\partial \theta}\right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2 x_A}{\partial \phi^2}\right) + (x_B R_A - x_A R_B)$$

$$cx_A = c_A = \frac{1}{M_A}(\rho_A) = \frac{1}{M_A}(\rho\omega_A) \qquad \left(\text{units: } c[=]\frac{mol\ mix}{vol\ soln}; \rho[=]\frac{mass\ mix}{vol\ soln}; c_A[=]\frac{mol\ A}{vol\ soln}; \rho_A[=]\frac{mass\ A}{vol\ soln}\right)$$

 $J_A^* \equiv$ molar flux relative to a mixture's molar average velocity, \underline{v}^*

$$\left(\text{units: } \underline{J}_{\underline{A}}^*[=] \frac{mole}{area \cdot time}\right)$$

$$= c_A(\underline{v}_A - \underline{v}^*)$$

$$J_A^* + J_B^* = 0$$

 $\underline{N}_A \equiv c_A \underline{\nu}_A = \underline{J}_A^* + c_A \underline{\nu}^* = \text{ combined molar flux relative to stationary coordinates}$

$$\underline{N}_A + \underline{N}_B = c\underline{v}^*$$

 $\underline{v}_A \equiv$ velocity of species A in a mixture, i.e. average velocity of all molecules of species A within a small volume

 $\underline{v}^* = x_A \underline{v}_A + x_B \underline{v}_B \equiv \text{ molar average velocity}$

Recurring Modeling Assumptions in Diffusion ("Classics")

- Near a liquid-gas interface, the region in the gas near the liquid is a film where slow diffusion takes place
- The vapor near the liquid-gas interface is often saturated (Raoult's law, $x_A = p_A^*/p$)
- If component *A* has no sink, flux $\underline{N}_A = 0$
- If A diffuses through stagnant B, $\underline{N}_B = 0$
- If A is dilute in B, we can neglect the convection term, yielding $N_{Az} = J_{Az}^*$; also liquid concentration *c* will be constant in the dilute case
- Because diffusion is slow, we can make a quasi-steady-state assumption
- If, for example, two moles of *A* diffuse to a surface at which a rapid, irreversible reaction coverts it to one mole of *B*, then at steady state $-0.5\underline{N}_A = \underline{N}_B$.
- Homogeneous reactions appear in the mass balance; heterogeneous reactions appear in the boundary conditions and relate fluxes
- If a binary mixture of *A* and *B* are undergoing steady equimolar counter diffusion, $\underline{N}_A = -\underline{N}_B$
- Penetration model is a viable perspective for some homogeneous reaction systems (e.g. gas absorption)

24

accumulation = net flow in + production + introduction

Liquid-phase-units <u>Film</u> Linear driving force model:

 $N_A \equiv k_x (x_{A,i} - x_{A,b})$ $N_A \equiv k_{cL} (c_{AL,i} - c_{AL,b})$

Liquid-phase-units Overall Linear driving force model:

$$N_A \equiv K_x (x_A^* () - x_{A,b})$$
$$N_A \equiv K_{cL} (c_{AL}^* () - c_{AL,b})$$

$$() = p_{A,b} \text{ or } c_{A,b} \text{ or } y_{A,b}$$

$$K_x = \frac{1}{\frac{1}{k_x} + \frac{1}{m''k_y}}$$

Gas-phase-units: <u>Film</u> Linear driving force model:

$$N_{A} \equiv k_{p} (p_{A,b} - p_{A,i})$$
$$N_{A} \equiv k_{cG} (c_{AG,b} - c_{A,i})$$
$$N_{A} \equiv k_{y} (y_{A,b} - y_{A,i})$$

Gas-phase-units: Overall Linear driving force model:

$$N_{A} \equiv K_{p} \left(p_{A,b} - p_{A}^{*}() \right)$$
$$N_{A} \equiv K_{cG} \left(c_{AG,b} - c_{AG}^{*}() \right)$$
$$N_{A} \equiv K_{y} \left(y_{A,b} - y_{A}^{*}() \right)$$

$$() = x_{A,b} \text{ or } c_{AL,b}$$

$$K_y = \frac{1}{\frac{1}{k_y} + \frac{m'}{k_x}}, \text{ etc.}$$

Let's take these tools out for a spin!

⁵¹ © Faith A. Morrison, Michigan Tech U.

Dimensional Analysis

These numbers tell us about the relative importance of the terms they precede in the governing equations.

Dimensionless numbers from the **Equations of Change** (microscopic balances)

momentum

Re – Reynolds Fr – Froude

 $\frac{Pe - Péclet_h = RePr}{Pr - Prandtl}$

mass

Oops! This is dimensionless \underline{v} , NOT molar average velocity; sorry!

 $Pe - Péclet_m = ReSc$ Sc - Schmidt

53

Dimensionless Numbers

Dimensionless numbers from the **Equations of Change**

Dimensional Analysis

Dimensionless numbers from the **Engineering Quantities of Interest**

 $d heta dz^*$

These numbers are defined to help us build <u>transport data</u> <u>correlations</u> based on the fewest number of grouped (dimensionless) variables (scenario property).

momentum

Dimensionless Force on the Wall (Drag)

(Fanning)

© Faith A. Morrison, Michigan Tech U.

momentum energy

mass

Dimensionless Numbers

Re – Reynolds =
$$\frac{\rho VD}{\mu} = \frac{VD}{\nu}$$

Fr – Froude = $\frac{V^2}{gD}$
Pe – Péclet_h = RePr = $\frac{\hat{C}_p \rho VD}{k} = \frac{VD}{\alpha}$
Pe – Péclet_m = ReSc = $\frac{VD}{D_{AB}}$

$$Pr - Prandtl = \frac{pr}{k} = \frac{v}{\alpha}$$

$$Sc - Schmidt = LePr = \frac{\mu}{\rho D_{AB}} = \frac{v}{\mathcal{D}_{AB}}$$

$$Le - Lewis = \frac{\alpha}{\mathcal{D}_{AB}}$$

$$f - \text{Friction Factor} = \frac{\mathcal{F}_{drag}}{\left(\frac{1}{2}\rho V^2\right)A_c}$$

Nu - Nusselt = $\frac{hD}{k}$
Sh - Sherwood = $\frac{k_c D}{\mathcal{D}_{AB}}$

$$St_h = Nu/Pe_h$$
, $St_m = Sh/Pe_m - Stanton$

These numbers from the governing equations tell us about the relative importance of the terms they precede in the microscopic balances (*scenario properties*).

These numbers compare the magnitudes of the diffusive transport coefficients v, α, D_{AB} (*material properties*).

These numbers are defined to help us build transport data correlations based on the fewest number of grouped (dimensionless) variables (*scenario* properties).

57

© Faith A. Morrison, Michigan Tech U.