

There are numer units in use (pra	ous concentration ctical consideration	ו)	
Linear-driving-forc	e model (film coeffici	ents): the flux of <i>A</i> from the bulk	
in the gas is proporti	onal to the difference b	between the bulk composition and	
the composition at the	ne <mark>interface</mark> .		
film mass-transfer co Table 29.1 Individual	Defficients: mass-transfer coefficients		
	Gas film		
Driving force	Flux equation	Units of k	
Partial pressure (p_A)	$N_A = k_G (p_A - p_{A,i})$	kgmole/m ² · s · atm	
Concentration (c_A)	$N_A = k_c (c_{AG} - c_{AG,i})$	kgmole/ $(m^2 \cdot s \cdot (kgmole/m^3))$ or m/s	
Mole fraction (y_A)	$N_A = k_y (y_A - y_{A,i})$	kgmole/m ² · s	
	Liquid film		
Concentration (c_{AL}) Mole fraction (x_A)	$N_A = k_L (c_{AL,i} - c_{AL})$ $N_A = k_x (x_{A,i} - x_A)$	kgmole/(m ² · s · (kgmole/m ³)) or m/s kgmole/m ² · s	
		22 © Eaith A. Marrison, Michigan J	Toch I

