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Figure 3.18: We begin again, considering a very simple flow, steady flow in a straight channel.
Even in this simple flow, however, fluid particles undergo considerable deformation.

may proceed ahead to section 3.2.3 and return subsequently to this derivation section.

3.2.2.1 Momentum Balance on a Control Volume

The volume on which we do our balances is called the control volume. The control volume
(CV) is an imaginary container through which fluid particles move (Figure 3.20). For the
derivation of the momentum balance on a control volume, we consider an arbitrarily shaped
control volume fixed in position and shape in an arbitrary flow (Figure 3.21).

At chosen time t, the control volume contains certain fluid particles. These fluid
particles are a body in the sense of Newton’s laws. We imagine that the fluid in the control
volume at time t is colored red (Figure 3.22, left). The red fluid is subject to forces on it,
and the relationship between the net forces on the red fluid and the momentum of the red
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Figure 3.19: Momentum is conserved. For individual bodies, Newton’s second law is a
convenient equation for making calculations of motion and forces. For fluids, it is often more
convenient to use an equivalent expression, the Reynolds transport theorem, the momentum
balance written on a control volume.

fluid is given by Newton’s second law.

∑

on
body

f = ma =
d(mv)body

dt
(3.52)

∑

on
body

f =









net force
on red fluid at t

= net force
on CV at t









=





rate of change
of momentum of
red fluid at t



 (3.53)

We need to work on this equation to see how the momentum of the fluid in the control
volume changes with time.

We can use the definition of derivative (equation 3.39) to rewrite the derivative that
appears on the right-hand side of equation 3.52 as a limit of a rate of change of momentum
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fluid particle 
pathlines 

 

 

fixed control volume 

Figure 3.20: A control volume is an imagined region in space through which fluid moves.
In our discussion we take the control volume to be fixed in shape and position. The shape
of the control volume is arbitrary, and we usually choose a shape that mimics the flow
pattern because this choice simplifies mass, momentum, and energy balance calculations.
In this figure, the paths of the particles that pass through the control volume have been
emphasized.

over the interval between time t and a slightly later time t +∆t.

∑

on
body

f

∣

∣

∣

∣

∣

∣

∣

t

=
∑

on
CV

f

∣

∣

∣

∣

∣

∣

∣

t

=
d(mv)

dt

∣

∣

∣

∣

t

(3.54)

= lim
∆t−→0

[

(mv)|t+∆t − (mv)|t
∆t

]

(3.55)

To fill-in the terms on the right-hand side of equation 3.55, we need to think about the
momentum of the red fluid at t and at t +∆t. Our goal is to relate these quantities to the
forces on the control volume.
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Figure 3.21: For the derivation of the momentum balance as applied to a control volume we
do not assume any special shape for the control volume, but we do take the control volume
to be fixed in shape and position.

Going back to our picture of the control volume (Figure 3.22) we can visualize the
process of the red fluid passing through the control volume between times t and t+∆t. At
time t, all the red fluid is in the control volume. At time t + ∆t, some of the red fluid has
left the control volume, and some of the upstream fluid has entered the control volume. For
simplicity, we call the upstream fluid the blue fluid. First, we divide the red fluid into the
red fluid that stays in the control volume between t and t+∆t and the red fluid that leaves
during that interval. Dropping the limit symbol, equation 3.55 becomes:

∆t
∑

on
CV

f

∣

∣

∣

∣

∣

∣

∣

t

=

(

momentum of
red fluid

)∣

∣

∣

∣

t+∆t

−

(

momentum of
red fluid

)∣

∣

∣

∣

t

(3.56)

=









momentum of
red fluid
that stays



 +





momentum of
red fluid
that exits









∣

∣

∣

∣

∣

∣

t+∆t

−









momentum of
red fluid
that stays



+





momentum of
red fluid
that exits









∣

∣

∣

∣

∣

∣

t

(3.57)

Although we have temporarily omitted the limit symbol, at the end of this derivation we
again take the limit as ∆t goes to zero. We distinguish here between red fluid that ultimately
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tt ∆+  

Figure 3.22: At time t the fluid in the control volume is imagined to be colored red and all
fluid outside of the control volume is colored blue. At a slightly later time t + ∆t, some of
the red fluid has exited the control volume and some new (blue) fluid has entered through
the inlet surface(s).

stays and red fluid that ultimately exits because this separation will be convenient in a later
step in the derivation.

Newton’s second law relates the net forces on a body (the red fluid) to the rate of
change of momentum of the body. We are trying now to relate forces in a fluid to the rate
of change of momentum of the fluid in the control volume. The fluid in the control volume
is different fluid at different times, and that is the complicating factor. Beginning with the
red-fluid momentum balance as written in equation 3.57, we can make some definitions and
rearrangements that allow us to isolate the rate of change of momentum of the fluid in the
control volume at a time of interest.

We define a variable P to represent the momentum of the fluid in the control volume
at any time.





momentum
of fluid

in the CV



 ≡ P (3.58)

Since the fluid in the control volume at time t is different fluid from the fluid in the control
volume at time t+∆t, the momentum of the fluid in the control volume is different at these
two times. We write the momentum of the fluid in the control volume at these two times in
terms of red and blue fluid as follows.

First, at time t, the red fluid fills the control volume, so P|t is the momentum of all
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of the red fluid at t.




momentum
of fluid
in CV





∣

∣

∣

∣

∣

∣

t

= P|t =





momentum
of red fluid
that stays





∣

∣

∣

∣

∣

∣

t

+





momentum
of red fluid
that exits





∣

∣

∣

∣

∣

∣

t

(3.59)

Second, we write the momentum in the control volume at time t + ∆t. At this time, the
fluid in the control volume is the red fluid that stayed and the new blue fluid that entered.





momentum
of fluid
in CV





∣

∣

∣

∣

∣

∣

t+∆t

= P|t+∆t =





momentum
of red fluid
that stays





∣

∣

∣

∣

∣

∣

t+∆t

+





momentum
of blue fluid
that enters





∣

∣

∣

∣

∣

∣

t+∆t

(3.60)

We now combine the last two equations above with equation 3.57, the momentum balance
on the red fluid; this yields a new relationship between forces and the fluid in the control
volume.

First we solve equation 3.59 for the momentum at time t of red fluid that stays:





momentum
of red fluid
that stays





∣

∣

∣

∣

∣

∣

t

= P|t −





momentum
of red fluid
that exits





∣

∣

∣

∣

∣

∣

t

(3.61)

Second, we solve equation 3.60 for the momentum at time t +∆t of red fluid that stays:





momentum
of red fluid
that stays





∣

∣

∣

∣

∣

∣

t+∆t

= P|t+∆t −





momentum
of blue fluid
that enters





∣

∣

∣

∣

∣

∣

t+∆t

(3.62)

Combining these two expressions with equation 3.57 results in:

∆t
∑

on
CV

f

∣

∣

∣

∣

∣

∣

∣

t

=





momentum
of red fluid
that stays





∣

∣

∣

∣

∣

∣

t+∆t

+





momentum of
red fluid
that exits





∣

∣

∣

∣

∣

∣

t+∆t

−





momentum
of red fluid
that stays





∣

∣

∣

∣

∣

∣

t

−





momentum
of red fluid
that exits





∣

∣

∣

∣

∣

∣

t

(3.63)

= P|t+∆t −





momentum
of blue fluid
that enters





∣

∣

∣

∣

∣

∣

t+∆t

+





momentum
of red fluid
that exits





∣

∣

∣

∣

∣

∣

t+∆t

− P|t +





momentum
of red fluid
that exits





∣

∣

∣

∣

∣

∣

t

−





momentum
of red fluid
that exits





∣

∣

∣

∣

∣

∣

t

(3.64)
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The final two terms cancel, yielding,

∆t
∑

on
CV

f

∣

∣

∣

∣

∣

∣

∣

t

= P|t+∆t − P|t −





momentum
of blue fluid
that enters





∣

∣

∣

∣

∣

∣

t+∆t

+





momentum
of red fluid
that exits





∣

∣

∣

∣

∣

∣

t+∆t

(3.65)

We have made considerable progress in our quest to relate red-fluid momentum changes
to momentum changes of the fluid in the control volume. To proceed further, we write
mathematical expressions for the two quantities expressed in words on the right-hand side of
equation 3.65. These two quantities are entering and exiting fluid momenta at t +∆t, that
is, momenta of fluid that crosses the control-volume boundaries. Both of these expressions
can be written following the same approach; the calculation results in a double integral over
the control-volume bounding surfaces.

The final mathematical expression for the terms in equation 3.65 are derived in the
next section. The final results, derived as equation 3.132, are given below. The two integrals
are called the convective terms.

∑

on
CV

f

∣

∣

∣

∣

∣

∣

∣

t

=
P|t+∆t − P|t

∆t
+

(
∫∫

Sin

(n̂ · v) ρv dS

)∣

∣

∣

∣

t+∆t

+

(
∫∫

Sout

(n̂ · v) ρv dS

)∣

∣

∣

∣

t+∆t

(3.66)

3.2.2.2 The Convective Term

To convert the word expressions in equation 3.65 to mathematical terms, we need to consider
how to use the continuum model to keep track of mass or momentum flow in through a
surface. We begin by considering the simplest case of direct mass and momentum flow
through a flat surface. We derive some key mathematical tools in the next two examples.

EXAMPLE 3.6 Liquid passes through a chosen area A as shown in Fig-
ure 3.23. The velocity is perpendicular to the surface A at every point and does
not vary across the cross-section. What are the volumetric flow rate (volume
liquid/time), mass flow rate (mass/time), and momentum flow rate (momen-
tum/time) through A?

SOLUTION Figure 3.23 shows that for the case under consideration, the
velocity of the fluid is perpendicular to the surface A and is constant (does not
vary with position). Consider the fluid that passes through A during a short time
interval ∆t (Figure 3.24). The volume of fluid that passes through A during the
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Figure 3.23: For this example we consider the flow through a surface A. The velocity of the
fluid is perpendicular to the surface A.

interval ∆t forms a solid whose volume is given by





Volume of fluid
passing through A

in time ∆t



 =

(

height
of solid

)(

cross-section
of solid

)

(3.67)

= ∆x A (3.68)

where ∆x is the change in location of fluid that started at A and has moved
in the x-direction for time ∆t. The magnitude of the fluid velocity, v, can be
written as

Magnitude of
fluid velocity

|v| = v =
∆x

∆t
(3.69)

With these two expressions we can calculate all the quantities of interest. The
volumetric flow rate is the volume of fluid divided by the time interval.

Q =
fluid volume

time interval
=

∆x A

∆t
= v A (3.70)

Volumetric flow
of liquid through A

(velocity perpendicular to A;
v does not vary across A)

Q = v A (3.71)

The mass flow rate can be calculated from the volumetric flow rate and the
density.

m =
( mass

volume

)

(

volume

time

)

(3.72)

= (ρ)(v A) (3.73)
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Figure 3.24: During the time interval ∆t, a volume of fluid of height ∆x and of cross-sectional
area A passes through the area A.

Mass flow
of liquid through A

(velocity perpendicular to A;
v does not vary across A)

m = (ρ)(v A) (3.74)

Finally, the momentum flow rate (a vector quantity) can be calculated from the
definition of momentum and the previous results.

(

Momentum flow
of liquid through A

)

=

(

momentum

volume

)(

volume

time

)

(3.75)

=
(mass)(velocity)

volume

(

volume

time

)

(3.76)

=
( mass

volume

)

(v)

(

volume

time

)

(3.77)

= ρ v (vA) (3.78)

Note that for this example the velocity of the fluid was perpendicular to the
surface A and v does not vary across A.

Momentum flow
of liquid through A

(velocity perpendicular to A;
v does not vary across A)

= ρ v (vA) (3.79)
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The previous example shows how powerful the continuum approach is. With very
simple logic (essentially unit matching), we are able to express volume, mass, and momentum
flows for a chosen system in terms of two field variables, density and velocity. For more
complex systems, we build on these relationships and employ some vector tools, as we show
in the next example.

EXAMPLE 3.7 Liquid passes through a chosen area A as shown in Fig-
ure 3.25. The velocity of the fluid makes an angle θ with the unit normal to A,
which is called n̂. The velocity does not vary across the surface A. What are
the volumetric flow rate (volume liquid/time), mass flow rate (mass/time), and
momentum flow rate (momentum/time) through A?

 

 

v
 

A
 

n̂
 

θ  

Figure 3.25: For this example we consider the flow through a surface A. The velocity of the
fluid is not perpendicular to the surface A; instead, the velocity makes an angle θ with the
surface unit normal n̂.

SOLUTION The logic of the solution is the same for this case as in the
previous example; there is, however, a difference in the volume of fluid that
passes through A in time interval ∆t.

Consider the fluid that passes through A during the short time interval ∆t
(Figure 3.26). The x-direction is the direction of flow. In time interval ∆t fluid
that started on the surface A moved along x a distance ∆x. The volume of fluid
that passed through A in this time interval is the volume of the solid shown. The
height of the solid is ∆x cos θ. The volume of fluid that passes through A during
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Figure 3.26: During the time interval ∆t, a volume of fluid of height ∆x cos θ and of cross-
sectional area A passes through the area A.

the interval ∆t is thus given by





Volume of fluid
passing through A

in time ∆t



 =

(

height
of solid

)(

cross-section
of solid

)

(3.80)

= (∆x cos θ) A (3.81)

The magnitude of the fluid velocity, v, can be written as before as

Magnitude of
fluid velocity

|v| = v =
∆x

∆t
(3.82)

With these two expressions we can calculate all the quantities of interest.

Volumetric flow
of liquid through A

Q =
fluid volume

time interval
(3.83)

=
∆x cos θ A

∆t
(3.84)

= v cos θ A (3.85)

= (n̂ · v)A (3.86)
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Volumetric flow
of liquid through A

(general orientation case;
v does not vary across A)

Q = v cos θ A = (n̂ · v)A (3.87)

We have used the definition of the dot product to write the final result (equa-
tion 3.85) in vector notation (n̂ ·v = |n̂||v| cos θ = v cos θ; see equation 1.165). As
before, the mass flow rate can be calculated from the volumetric flow rate and
the density.

Mass flow
of liquid through A

m =
( mass

volume

)

(

volume

time

)

(3.88)

= (ρ) (v cos θ A) = ρ (n̂ · v) A (3.89)

Mass flow
of liquid through A

(general orientation case;
v does not vary across A)

m = ρ (n̂ · v) A (3.90)

Finally, the momentum flow rate can be calculated as before from the definition
of momentum and the previous results.

(

Momentum flow
of liquid through A

)

=

(

momentum

volume

)(

volume

time

)

(3.91)

=
(mass)(velocity)

volume

(

volume

time

)

(3.92)

=
( mass

volume

)

(v)

(

volume

time

)

(3.93)

= ρ v (v cos θ A) = ρ v (n̂ · v)A (3.94)

This is the general result when v is not necessarily perpendicular to A.









Momentum flow
of liquid through A

(general orientation case;
v does not vary across A)









= ρv (n̂ · v)A (3.95)

We recover the case of velocity perpendicular to A (equation 3.79) when θ = 0
(cos 0 = 1, n̂ · v = v).

The relationship we obtained in equation 3.87 for volumetric flow rate through an area
as a function of the locally constant velocity v (Q = (n̂ · v)A) is similar to an equation
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Figure 3.27: The control volume is a square pyramid, which has five sides, four of which are
equilateral triangles.

introduced in Chapter 1 that relates overall volumetric flow rate through a pipe to the
average velocity in the pipe 〈v〉 (equation 1.2). If we write equation 3.87 on a microscopic
piece of cross-sectional area in a pipe flow with varying v and integrate over the pipe cross
section (recall equation 1.157) we obtain equation 1.2; this calculation is shown in Chapter 6
(equation 6.254). In the example below, we practice a bit with the relations we have just
developed.

EXAMPLE 3.8 Consider a control volume in the shape of the square pyra-
mid as shown in Figures 3.27 and 3.28. The square pyramid is a pentahedron
with a square for a base and four triangles for sides; the one in Figure 3.27 has
four equilateral triangles for sides (a Johnson solid). The pyramid is a control
volume placed in a uniform flow (velocity v in the flow is constant at every posi-
tion in space). The flow direction is parallel at all points to a vector in the plane
of the pyramid’s base that bisects two opposite sides of the base. Calculate the
mass flow rate of fluid of density ρ through each of the five sides of the penta-
hedron. Write your answer in terms of the speed of the fluid v and the pyramid
edge-length α.

SOLUTION The use of a pentahedron as a control volume is unusual, but
the calculations involved in solving this problem are not unusual at all when
making calculations of the convective contribution to the momentum balance.
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Figure 3.28: The unit normals needed for the calculations in the example can be determined
through the geometry of sections cut through the center of the control volume.
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This problem provides us with an opportunity to practice with angles, geometry,
the dot product, and the relations in this section.

The mass flow through a surface is given by equation 3.90.

Mass flow of liquid
through surface A

m = ρ (n̂ · v) A (3.96)

For each of the five surfaces of the control volume we need the unit normal n̂
and the area A. The density ρ is constant, and the velocity vector v = vêz is the
same at all locations for uniform flow.

We choose as our coordinate system a Cartesian coordinate system with the
flow direction as the z-direction.

v =





0
0
v





xyz

= vêz (3.97)

The outwardly pointing unit normal vectors for each surface of the control volume
are shown in Figure 3.27. For the bottom of the pyramid, the outwardly pointing
unit vector a points downward, a = −êx. The dot product of a and v = vêz is
therefore zero, and the mass flow rate through the bottom is zero:

m = ρ (n̂ · v) A (3.98)

m|a = ρ(a · v)α2 (3.99)

= ρα2
(

1 0 0
)

xyz
·





0
0
v





xyz

(3.100)

= 0 (3.101)

For surface b, the geometry in the inset of Figure 3.27 shows us that the outwardly
pointing unit normal vector b is

from geometry: n̂|b ≡ b =







1√
3

0
√

2
3







xyz

(3.102)

and the area of the equilateral triangle that makes up the face is A =
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(1/2)(α)(α
√
3/2). The mass flow rate through surface b is therefore

m = ρ (n̂ · v) A (3.103)

m|b = ρ(b · v)
α2

√
3

4
(3.104)

=
ρα2

√
3

4

(

1√
3

0
√

2
3

)

xyz
·





0
0
v





xyz

(3.105)

=
ρvα2

2
√
2

(3.106)

For surface c, also shown in the insert, the outwardly pointing unit normal vector
c is similar to b, but the z-component points in the opposite direction.

from geometry: n̂|c ≡ c =







1√
3

0

−
√

2
3







xyz

(3.107)

The mass flow rate through surface c is therefore

m|c = ρ(c · v)
α2

√
3

4
(3.108)

=
ρα2

√
3

4

(

1√
3

0 −
√

2
3

)

xyz
·





0
0
v





xyz

(3.109)

= −
ρvα2

2
√
2

(3.110)

The mass flow rates out through surfaces b and c are the same but one is positive,
indicating that the flow is outwards (surface b) and one is negative, indicating
that the flow is inwards (surface c).

For surfaces d and h, the two side faces of the pyramid, the unit normal
vectors are in the xy-plane, and thus when the outwardly pointed unit normal n̂
is dotted with v = vêz in each case, we get zero; there is no mass flow out of the
control volume through either of these surfaces.

n̂|d = d =





dx
dy
0





xyz

(3.111)

d̂ · v = (dxêx + dyêy) · vêz = 0 (3.112)

n̂|h = h =





hx
hy
0





xyz

(3.113)

ĥ · v = (hxêx + hyêy) · vêz = 0 (3.114)
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Finally, notice that the sum of all the mass flow rates is zero; this is in accord
with the mass balance that at steady state the net outflow of mass from the
control volume is zero.





net outflow
of mass from

control volume (CV)



 = m|a + m|b + m|c + m|d + m|h (3.115)

= 0 +
ρvα2

2
√
2
−
ρvα2

2
√
2
+ 0 + 0 (3.116)

= 0 (3.117)

We return now to our work with equation 3.65. We seek to covert the two word-
expressions in that equation to mathematical terms. Both of the word-expressions under
consideration account for momentum flows of fluid through the surfaces that bound the
control volume. In example 3.8 we practiced writing momentum flows through a surface
(equation 3.95), and we now turn to applying this technique to the control volume.

Beginning with the blue fluid that enters the control volume, consider the surface
area Sin through which blue fluid enters (Figure 3.29). We have chosen a surface with an

 

 

x
 

z
y

inS
 

Figure 3.29: The momentum carried by fluid moving across a curved surface is calculated
with a surface integral.

arbitrary shape and orientation for this derivation. In a general flow, fluid velocity varies with
position, and therefore some care must be taken when calculating the momentum entering
the control volume through Sin. We must divide up the surface Sin in some way and sum
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the contributions from various regions. In addition, the surface Sin is not generally flat, and
therefore the task of dividing Sin is itself a challenge. This very problem has been addressed
in the development of integral calculus (for review see the web appendix [124]), and we can
directly apply these methods to the calculation of the flow of momentum through Sin.

Our approach is to project Sin onto a plane we arbitrarily call the xy-plane (Fig-
ure 3.30). The area of the projection is R. Since R is in the xy-plane, the unit normal to R
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Figure 3.30: For a surface that is not flat, we first project the surface onto a plane called the
xy-plane. We then divide up the projection and proceed to write and sum up the momentum
flow rate through each small piece. The surface differential ∆Si can be related to ∆Ai, its
projection onto the xy-plane, by ∆Si = ∆Ai/(n̂i · êz).

is êz. We divide the projection R into areas ∆A = ∆x∆y and seek to write the momentum
flow rate in different regions of Sin associated with their projections ∆Ai. By focusing on R
and equal-sized divisions of R (rather than dividing the curvy surface Sin directly), we can
arrive at the appropriate integral expression.

Figure 3.30 shows the area Sin and its projection R in the xy-plane. The area R has
been divided into rectangles of area ∆Ai, and we only consider the ∆Ai that are wholly
contained within the boundaries of R. For each ∆Ai in the xy-plane, we choose a point
within ∆Ai, and we call this point (xi, yi, 0). The point (xi, yi, zi) is located on the surface
Sin directly above (xi, yi, 0). If we draw a plane tangent to Sin through the point (xi, yi, zi),
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we can construct an area ∆Si that is a portion of the tangent plane whose projection onto
the xy-plane is ∆Ai (Figure 3.30). We shall soon take a limit as ∆Ai becomes infinitesimally
small, and therefore it is not important which point (xi, yi, 0) is chosen so long as it is in
∆Ai.

Each tangent-plane area ∆Si approximates a portion of the surface Sin, and we can
write an estimate of the total momentum flow through Sin as a sum of the momentum
flows through all the tangent planes ∆Si. The momentum entering the control volume (CV)
between t and t+∆t through one such ∆Si can be calculated as:









momentum
entering CV
through ith

tangent plane ∆Si









=

(

momentum

volume

)(

volume flow inwards

time

)

∆t (3.118)

Volumetric flow inwards may be written with the aid of equation 3.87.









momentum
entering CV
through ith

tangent plane ∆Si









=

(

mass · velocity

volume

)





inflow
velocity

magnitude
· area



 ∆t (3.119)

= (ρi v|i) (−(n̂i · v|i)∆Si)∆t (3.120)

where ρi and v|i are the density and velocity at (xi, yi, zi), and n̂i is the outwardly pointing
unit normal vector at (xi, yi, zi) (compare with equation 3.95). Note that we have a choice
here for unit normal vector n̂i since any surface has two unit normal vectors, one pointing
into the control volume and one pointing out of the control volume. The convention in
fluid mechanics is to choose the outwardly pointing unit normal. The negative sign in
equation 3.120 is a consequence of this choice, and the expression n̂i · v|i corresponds to the
outwardly moving component of the velocity. Since we are interested in the inwardly moving
flow in equation 3.120, we must include a negative sign.

Equation 3.120 gives the contribution of momentum passing through each ∆Si. To
approximate the total momentum flow through Sin we now sum over all tangent-planes ∆Si.
Note that we are only including the ∆Si that are associated with those projections ∆Ai that
are fully contained within R. Subsequently we take the limit as ∆A becomes small to make



262

the calculation exact.





momentum
of blue fluid

that enters CV



 ≈

N
∑

i=1









momentum
entering CV
through ith

tangent plane ∆Si









(3.121)

= −

N
∑

i=1

(ρi v|i) ((n̂i · v|i)∆Si)∆t (3.122)

= −∆t
N
∑

i=1

((n̂i · v|i)ρi v|i∆Si) (3.123)





momentum
of blue fluid

that enters CV



 = −∆t lim
∆A−→0

[

N
∑

i=1

((n̂i · v|i)ρi v|i∆Si)

]

(3.124)

where N is the number of projections ∆Ai that are wholly within R. We can relate the
tangent-plane area ∆Si and the projected area ∆Ai through geometry (see the web ap-
pendix [124]). The result is

∆Ai = (n̂i · êz)∆Si (3.125)

where êz is the unit normal of the ∆Ai, and n̂i is the unit normal of ∆Si. Substituting this
relationship, equation 3.124 becomes





momentum
of blue fluid

that enters CV



 = −∆t lim
∆A−→0

[

N
∑

i=1

(n̂i · v|i)ρi v|i
n̂i · êz

∆Ai

]

(3.126)

The limit of the sum on the right-hand side of equation 3.126 is related to the definition
of a double integral[124]. The double integral is defined as

Double integral
of a function

(general version)
I =

∫∫

R
f(x, y) dA ≡ lim

∆A−→0

[

N
∑

i=1

f(xi, yi)∆Ai

]

(3.127)

where R is the region in the xy-plane over which f is being integrated (summed). Comparing
equations 3.126 and 3.127 we write





momentum
of blue fluid

that enters CV



 = −∆t

∫∫

R

(n̂ · v)ρv

n̂ · êz
dA (3.128)

If we define dS ≡ dA/(n̂ · êz), then equation 3.128 becomes[124]




momentum
of blue fluid

that enters CV



 = −∆t

∫∫

Sin

(n̂ · v) ρv dS (3.129)
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This is the expression we needed to finish equation 3.65. Our calculations show that the
momentum of blue fluid that enters the control volume is equal to the surface integral of the
crossing momentum per unit volume (n̂ · v) ρv over the inlet surface Sin.

The momentum of the red fluid that exits the control volume may be written in a
similar way, resulting in an analogous integral over the outflow surface Sout.





momentum
of red fluid

that exits CV



 = ∆t

∫∫

Sout

(n̂ · v) ρv dS (3.130)

Notice that there is no negative sign in equation 3.130 (recall the discussion related to equa-
tion 3.120), since in this case we are accounting for fluid that is exiting, and the outwardly
pointing normal dotted with the velocity vector gives the component of velocity correspond-
ing to outflow. We now substitute the results in equation 3.130 and equation 3.129 into
equation 3.65 to replace the word expressions.

∆t
∑

on
CV

f

∣

∣

∣

∣

∣

∣

∣

t

= P|t+∆t − P|t −





momentum
of blue fluid
that enters





∣

∣

∣

∣

∣

∣

t+∆t

+





momentum
of red fluid
that exits





∣

∣

∣

∣

∣

∣

t+∆t

(3.131)

∑

on
CV

f

∣

∣

∣

∣

∣

∣

∣

t

=
P|t+∆t − P|t

∆t
+

(
∫∫

Sin

(n̂ · v) ρv dS

)∣

∣

∣

∣

t+∆t

+

(
∫∫

Sout

(n̂ · v) ρv dS

)∣

∣

∣

∣

t+∆t

(3.132)

The two integrals in equation 3.132 may be combined, since the first is over all inlet
surfaces and the second is over all outlet surfaces. All surfaces of the control volume are
either inlet surfaces or outlet surfaces, or surfaces through which no fluid passes. Surfaces
through which no fluids pass would have n̂ · v = 0 since v = 0 there. We can therefore
safely write these two integrals together as the integral over the entire enclosing surface of
the control volume, CS.

(
∫∫

Sin

(n̂ · v) ρv dS

)∣

∣

∣

∣

t+∆t

+

(
∫∫

Sout

(n̂ · v) ρv dS

)∣

∣

∣

∣

t+∆t

=

(
∫∫

CS

(n̂ · v) ρv dS

)∣

∣

∣

∣

t+∆t

(3.133)
Making this change in equation 3.132 and taking the limit as ∆t goes to zero, we arrive at
the final relationship we seek, the relationship between the forces on the control volume and
the rate of change of momentum of the fluid in the control volume.

∑

on
CV

f

∣

∣

∣

∣

∣

∣

∣

t

= lim
∆t−→0

(

P|t+∆t − P|t
∆t

)

+ lim
∆t−→0

(
∫∫

CS

(n̂ · v) ρv dS

)∣

∣

∣

∣

t+∆t

(3.134)
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Reynolds transport theorem
(momentum balance on CV)

∑

on
CV

f =
dP

dt
+

∫∫

CS

(n̂ · v) ρv dS (3.135)





sum of
forces

on a CV



 =









rate of
increase of

momentum of
fluid in CV









+









net outflow of
momentum

through bounding
surfaces of CV









(3.136)

In going from equation 3.134 to equation 3.135 we have once again employed the fundamental
definition of a derivative (equation 3.39).7 The integral term is called the convective term.

Equation 3.135, called the Reynolds transport theorem, gives the equivalent of New-
ton’s second law (

∑

f = ma) for a control volume. The Reynolds transport theorem states
that the sum of forces on a control volume is equal to the rate of increase of momentum of
the fluid in the control volume plus the net outward flux of momentum through the surfaces
bounding the control volume (Figure 3.19). In the next section we turn to learning how to
apply this equation to control volumes that interest us in fluid mechanics.

3.2.3 Problem-Solving with Control Volumes

With the development of the Reynolds transport theorem we have the main tool that we
need to be able to solve a wide variety of flow problems.

Reynolds transport theorem
(momentum balance on CV)

∑

on
CV

f =
dP

dt
+

∫∫

CS

(n̂ · v) ρv dS (3.137)





sum of
forces

on a CV



 =









rate of
increase of

momentum of
fluid in CV









+









net outflow of
momentum

through bounding
surfaces of CV









(3.138)

The Reynolds transport theorem gives the equivalent of Newton’s second law (
∑

f = ma) for
a control volume. This expression states that the sum of forces on a control volume is equal
to the rate of change of momentum of the fluid in the control volume plus the net outward
flux of momentum through the surfaces bounding the control volume (Figure 3.19). When
properly applied to a flow situation and solved, the momentum balance gives the velocity
field and information on how forces interact in a fluid. The Reynolds transport theorem is a

7The momentum of the fluid in the control volume P is only a function of time; for more discussion of
this point see Deen[45] and the supplemental web materials [124].
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