FACTORS FOR UNIT CONVERSIONS

Quantity	Equivalent Values
Mass	1 kg = 1000 g = 0.001 metric ton = 2.20462 lb _m = 35.27392 oz 1 lb _m = 16 oz = 5 x 10^{-4} ton = 453.593 g = 0.453593 kg
Length	1 m = 100 cm = 1000 mm = 10^6 microns (μ m) = 10^{10} angstroms (Å) = 39.3701 in = 3.28084 ft = 1.09361 yd = 0.000621371 mile 1 ft = 12 in. = $1/3$ yd = 0.3048 m = 30.48 cm
Volume	1 m ³ = 1000 liters = 10 ⁶ cm ³ = 10 ⁶ ml = 35.31467 ft ³ = 219.969 imperial gallons = 264.172 gal = 1056.69 gt
	1 ft ³ = 1728 in ³ = 7.48052 gal = 0.028317 m ³ = 28.3168 liters = 28,316.8 cm ³
Force	$1 \text{ N} = 1 \text{ kg·m/s}^2 = 10^5 \text{ dynes} = 10^5 \text{ g·cm/s}^2 = 0.22481 \text{ lb}_f$
	$1 \text{ lb}_{f} = 32.174 \text{ lb}_{m} \text{ ft/s}^{2} = 4.4482 \text{ N} = 4.4482 \text{ x} 10^{5} \text{ dynes}$
Pressure	1 atm = $1.01325 \times 10^5 \text{ N/m}^2$ (Pa) = $101.325 \text{ kPa} = 1.01325 \text{ bars}$ = $1.01325 \times 10^6 \text{ dynes/cm}^2$ = $760 \text{ mm Hg at 0° C (torr)} = 10.333 \text{ m H}_2\text{O} at 4° C$
	= $14.696 \text{ Ib}_{f}/\text{In}^{2}$ (psi) = $33.9 \text{ ft H}_{2}\text{O}$ at 4 C 100 kPa = 1 bar
Energy	$1 \text{ J} = 1 \text{ N} \text{ m} = 10^7 \text{ ergs} = 10^7 \text{ dyne} \text{ cm}$
	$= 2.778 \times 10^{-7} \text{ kW} \text{ h} = 0.23901 \text{ cal}$
	= 0.7376 ft [·] lb _f = 9.47817 x 10 ⁻⁴ Btu
Power	1 W = 1 J/s = 0.23885 cal/s = 0.7376 ft b_f/s = 9.47817 x 10 ⁻⁴ Btu/s = 3.4121 Btu/h = 1.341 x 10 ⁻³ hp (horsepower)
Viscosity	$1 \text{ Pars} = 1 \text{ Nrs/m}^2 = 1 \text{ kg/mrs}$
	= 10 poise = 10 dynes s/cm ² = 10 g/cm s
	$= 10^3 \text{ cp} (\text{centipoise})$
	= 0.67197 lb _m /tt [·] s = 2419.088 lb _m /tt [·] h
Density	$1 \text{ kg/m}^3 = 10^{-3} \text{ g/cm}^3$
	$= 0.06243 \text{ lb}_{m}/\text{ft}^{3}$
	$10^3 \text{ kg/m}^3 = 1 \text{ g/cm}^3 = 62.428 \text{ lb}_m/\text{ft}^3$
Volumetric Flow	1 m ³ /s= 35.31467 ft ³ /s=15,850.32 gal/min (gpm)
	$1 \text{ gpm} = 6.30902 \text{ x } 10^{-5} \text{ m}^3/\text{s}=2.228009 \text{ x } 10^{-3} \text{ ft}^3/\text{s}=3.7854 \text{ liter/min}$
	1 liter/min=0.26417 gpm

Ver. 30-Oct-2014

Temperature	$T(^{\circ}C) = \frac{5}{9} \Big[T(^{\circ}F) - 32 \Big]$ $T(^{\circ}F) = \frac{9}{5}T(^{\circ}C) + 32 = 1.8T(^{\circ}C) + 32$
Absolute Temperature	T(K) = T(°C) + 273.15 T(°R) = T(°F) + 459.67
Temperature Interval (Δ T)	1 C° = 1 K = 1.8 F° = 1.8 R° 1F° = 1 R° = (5/9) C° = (5/9) K

USEFUL QUANTITIES

SG = $\rho(20^{\circ}C)/\rho_{water}$ (4°C)

$$\rho_{water}(4^{\circ}C) = 1000 \text{ kg/m}^3 = 62.43 \text{ lb}_m/\text{ft}^3 = 1.000 \text{ g/cm}^3$$

 $\rho_{water}(25^{\circ}C) = 997.08 \text{ kg/m}^3 = 62.25 \text{ lb}_m/\text{ft}^3 = 0.99709 \text{ g/cm}^3$

 $g = 9.8066 \text{ m/s}^2 = 980.66 \text{ cm/s}^2 = 32.174 \text{ ft/s}^2$

$$\mu_{water}$$
 (25°C) = 8.937 x 10⁻⁴ Pa s = 8.937 x 10⁻⁴ kg/m s
= 0.8937 cp = 0.8937 x 10⁻² g/cm s = 6.005 x 10⁻⁴ lb_m/ft s

Composition of air:	N_2	78.03%
	O ₂	20.99%
	Ar	0.94%
	CO ₂	0.03%
H ₂ , He, N	e, Kr, Xe	0.01%
		100.00%

 $M_{air} = 29 \text{ g/mol} = 29 \text{ kg/kmol} = 29 \text{ lb}_m/\text{lbmole}$

 $\hat{C}_{p,water}$ (25°C) = 4.182 kJ/kg K = 0.9989 cal/g°C = 0.9997 Btu/lb_m°F

- $R = 8.314 \text{ m}^{3} \text{ Pa/mol} \text{ K} = 0.08314 \text{ liter bar/mol} \text{ K} = 0.08206 \text{ liter atm/mol} \text{ K}$
 - = 62.36 liter mm Hg/mol·K = 0.7302 ft^{3.}atm/lbmole^{.°}R
 - = 10.73 ft^{3.}psia/lbmole^{.°}R
 - = 8.314 J/mol[.]K
 - = 1.987 cal/mol[·]K = 1.987 Btu/lbmole^{·°}R

	Temper-	Vapor	Specific (m ³ /	Volume /kg)	En (1	nthalpy cl/kg)	E) (kJ)	utropy (kg · K)
statunnatatutantanaanatatutantatatutatatukatkatutatkatkatkatkatkatkatutatus araa araa araa araa araa araa araa	ature (°C)	Pressure (kPa)	Liquid	Sat'd-Vapor	Liquid	Sat'd Vapor	Liquid	Sat'd Vapor
		0 (117	0.0010002		<u>ه م مم</u>	2501 4	0.0000	0 1560
	0.01	0.0113	0.0010002	200.130	10.00	2504.0	0.0000	9.1302
	5	0.0240	0.0010001	108.132	12.37	2500.9	0.0437	9.0773
	0	0.9349	0.0010001	137.734	23.20	2512.4	0.0912	9.0005
		1.4077	0.0010005	113.380	50.41	4017.9 .	0.1002	0.9200
	12	1.4022	0.0010005	93.784	50.41	2323.4	0.1000	0.0024
	15	1.7051	0.0010009	77.920	02.99	2320.9	0.2243	0./014
	18	2.0640	0.0010014	65.038	72.28	2004.4	0.2079	8.7123
	21	2.487	0.0010020	04.014 45.000	00.14 100.70	2009.9	0.3109	8.043U
	24	2.985	0.0010027	45.883	100.70	2545.4	0.3534	8.5794
	25	3.169	0.0010029	43.360	104.89	2547.2	0.3074	8.5580
	27	3.567	0.0010035	38.774	113.25	2550.8	0.3954	8.5156
	30	4.246	0.0010043	32.894	125.79	2556.3	0.4369	8.4533
	33	5.034	0.0010053	28.011	138.33	2561.7	0.4781	8.3927
	36	5.947	0.0010063	23.940	150.86	2567.1	0.5188	8.3336
	40	7.384	0.0010078	19.523	167.57	2574.3	0.5725	8.2570
	45	9.593	0.0010099	15.258	188.45	2583.2	0.6387	8.1648
	50	12.349	0.0010121	12.032	209.33	2592.1	0.7038	8.0763
	55	15.758	0.0010146	9.568	230.23	2600.9	0.7679	7.9913
	60	19.940	0.0010172	7.671	251.13	2609.6	0.8312	7.9096
	65	25.03	0.0010199	6.197	272.06	2618.3	0.8935	7.8310
	70	31.19	0.0010228	5.042	292.98	2626.8	0.9549	7.7553
	75	38.58	0.0010259	4.131	313.93	2635.3	1.0155	7.6824
	80	47.39	0.0010291	3.407	334.91	2643.7	1.0753	7.6122
	85	57.83	0.0010325	2.828	355.90	2651.9	1.1343	7.5445
	90	70.14	0.0010360	2.361	376.92	2660.1	1.1925	7.4791
	95	84.55	0.0010397	1.9819	397.96	2668.1	1.2500	7.4159
	100	101.35	0.0010435	1.6729	419.04	2676.1	1.3069	7.3549
	105	120.82	0.0010475	1.4194	440.15	2683.8	1.3630	7.2958
	110	143.27	0.0010516	1.2102	461.30	2691.5	1.4185	7.2387
	115	169.06	0.0010559	1.0366	482.48	2699.0	1.4734	7.1833
	120	198.53	0.0010603	0.8919	503.71	2706.3	1.5276	7.1296
	125	232.1	0.0010649	0.7706	524.99	2713.5	1.5813	7.0775
	130	270 .1	0.0010697	0.6685	546.31	2720.5	1.6344	7.0269
	135	313.0	0.0010746	0.5822	567.69	2727.3	1.6870	6.9777
	`140 [`] .	316.3	0.0010797	0.5089	589.13	2733.9	1.7391	6.9299
	145	415.4	0.0010850	0.4463	610.63	2740.3	1.7907	6.8833
	150	475.8	0.0010905	0.3928	632.20	2746.5	1.8418	6.8379
	155	543.1	0.0010961	0.3468	653.84	2752.4	1.8925	6.7935
	160	617.8	0.0011020	0.3071	675.55	2758.1	1.9427	6.7502
	165	700.5	0.0011080	0.2727	697.34	2763.5	1.9925	6.7078
	170	791.7	0.0011143	0.2428	719.21	2768.7	2.0419	6.6663
	175	892.0	0.0011207	0.2168	741.17	2773.6	2.0909	6.6256
·	180	1002.1	0.0011274	0.19405	763.22	2778.2	2.1396	6.5857
	190	1254.4	0.0011414	0.15654	807.62	2786.4	2.2359	6.5079
	200	1553.8	0.0011565	0.12736	852.45	2793.2	2.3309	6.4323
	225	2548	0.0011992	0.07849	966.78	2803.3	2.5639	6.2503
	250	3973	0.0012512	0.05013	1085.36	2801.5	2.7927	6.0730
	275	5942	0.0013168	0.03279	1210.07	2785.0	3.0208	5.8938
	200	8581	0.0010/36	0.02167	1344.0	2749.0	3 2534	5 7045

A.2-9 Properties of Saturated Steam and Water (Steam Table), SI Units

Source: Abridged from I. H. Keenan, F. G. Keyes, P. G. Hill, and J. G. Moore, Steam Tables-Metric Units. New York: John Wiley & Sons, Inc., 1969. Reprinted by permission of John Wiley & Sons, Inc.

Т (°С)	Т (К)	ρ (kg/m³)	c _p (kJ/kg⋅K)	μ × 10 ⁵ (Pa · s, or kg/m · s)	k (W/m • K)	N _{Pr}	$\beta \times 10^3$ (1/K)	$g\beta\rho^2/\mu^2$ $(l/K\cdot m^3)$
-17.8	255.4	1.379	1.0048	1.62	0.02250	0.720	3.92	2.79×10^{8}
0	273.2	1.293	1.0048	1.72	0.02423	0.715	3.65	2.04×10^{8}
10.0	283.2	1.246	1.0048	1.78	0.02492	0.713	3.53	1.72×10^{8}
37.8	311.0	1.137	1.0048	1.90	0.02700	0.705	3.22	1.12×10^{8}
65.6	338.8	1.043	1.0090	2.03	0.02925	0.702	2.95	0.775×10^{8}
93.3	366.5	0.964	1.0090	2.15	0.03115	0.694	2.74	0.534×10^{8}
121.1	394.3	0.895	1.0132	2.27	0.03323	0.692	2.54	0.386×10^{8}
148.9	422.1	0.838	1.0174	2.37	0.03531	0.689	2.38	0.289×10^{8}
176.7	449.9	0.785	1.0216	2.50	0.03721	0.687	2.21	0.214×10^{8}
204.4	477.6	0.740	1.0258	2.60	0.03894	0.686	2.09	0.168×10^{8}
232.2	505.4	0.700	1.0300	2.71	0.04084	0.684	1.98	0.130×10^{8}
260.0	533.2	0.662	1.0341	2.80	0.04258	0.680	1.87	0.104×10^{8}

A.3-3 Physical Properties of Air at 101.325 kPa (1 Atm Abs), SI Units

A.2-11 Heat-Transfer Properties of Liquid Water, SI Units

$(g\beta\rho^2/\mu^2) \times 10^{-8} \\ (1/K \cdot m^3)$	$\beta \times 10^4$ (1/K)	N _{Pr}	k (₩/m • K)	$\mu \times 10^3$ (Pa · s, or kg/m · s)	c_p (kJ/kg · K)	р (kg/m ³)	Т (К)	Т (°С)
	-0.630	13.3	0.5694	1.786	4.229	999.6	273.2	0
10.93	1.44	8.07	0.5884	1.131	4.187	998.0	288.8	15.6
30.70	2.34	5.89	0.6109	0.860	4.183	996.4	299.9	26.7
68.0	3.24	4.51	0.6283	0.682	4.183	994.7	311.0	37.8
256.2	5.04	2.72	0.6629	0.432	4.187	981.9	338.8	65.6
642	6.66	1.91	0.6802	0.3066	4.229	962.7	366.5	93.3
1300	8.46	1.49	0.6836	0.2381	4.271	943.5	394.3	121.1
2231	10.08	1.22	0.6836	0.1935	4.312	917.9	422.1	148.9
5308	14.04	0.950	0.6611	0.1384	4.522	858.6	477.6	204.4
11 030	19.8	0.859	0.6040	0.1042	4.982	784.9	533.2	260.0
19 260	31.5	1.07	0.5071	0.0862	6.322	679.2	588.8	315.6

Source: Geankoplis, Transport Processes and Separation Process Principles, 4th Edition, Prentice Hall, 2003

Typo in value of α_{Cu} corrected, 24Feb2019.

Appendix H

Physical Properties of Solids

~		ρ		c _p		α	(E	<i>k</i> 3tu/h ft°F)			(W/m · I	()	
Material	(lb _m /ft ³) (68°F)	(kg/m ³) (293 K)	(Btu/lb _m °F) (293 K)	(J/kg · 1K) ×10 ⁻² (293K)	(ft²/h) (68°F)	$(m^2/s) \cdot 10^5$ (293k)	(68)	°F (212)	(572)	(293)	K (373)	(;	573)
Metals					******	********							
Aluminum	168.6	2,701.1	0.224	9.383	3.55	9.16	132	133	133	229	229	23	0
Copper	555	8,890	0.092	3.854	3.98	11.27	223	219	213	386	379	36	9
Gold	1206	19,320	0.031	1.299	4.52	11.66	169	170	172	293	294	29	8
Iron	492	7,880	0.122	5.110	0.83	2.14	42.3	39	31.6	73.2	68	5	4
Lead	708	11,300	0.030	1.257	0.80	2.06	20.3	19.3	17.2	35.1	33.4	2	9.8
Magnesium	109	1,750	0.248	10.39	3.68	9.50	99.5	96.8	91.4	172	168	15	8
Nickel	556	8,910	0.111	4.560	0.87	2.24	53.7	47.7	36.9	93.0	82.6	6	3.9
Platinum	1340	21,500	0.032	1.340	0.09	0.23	40.5	41.9	43.5	70.1	72.5	7	5.3
Silver	656	10,500	0.057	2.388	6.42	16.57	240	237	209	415	410	36	52
Tin	450	7.210	0.051	2.136	1.57	4.05	36	34		62	59	-	
Tungsten	1206	19.320	0.032	1.340	2.44	6.30	94	87	77	160	150	13	10
Uranium	1167	18,700	0.027	1.131	0.53	1.37	16.9	17.2	19.6	29.3	29.8	3	3.9
Zinc	446	7,150	0.094	3,937	1.55	4 00	65	63	58	110	110	10	0
Allovs		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0.09 1	0.001	1100	1.00	00	00	50	110	110		
Aluminum 2024	173	2,770	0.230	9.634	1.76	4 54	70.2			122			
Brass	532	8,520	0.091	3 812	1 27	3.28	61.8	73 9	853	107	128	14	18
(70% Cu. 30% Ni)	002	0,020	0.071	5.012	1.201	5.20	01.0	12.2	00.0	107	120	1-	
Constantan (60% Cu, 40% Ni)	557	8,920	0.098	4.105	0.24	0.62	13.1	15.4		22.7	26.7		
Iron, cast	455	7.920	0.100	4.189	0.65	1.68	29.6	26.8		51.2	46.4		
Nichrome V	530	8,490	0.106	4.440	0.12	0.31	7.06	7.99	9.94	12.2	13.8	1	72
Stainless steel	488	7.820	0.110	4,608	0.17	0.44	9.4	10.0	13	16	173	2	3
Steel, mild (1% C)	488	7,820	0.113	4.733	0.45	1.16	24.8	24.8	22.9	42.9	42.9	3	39.0
Nonmetals													
Ashestos	36	590	0.25	10.5			0.000	0.11	0.12	0.1	50 O	100	0.21
Prick (fra alay)	144	2 2 1 0	0.23	0.22			0.092	0.11	0.12		1 1	12	0.21
Drick (mesonat)	106	1,510	0.22	9.22			0.29	0.05	•	0.6	۰. د	15	
Drick (masoniy)	100	2,010	0.20	0.30			0.56	0.67		0.00	, 1	16	
Brick (chrome)	100	3,010	0.20	8.38			0.70	0.07		1.0	1.	10	
Concrete	144	2,310	0.21	8.80			0.70	-		1.2	12		
Corkboard	10	100	0.4	17			0.023)		0.04	+ <i>3</i>		
earth, powdered	14	220	0.2	8.4			0.03			0.0.	5		
Glass, window	170	2,720	0.2	8.4			0.45			0.7	3		
Glass, Pyrex	140	2,240	0.2	8.4			0.63	0.67	0.84	4 1.0	9 1.	.16	1.45
Kaolin firebrick	19	300							0.0	52			0.09
85% Magnesia	17	270					0.038	3 0.04	1	0.0	56 0.	.071	
Sandy loam, 4% H ₂ O	104	1,670	0.4	17			0.54			0.94	1		
Sandy loam,	121	1,940					1.08			1.8	7		
Rock wool	10	160	0.2	84			0.023	3 0.03	3	0.0	40 0	.057	
Wood, oak ⊥	51	820	0.57	23.9			0.12	. 0.05.	-	0.2	1		
Wood, oak II to grain	51	820	0.57	23.9			0.23			0.4	0		

 $D_{AB} = \frac{kT}{6\pi R\mu}$ $D_{char} = \frac{V}{A}$

Lumped parameter analysis characteristic length:

Mass-Transfer Diffusion Coefficients in Binary Systems

Table J.1	Binary	mass	diffusivities	in	gases [†]
-----------	--------	------	---------------	----	--------------------

System	<i>T</i> (K)	$D_{AB}P(\text{cm}^2 \text{ atm/s})$	$D_{AB}P(m^2 Pa/s)$
Air			
Ammonia	273	0.198	2.006
Aniline	298	0.0726	0.735
Benzene	298	0.0962	0.974
Bromine	293	0.091	0.923
Carbon dioxide	273	0.136	• 1.378
Carbon disulfide	273	0.0883	0.894
Chlorine	273	0.124	1.256
Diphenyl	491	0.160	1.621
Ethyl acetate	273	0.0709	0.718
Ethanol	298	0.132	1.337
Ethyl ether	293	0.0896	0.908
Iodine	298	0.0834	0.845
Methanol	298	0.162	1.641
Mercury	614	0.473	4.791
Naphthalene	298	0.0611	0.619
Nitrobenzene	298	0.0868	0.879
n-Octane	298	0.0602	0.610
Oxygen	273	0.175	1.773
Propyl acetate	315	0.092	0.932
Sulfur dioxide	273	0.122	1.236
Toluene	298	0.0844	0.855
Water	298	0.260	2.634
Ammonia			
Ethylene	293	0.177	1,793
Argon			
Neon	293	0.329	3.333
Carbon dioxide			
Benzene	318	0.0715	0.724
Carbon disulfide	318	0.0715	0.724
Ethyl acetate	319	0.0666	0.675

Source: Welty, Rorrer, Foster, 6th ed, 2015, Appendix J, first page only.

- **Convection:** $q_{in} = hA(T_b T)$ e.g. device dropped in stirred liquid; forced air stream flows past, natural convection occurs outside system; phase change at boundary
- Radiation: $q_{in} = \varepsilon \sigma A (T^4_{surroundings} T^4_{surface})$ e.g. device at high temp. exposed to a gas/vacuum; hot enough to produce nat. conv.=possibly hot enough for radiation S-Bconstant: $\sigma = 5.676 \times 10^{-6} \frac{W}{m^2 \kappa^4}$
- Electric current: $q_{in} = I^2 R_{elec} L$ e.g. if electric current is flowing within the device/control volume/ system
- Chemical Reaction: q_{in} = S_{rxn}V_{sys}
 e.g. if a homogeneous reaction is taking place <u>throughout</u> the device/control volume/system

Steel, Oxidized	0.79
Wrought Iron	0.94
Reference: Engineering Toolbox.	

0.60 - 0.70

0.85

0.985

0.98

0.91

0.76

Cast iron, turned and heated

Concrete

Plaster

Sand

Ice, smooth Ice, rough

Roofing paper

www.engineeringtoolbox.com/emissivity-coefficients-d_447.html

Mechanical Energy Balance:

$$\frac{P_2 - P_1}{\rho} + \frac{\langle v \rangle_2^2 - \langle v \rangle_1^2}{2\alpha} + g(z_2 - z_1) + F_{21} = \frac{W_{s,on,21}}{\dot{m}}$$

FIGURE 5.3-10. Chart for determining the temperature at the center of a sphere for unsteady-state heat conduction. [From H. P. Heisler, Trans. A.S.M.E., 69, 227 (1947). With permission.] From Geankpolis, 4th edition, page 374

The equations in F. A. Morrison, *An Introduction to Fluid Mechanics* (Cambridge, 2013) assume the following definitions of the cylindrical and spherical coordinate systems. Cylindrical Coordinate System: Note that the θ -coordinate swings around the z-axis

N

Spherical Coordinate System: Note that the θ -coordinate swings down from the *z*-axis; this is different from its definition in the cylindrical system above.

Typical values of the convection heat transfer coefficient. From Incropera et al., Fundamentals of Heat and Mass Transfer, 6th edition, Wiley, 2007.

Process		$h\left(\frac{W}{m^2K}\right)$
Free convection	Gases	2-25
	Liquids	50-1000
Forced convection	Gases	25-250
	Liquids	100-20,000
Convection with	Boiling or	2500-10 ⁵
nhase change	condensation	

The Equation of Energy in Cartesian, cylindrical, and spherical coordinates for

Newtonian fluids of constant density, with source term *S*. Source could be electrical energy due to current flow, chemical energy, etc. Two cases are presented: the general case where thermal conductivity may be a function of temperature (vector flux $\tilde{q} = q/A$ appears in the equations); and the more usual case, where thermal conductivity is constant.

Fall 2013 Faith A. Morrison, Michigan Technological University

Microscopic energy balance, in terms of flux; Gibbs notation

$$\rho \hat{C}_p \left(\frac{\partial T}{\partial t} + \underline{v} \cdot \nabla T \right) = -\nabla \cdot \underline{\tilde{q}} + S$$

Microscopic energy balance, in terms of flux; Cartesian coordinates

$$\rho \hat{C}_p \left(\frac{\partial T}{\partial t} + v_x \frac{\partial T}{\partial x} + v_y \frac{\partial T}{\partial y} + v_z \frac{\partial T}{\partial z} \right) = -\left(\frac{\partial \tilde{q}_x}{\partial x} + \frac{\partial \tilde{q}_y}{\partial y} + \frac{\partial \tilde{q}_z}{\partial z} \right) + S$$

Microscopic energy balance, in terms of flux; cylindrical coordinates

$$\rho \hat{C}_p \left(\frac{\partial T}{\partial t} + v_r \frac{\partial T}{\partial r} + \frac{v_\theta}{r} \frac{\partial T}{\partial \theta} + v_z \frac{\partial T}{\partial z} \right) = -\left(\frac{1}{r} \frac{\partial (r\tilde{q}_r)}{\partial r} + \frac{1}{r} \frac{\partial \tilde{q}_\theta}{\partial \theta} + \frac{\partial \tilde{q}_z}{\partial z} \right) + S$$

Microscopic energy balance, in terms of flux; spherical coordinates

$$\rho \hat{C}_p \left(\frac{\partial T}{\partial t} + v_r \frac{\partial T}{\partial r} + \frac{v_\theta}{r} \frac{\partial T}{\partial \theta} + \frac{v_\phi}{r \sin \theta} \frac{\partial T}{\partial \phi} \right) = -\left(\frac{1}{r^2} \frac{\partial (r^2 \tilde{q}_r)}{\partial r} + \frac{1}{r \sin \theta} \frac{\partial (\tilde{q}_\theta \sin \theta)}{\partial \theta} + \frac{1}{r \sin \theta} \frac{\partial \tilde{q}_\phi}{\partial \phi} \right) + S$$

Fourier's law of heat conduction, Gibbs notation: $\tilde{q} = -k\nabla T$

Fourier's law of heat conduction, Cartesian coordinates:
$$\begin{pmatrix} \tilde{q}_x \\ \tilde{q}_y \\ \tilde{q}_z \end{pmatrix}_{xyz} = \begin{pmatrix} -k \frac{\partial T}{\partial x} \\ -k \frac{\partial T}{\partial y} \\ -k \frac{\partial T}{\partial z} \end{pmatrix}_{xyz}$$

Fourier's law of heat conduction, cylindrical coordinates: $\begin{pmatrix} \tilde{q}_r \\ \tilde{q}_\theta \\ \tilde{q}_z \end{pmatrix}_{xyz} = \begin{pmatrix} -k \frac{\partial T}{\partial r} \\ -\frac{k}{r} \frac{\partial T}{\partial \theta} \\ -k \frac{\partial T}{\partial z} \end{pmatrix}$

Fourier's law of heat conduction, spherical coordinates:
$$\begin{pmatrix} \tilde{q}_r \\ \tilde{q}_{\phi} \\ \tilde{q}_{\phi} \end{pmatrix}_{xyz} = \begin{pmatrix} -k \frac{\partial T}{\partial r} \\ -\frac{k}{r} \frac{\partial T}{\partial \theta} \\ -\frac{k}{r \sin \theta} \frac{\partial T}{\partial \phi} \end{pmatrix}_{r\theta\phi}$$

aт

Microscopic energy balance, constant thermal conductivity; Gibbs notation

$$\rho \hat{C}_p \left(\frac{\partial T}{\partial t} + \underline{v} \cdot \nabla T \right) = k \nabla^2 T + S$$

Microscopic energy balance, constant thermal conductivity; Cartesian coordinates

$$\rho \hat{C}_p \left(\frac{\partial T}{\partial t} + v_x \frac{\partial T}{\partial x} + v_y \frac{\partial T}{\partial y} + v_z \frac{\partial T}{\partial z} \right) = k \left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} + \frac{\partial^2 T}{\partial z^2} \right) + S$$

Microscopic energy balance, constant thermal conductivity; cylindrical coordinates

$$\rho \hat{C}_p \left(\frac{\partial T}{\partial t} + v_r \frac{\partial T}{\partial r} + \frac{v_\theta}{r} \frac{\partial T}{\partial \theta} + v_z \frac{\partial T}{\partial z} \right) = k \left(\frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial T}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 T}{\partial \theta^2} + \frac{\partial^2 T}{\partial z^2} \right) + S$$

Microscopic energy balance, constant thermal conductivity; spherical coordinates

$$\rho \hat{C}_{p} \left(\frac{\partial T}{\partial t} + v_{r} \frac{\partial T}{\partial r} + \frac{v_{\theta}}{r} \frac{\partial T}{\partial \theta} + \frac{v_{\phi}}{r \sin \theta} \frac{\partial T}{\partial \phi} \right) \\ = k \left(\frac{1}{r^{2}} \frac{\partial}{\partial r} \left(r^{2} \frac{\partial T}{\partial r} \right) + \frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial T}{\partial \theta} \right) + \frac{1}{r^{2} \sin^{2} \theta} \frac{\partial^{2} T}{\partial \phi^{2}} \right) + S$$

Reference: F. A. Morrison, "Web Appendix to *An Introduction to Fluid Mechanics*," Cambridge University Press, New York, 2013. On the web at www.chem.mtu.edu/~fmorriso/IFM_WebAppendixCD2013.pdf

The Equation of Species Mass Balance in Cartesian, cylindrical, and spherical

coordinates for binary mixtures of A and B. Two cases are presented: the general case, where the mass flux with respect to mass-average velocity (J_A) appears (p. 1), and the more usual case (p. 2), where the diffusion coefficient is constant and Fick's law has been incorporated.

Spring 2019 Faith A. Morrison, Michigan Technological University

Microscopic species mass balance, in terms of mass flux; Gibbs notation

$$\rho\left(\frac{\partial\omega_A}{\partial t} + \underline{v}\cdot\nabla\omega_A\right) = -\nabla\cdot\underline{j}_A + r_A \qquad \text{WRF 25-10}$$

Microscopic species mass balance, in terms of mass flux; Cartesian coordinates

$$\rho\left(\frac{\partial\omega_A}{\partial t} + v_x\frac{\partial\omega_A}{\partial x} + v_y\frac{\partial\omega_A}{\partial y} + v_z\frac{\partial\omega_A}{\partial z}\right) = -\left(\frac{\partial j_{A,x}}{\partial x} + \frac{\partial j_{A,y}}{\partial y} + \frac{\partial j_{A,z}}{\partial z}\right) + r_A$$

Microscopic species mass balance, in terms of mass flux; cylindrical coordinates

$$\rho\left(\frac{\partial\omega_{A}}{\partial t} + v_{r}\frac{\partial\omega_{A}}{\partial r} + \frac{v_{\theta}}{r}\frac{\partial\omega_{A}}{\partial\theta} + v_{z}\frac{\partial\omega_{A}}{\partial z}\right) = -\left(\frac{1}{r}\frac{\partial(rj_{A,r})}{\partial r} + \frac{1}{r}\frac{\partial j_{A,\theta}}{\partial\theta} + \frac{\partial j_{A,z}}{\partial z}\right) + r_{A}$$

Microscopic species mass balance, in terms of mass flux; spherical coordinates

$$\rho\left(\frac{\partial\omega_{A}}{\partial t} + v_{r}\frac{\partial\omega_{A}}{\partial r} + \frac{v_{\theta}}{r}\frac{\partial\omega_{A}}{\partial\theta} + \frac{v_{\phi}}{r\sin\theta}\frac{\partial\omega_{A}}{\partial\phi}\right) = -\left(\frac{1}{r^{2}}\frac{\partial(r^{2}j_{A,r})}{\partial r} + \frac{1}{r\sin\theta}\frac{\partial(j_{A,\theta}\sin\theta)}{\partial\theta} + \frac{1}{r\sin\theta}\frac{\partial j_{A,\phi}}{\partial\phi}\right) + r_{A}$$

 $= \rho \omega_A (\underline{v}_A - \underline{v})$

Fick's law of diffusion, Gibbs notation: $J_A = -\rho D_{AB} \nabla \omega_A$

$$= \rho \omega_{A} (\underline{v}_{A} - \underline{v})$$
Fick's law of diffusion, Cartesian coordinates: $\begin{pmatrix} j_{A,x} \\ j_{A,y} \\ j_{A,z} \end{pmatrix}_{xyz} = \begin{pmatrix} -\rho D_{AB} \frac{\partial \omega_{A}}{\partial x} \\ -\rho D_{AB} \frac{\partial \omega_{A}}{\partial y} \\ -\rho D_{AB} \frac{\partial \omega_{A}}{\partial z} \end{pmatrix}_{xyz}$
Fick's law of diffusion, cylindrical coordinates: $\begin{pmatrix} j_{A,r} \\ j_{A,\theta} \\ j_{A,z} \end{pmatrix}_{r\theta z} = \begin{pmatrix} -\rho D_{AB} \frac{\partial \omega_{A}}{\partial r} \\ -\rho D_{AB} \frac{\partial \omega_{A}}{\partial r} \\ -\rho D_{AB} \frac{\partial \omega_{A}}{\partial \theta} \\ -\rho D_{AB} \frac{\partial \omega_{A}}{\partial z} \end{pmatrix}_{r\theta z}$

Fick's law of diffusion, spherical coordinates:
$$\begin{pmatrix} j_{A,r} \\ j_{A,\theta} \\ j_{A,\phi} \end{pmatrix}_{r\theta\phi} = \begin{pmatrix} -\rho D_{AB} \frac{\partial \omega_A}{\partial r} \\ -\frac{\rho D_{AB}}{r} \frac{\partial \omega_A}{\partial \theta} \\ -\frac{\rho D_{AB}}{r \sin \theta} \frac{\partial \omega_A}{\partial \phi} \end{pmatrix}_{r\theta\phi}$$

In terms of mass flux,
$$\overline{J}_A$$

WRF 24-17

The Equation of Species Mass Balance, constant ρD_{AB} . For binary

systems, and Fick's law has been incorporated. Good for dilute liquid solutions at constant temperature and pressure.

Microscopic species mass balance, constant thermal conductivity; Gibbs notation

$$\rho\left(\frac{\partial\omega_A}{\partial t} + \underline{v}\cdot\nabla\omega_A\right) = \rho D_{AB}\nabla^2\omega_A + r_A$$

Microscopic species mass balance, constant thermal conductivity; Cartesian coordinates

$$\rho\left(\frac{\partial\omega_{A}}{\partial t}+v_{x}\frac{\partial\omega_{A}}{\partial x}+v_{y}\frac{\partial\omega_{A}}{\partial y}+v_{z}\frac{\partial\omega_{A}}{\partial z}\right)=\rho D_{AB}\left(\frac{\partial^{2}\omega_{A}}{\partial x^{2}}+\frac{\partial^{2}\omega_{A}}{\partial y^{2}}+\frac{\partial^{2}\omega_{A}}{\partial z^{2}}\right)+r_{A}$$

Microscopic species mass balance, constant thermal conductivity; cylindrical coordinates

$$\rho\left(\frac{\partial\omega_{A}}{\partial t} + v_{r}\frac{\partial\omega_{A}}{\partial r} + \frac{v_{\theta}}{r}\frac{\partial\omega_{A}}{\partial\theta} + v_{z}\frac{\partial\omega_{A}}{\partial z}\right) = \rho D_{AB}\left(\frac{1}{r}\frac{\partial}{\partial r}\left(r\frac{\partial\omega_{A}}{\partial r}\right) + \frac{1}{r^{2}}\frac{\partial^{2}\omega_{A}}{\partial\theta^{2}} + \frac{\partial^{2}\omega_{A}}{\partial z^{2}}\right) + r_{A}$$

Microscopic species mass balance, constant thermal conductivity; spherical coordinates

$$\rho\left(\frac{\partial\omega_{A}}{\partial t} + v_{r}\frac{\partial\omega_{A}}{\partial r} + \frac{v_{\theta}}{r}\frac{\partial\omega_{A}}{\partial\theta} + \frac{v_{\phi}}{r\sin\theta}\frac{\partial\omega_{A}}{\partial\phi}\right)$$
$$= \rho D_{AB}\left(\frac{1}{r^{2}}\frac{\partial}{\partial r}\left(r^{2}\frac{\partial\omega_{A}}{\partial r}\right) + \frac{1}{r^{2}\sin\theta}\frac{\partial}{\partial\theta}\left(\sin\theta\frac{\partial\omega_{A}}{\partial\theta}\right) + \frac{1}{r^{2}\sin^{2}\theta}\frac{\partial^{2}\omega_{A}}{\partial\phi^{2}}\right) + r_{A}$$

$$cx_A = c_A = \frac{1}{M_A}(\rho_A) = \frac{1}{M_A}(\rho\omega_A) \qquad \left(\text{units: } c[=]\frac{mol\ mix}{vol\ soln}; \rho[=]\frac{mass\ mix}{vol\ soln}; c_A[=]\frac{mol\ A}{vol\ soln}; \rho_A[=]\frac{mass\ A}{vol\ soln}\right)$$

 $\underline{J}_A \equiv \text{mass flux of species } A$ relative to a mixture's mass average velocity, \underline{v}

(units: $\underline{J}_{A}[=] \frac{mass A}{area \cdot time}$)

$$= \rho_A(\underline{v}_A - \underline{v})$$

 $J_A + J_B = 0$, i.e. these fluxes are measured relative to the mixture's center of mass

 $\underline{n}_A \equiv \rho_A \underline{v}_A = \underline{j}_A + \rho_A \underline{v} = \text{ combined mass flux relative to stationary coordinates}$

$$\underline{n}_A + \underline{n}_B = \rho \underline{v}$$

 $\underline{v}_A \equiv$ velocity of species A in a mixture, i.e. average velocity of all molecules of species A within a small volume

 $\underline{v} = \omega_A \underline{v}_A + \omega_B \underline{v}_B \equiv$ mass average velocity; same velocity as in the microscopic momentum and energy balances

Reference: R. B. Bird, W. E. Stewart, and E. N. Lightfoot, *Transport Phenomena*, 2nd edition, Wiley, 2002. (p. 515, 584)

The Equation of Species Mass Balance in Terms of Combined

Molar quantities in Cartesian, cylindrical, and spherical coordinates for binary mixtures of A and B.

The general case, where the combined molar flux with respect to molar velocity (N_A), is given on page 1.

Spring 2019 Faith A. Morrison, Michigan Technological University

Microscopic species mass balance, in terms of molar flux; Gibbs notation

$$\frac{\partial c_A}{\partial t} = -\nabla \cdot \underline{N}_A + R_A \qquad \qquad \text{WRF 25-11}$$

Microscopic species mass balance, in terms of combined molar flux; Cartesian coordinates

$$\frac{\partial c_A}{\partial t} = -\left(\frac{\partial N_{A,x}}{\partial x} + \frac{\partial N_{A,y}}{\partial y} + \frac{\partial N_{A,z}}{\partial z}\right) + R_A$$

Microscopic species mass balance, in terms of combined molar flux; cylindrical coordinates

$$\frac{\partial c_A}{\partial t} = -\left(\frac{1}{r}\frac{\partial (rN_{A,r})}{\partial r} + \frac{1}{r}\frac{\partial N_{A,\theta}}{\partial \theta} + \frac{\partial N_{A,z}}{\partial z}\right) + R_A$$

Microscopic species mass balance, in terms of combined molar flux; spherical coordinates

$$\frac{\partial c_A}{\partial t} = -\left(\frac{1}{r^2}\frac{\partial (r^2 N_{A,r})}{\partial r} + \frac{1}{r\sin\theta}\frac{\partial (N_{A,\theta}\sin\theta)}{\partial \theta} + \frac{1}{r\sin\theta}\frac{\partial N_{A,z}}{\partial \phi}\right) + R_A$$

Fick's law of diffusion, Gibbs notation: $\underline{N}_A = x_A(\underline{N}_A + \underline{N}_B) - cD_{AB}\nabla x_A$

$$= c_A \underline{v}^* - c D_{AB} \nabla x_A$$

Fick's law of diffusion, Cartesian coordinates:
$$\begin{pmatrix} N_{A,x} \\ N_{A,y} \\ N_{A,z} \end{pmatrix}_{xyz} = \begin{pmatrix} x_A (N_{A,x} + N_{B,x}) - cD_{AB} \frac{\partial x_A}{\partial x} \\ x_A (N_{A,y} + N_{B,y}) - cD_{AB} \frac{\partial x_A}{\partial y} \\ x_A (N_{A,z} + N_{B,z}) - cD_{AB} \frac{\partial x_A}{\partial z} \end{pmatrix}_{xyz}$$

Fick's law of diffusion, cylindrical coordinates:
$$\begin{pmatrix} N_{A,r} \\ N_{A,\theta} \\ N_{A,z} \end{pmatrix}_{r\theta z} = \begin{pmatrix} x_A (N_{A,r} + N_{B,r}) - cD_{AB} \frac{\partial x_A}{\partial r} \\ x_A (N_{A,\theta} + N_{B,\theta}) - \frac{cD_{AB}}{r} \frac{\partial x_A}{\partial \theta} \\ x_A (N_{A,z} + N_{B,z}) - cD_{AB} \frac{\partial x_A}{\partial z} \end{pmatrix}_{r\theta z}$$
Fick's law of diffusion, spherical coordinates:
$$\begin{pmatrix} N_{A,r} \\ N_{A,\theta} \end{pmatrix} = \begin{pmatrix} x_A (N_{A,r} + N_{B,r}) - cD_{AB} \frac{\partial x_A}{\partial r} \\ x_A (N_{A,\theta} + N_{B,\theta}) - \frac{cD_{AB}}{r} \frac{\partial x_A}{\partial r} \\ x_A (N_{A,\theta} + N_{B,\theta}) - \frac{cD_{AB}}{r} \frac{\partial x_A}{\partial r} \end{pmatrix}$$

Fick's law of diffusion, spherical coordinates:
$$\begin{pmatrix} N_{A,\theta} \\ N_{A,\phi} \end{pmatrix}_{r\theta\phi} = \begin{pmatrix} x_A (N_{A,\theta} + N_{B,\theta}) - \frac{cD_{AB}}{r} \frac{\partial x_A}{\partial \theta} \\ x_A (N_{A,\phi} + N_{B,\phi}) - \frac{cD_{AB}}{r \sin \theta} \frac{\partial x_A}{\partial \phi} \end{pmatrix}_{r\theta\phi}$$

WRF 24-22

NOTES:

- If component *A* has no sink, $\underline{N}_A = 0$.
- If A diffuses through stagnant B, $\underline{N}_B = 0$.
- If a binary mixture of A and B are undergoing steady equimolar counterdiffusion, $\underline{N}_A = -\underline{N}_B$.
- If, for example, two moles of A diffuse to a surface at which a rapid, irreversible reaction coverts it to one mole of B, then at steady state $-0.5N_A = N_B$.

$$cx_{A} = c_{A} = \frac{1}{M_{A}}(\rho_{A}) = \frac{1}{M_{A}}(\rho\omega_{A}) \qquad \left(\text{units: } c[=]\frac{mol\ mix}{vol\ soln}; \rho[=]\frac{mass\ mix}{vol\ soln}; c_{A}[=]\frac{mol\ A}{vol\ soln}; \rho_{A}[=]\frac{mass\ A}{vol\ soln}\right)$$
$$\underbrace{J_{A}^{*}}_{A} \equiv \text{molar flux relative to a mixture's molar average velocity, } \underline{v}^{*} \qquad \left(\text{units: } \underline{J}_{A}^{*}[=]\frac{mol\ A}{area \cdot time}\right)$$
$$= c_{A}(\underline{v}_{A} - \underline{v}^{*})$$

$$\underline{J}_A^* + \underline{J}_B^* = 0$$

 $\underline{N}_A \equiv c_A \underline{v}_A = \underline{J}_A^* + c_A \underline{v}^* = \text{ combined molar flux relative to stationary coordinates}$ $\underline{N}_A + \underline{N}_B = c \underline{v}^*$

 $\underline{v}_A \equiv$ velocity of species A in a mixture, i.e. average velocity of all molecules of species A within a small volume $\underline{v}^* = x_A \underline{v}_A + x_B \underline{v}_B \equiv$ molar average velocity

Reference: R. B. Bird, W. E. Stewart, and E. N. Lightfoot, *Transport Phenomena*, 2nd edition, Wiley, 2002. (p. 515, 584)

quantities in Cartesian, cylindrical, and spherical coordinates for binary mixtures of A and B. Two cases are presented: the general case, where the molar flux with respect to molar velocity (J_A^*) appears (p. 1), and the more usual case (p. 2), where the diffusion coefficient is constant and Fick's law has been incorporated.

Spring 2019 Faith A. Morrison, Michigan Technological University

Microscopic species mass balance, in terms of molar flux; Gibbs notation

$$c\left(\frac{\partial x_A}{\partial t} + \underline{v}^* \cdot \nabla x_A\right) = -\nabla \cdot \underline{J}_A^* + (x_B R_A - x_A R_B)$$

Microscopic species mass balance, in terms of molar flux; Cartesian coordinates

$$c\left(\frac{\partial x_A}{\partial t} + v_x^*\frac{\partial x_A}{\partial x} + v_y^*\frac{\partial \omega_A}{\partial y} + v_z^*\frac{\partial x_A}{\partial z}\right) = -\left(\frac{\partial J_{A,x}^*}{\partial x} + \frac{\partial J_{A,y}^*}{\partial y} + \frac{\partial J_{A,z}^*}{\partial z}\right) + (x_B R_A - x_A R_B)$$

Microscopic species mass balance, in terms of molar flux; cylindrical coordinates

$$c\left(\frac{\partial x_A}{\partial t} + v_r^*\frac{\partial x_A}{\partial r} + \frac{v_\theta^*}{r}\frac{\partial x_A}{\partial \theta} + v_z^*\frac{\partial x_A}{\partial z}\right) = -\left(\frac{1}{r}\frac{\partial (rJ_{A,r}^*)}{\partial r} + \frac{1}{r}\frac{\partial J_{A,\theta}^*}{\partial \theta} + \frac{\partial J_{A,z}^*}{\partial z}\right) + (x_BR_A - x_AR_B)$$

Microscopic species mass balance, in terms of molar flux; spherical coordinates

$$c\left(\frac{\partial x_A}{\partial t} + v_r^*\frac{\partial x_A}{\partial r} + \frac{v_\theta^*}{r}\frac{\partial x_A}{\partial \theta} + \frac{v_\phi^*}{r\sin\theta}\frac{\partial x_A}{\partial \phi}\right) = -\left(\frac{1}{r^2}\frac{\partial (r^2 J_{A,r}^*)}{\partial r} + \frac{1}{r\sin\theta}\frac{\partial (J_{A,\theta}^*\sin\theta)}{\partial \theta} + \frac{1}{r\sin\theta}\frac{\partial J_{A,\phi}^*}{\partial \phi}\right) + (x_B R_A - x_A R_B)$$

Fick's law of diffusion, Gibbs notation: $J_A^* = -cD_{AB}\nabla x_A$

$$cx_A(v_A - v^*)$$

Fick's law of diffusion, Cartesian coordinates:
$$\begin{pmatrix} J_{A,x}^* \\ J_{A,y}^* \\ J_{A,z}^* \end{pmatrix}_{xyz} = \begin{pmatrix} -cD_{AB}\frac{\partial x_A}{\partial x} \\ -cD_{AB}\frac{\partial x_A}{\partial y} \\ -cD_{AB}\frac{\partial x_A}{\partial z} \end{pmatrix}_{xyz}$$

Fick's law of diffusion, cylindrical coordinates:
$$\begin{pmatrix} J_{A,r}^{*} \\ J_{A,\theta}^{*} \\ J_{A,z}^{*} \end{pmatrix}_{r\theta z} = \begin{pmatrix} -cD_{AB} \frac{\partial x_{A}}{\partial r} \\ -\frac{cD_{AB} \frac{\partial x_{A}}}{\partial \theta} \\ -cD_{AB} \frac{\partial x_{A}}{\partial z} \end{pmatrix}_{r\theta z}$$
Fick's law of diffusion, spherical coordinates:
$$\begin{pmatrix} J_{A,r}^{*} \\ J_{A,\theta}^{*} \\ J_{A,\phi}^{*} \end{pmatrix}_{r\theta\phi} = \begin{pmatrix} -cD_{AB} \frac{\partial x_{A}}{\partial r} \\ -\frac{cD_{AB} \frac{\partial x_{A}}{\partial r}}{r \frac{\partial \theta}{\partial \theta}} \\ -\frac{cD_{AB} \frac{\partial x_{A}}{\partial \theta}}{r \frac{\partial \theta}{\partial \theta}} \\ -\frac{cD_{AB} \frac{\partial x_{A}}{\partial \theta}}{r \frac{\partial \theta}{\partial \theta}} \end{pmatrix}_{r\theta\phi}$$

WRF 24-16

The Equation of Species Mass Balance in Terms of Molar

Quantities, constant cD_{AB} . For binary systems, and Fick's law has been incorporated. Good for low density gases at constant temperature and pressure.

Microscopic species mass balance, constant thermal conductivity; Gibbs notation

$$c\left(\frac{\partial x_A}{\partial t} + \underline{v}^* \cdot \nabla x_A\right) = cD_{AB}\nabla^2 x_A + (x_BR_A - x_AR_B)$$

Microscopic species mass balance, constant thermal conductivity; Cartesian coordinates

$$c\left(\frac{\partial x_A}{\partial t} + v_x^*\frac{\partial x_A}{\partial x} + v_y^*\frac{\partial x_A}{\partial y} + v_z^*\frac{\partial x_A}{\partial z}\right) = cD_{AB}\left(\frac{\partial^2 x_A}{\partial x^2} + \frac{\partial^2 x_A}{\partial y^2} + \frac{\partial^2 x_A}{\partial z^2}\right) + (x_BR_A - x_AR_B)$$

Microscopic species mass balance, constant thermal conductivity; cylindrical coordinates

$$c\left(\frac{\partial x_A}{\partial t} + v_r^*\frac{\partial x_A}{\partial r} + \frac{v_\theta^*}{r}\frac{\partial x_A}{\partial \theta} + v_z^*\frac{\partial x_A}{\partial z}\right) = cD_{AB}\left(\frac{1}{r}\frac{\partial}{\partial r}\left(r\frac{\partial x_A}{\partial r}\right) + \frac{1}{r^2}\frac{\partial^2 x_A}{\partial \theta^2} + \frac{\partial^2 x_A}{\partial z^2}\right) + (x_BR_A - x_AR_B)$$

Microscopic species mass balance, constant thermal conductivity; spherical coordinates

$$c\left(\frac{\partial x_A}{\partial t} + v_r^* \frac{\partial x_A}{\partial r} + \frac{v_\theta^*}{r} \frac{\partial x_A}{\partial \theta} + \frac{v_\phi^*}{r \sin \theta} \frac{\partial x_A}{\partial \phi}\right)$$
$$= cD_{AB}\left(\frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial x_A}{\partial r}\right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial x_A}{\partial \theta}\right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2 x_A}{\partial \phi^2}\right) + (x_B R_A - x_A R_B)$$

$$cx_A = c_A = \frac{1}{M_A}(\rho_A) = \frac{1}{M_A}(\rho\omega_A) \qquad \left(\text{units: } c[=]\frac{mol\ mix}{vol\ soln}; \rho[=]\frac{mass\ mix}{vol\ soln}; c_A[=]\frac{mol\ A}{vol\ soln}; \rho_A[=]\frac{mass\ A}{vol\ soln}; \rho_A[=]\frac{mass\$$

 $J_A^* \equiv$ molar flux relative to a mixture's molar average velocity, \underline{v}^*

$$(units: \underline{J}_{\underline{A}}^* [=] \frac{mole}{area \cdot time})$$

$$= c_A(\underline{v}_A - \underline{v}^*)$$

$$J_A^* + J_B^* = 0$$

 $\underline{N}_A \equiv c_A \underline{\nu}_A = J_A^* + c_A \underline{\nu}^* = \text{ combined molar flux relative to stationary coordinates}$

$$\underline{N}_A + \underline{N}_B = c\underline{v}^*$$

 $\underline{v}_A \equiv$ velocity of species A in a mixture, i.e. average velocity of all molecules of species A within a small volume

 $\underline{v}^* = x_A \underline{v}_A + x_B \underline{v}_B \equiv \text{ molar average velocity}$

Reference: R. B. Bird, W. E. Stewart, and E. N. Lightfoot, *Transport Phenomena*, 2nd edition, Wiley, 2002. (p. 515, 584)