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Chapter 9: Advanced Constitutive Models

CM4650
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Michigan Tech

e desire a strain tensor that accurately captures large-strain
defermation without heing affected by rigid-body rotatien.

Cansider time=’

Shape and position of a

deforming body at '
time=t

.
o \ dr Shape and position of
the same deforming
body at ¢

| k3
{- Q
z ff I
/ dr
fixed coordinate L

x
system (xyz)
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Chapter 9: Advanced Constitutive Models

CM4650
Polymer Rheology
Michigan Tech

We desire a strain tens:
defarmation without heil

Consider: i

E

WARNING:
= There is way
“ more to this
than we can
s cover

system (xyz) ' |
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Advanced Constitutive Modeling

t
G lized Li - N et '
Visoclnste Mode:  £=— | G(t=t) F(t)dt

—00
L—— strain-rate

Good only for small strains, small strain-rates
tensor

To develop constitutive equations
for large strain, large strain-rate
flows, the strain and strain history
are important.

What is the strain measure that is used in
the GLVE model?

Advanced Const Modeling 2014 3
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What is the strain measure that is used in the GLVE model?

(use integration by parts;
see hand calculations)

Advanced Const Modeling 2014 4
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Generalized Linear-
Viscoelastic Model:
(strain version)

infinitesimal
strain tensor
t
r=+ M-t dt
—0
M- =0

memory
function

It is the use of the infinitesimal strain
tensor as the strain measure that causes
the frame-variance in the GLVE model.

5
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We have seen the infinitesimal strain tensor before: when we first
defined strain when we discussed material functions).

Infinitesimal T
strain tensor = VQ + (VQ)

Displacement  U(t,,t) =r(t)—r(t,)
function

X (t)

Particle r(t) =| x.(t

tracking vector _() ZEt;
X3 123

Advanced Const Modeling 2014 6

© Faith A. Morrison, Michigan Tech U.

4/18/2014



Rheometry CM4650 2014

ini ou
Strain in Shear Flow Vor(tog 0 =S5 Shear strain
2
X, (trer ) u(t, t)=r(t)—r(t,,) Displacement
Ft) = X, (ter) function
X3 (tref ) 123
X (t flow
(t) \\“\‘ %s
r® = %) T
X, (t) - particle path \\\\‘~P(tref) ultesd)  P(Y)

Advanced)XGonst Modeling 2014 7
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Deformation in shear flow (strain)

Xl (tref )
L(tref ) =1 X (tref )
X3 (tref ) 123

Xl(t) Xl (tref ) + (t _tref )7}0)(2
[(t) = X2 (t) = X2 (tref )
X3 (t) 123 XS (tref ) 123

(t _tref )7}0X2

Displacement

U(tyer ) =1 (1) (e ) = 0 function in
shear
O 123
Advanced Const Modeling 2014 8
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Deformation in shear flow (strain) _
(t _tref )7/0X2
!(tref ’t) = [(t) _E(tref ) = 0
0 123
0 0 0
ng (t_tref)yo 00
0 0 0 123
0 (t - tref )70 0
y =Vu+(Vu) =| (t—t.)7 0o 0
Infinitesimal 0 0 0 123
strain tensor
in shear '
Advanced Const Modeling 2014 9
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No stress is generated when a fluid is rotated CCW through ¢ (from

position at time t to position at time ¢, what does the GLVE

redict? (Warning: later, we are going to consider
CCW rotation from ¢’ to t through an angle

P = —1); see Table 9.3)

rcosp P(t)

=

B rsin g

X

» calculate the infinitesimal strain tensor for rigid body rotation
» use the strain-evident version of the GLVE
10

Advanced Const Modeling 2014
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(note: we need y(t,t") in the GLVE)
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What does the GLVE Predict for CCW Rigid-Body
Rotation around the z-axis from t to t'?

=

t,t) =Vu+ (T’

Advanced Const Modeling 2014
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What does the GLVE Predict for CCW Rigid-Body
Rotation around the z-axis from t to t'?

y=r7sinf From geometry
x=rt1cosf

From trigonometry

y' =7sin(f + ) = 7(sin p cos P+ s~in1/~) cos )

=ycosy + xsiny
x' =7 cos(B + 1) = 7(cos B cosy — sin B sin)
= xcoszf) —ysin1/~)

zZ=z

From definition
xcos&—ysimﬁ—x
— =l = __ -~ L~

U=T —T=\|ycosy+xsiny —y

0 xyz
Y& t) =Vu+ (w' =

Advanced Const Modeling 2014

12
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GLVE Prediction for CCW Rigid-Body Rotation
around the z-axis from t to t’:

t 2(cosy — 1) 0 0
z(t) = +f M(t—-t") 0 2(cosp—1) 0 dt’
o 0 0 0/ xyz
Stress depends on angle of rotation! (note: we need y(¢,t') in the GLVE)

Why does GLVE make this erroneous
prediction?

y(tt) = Vu.t) + Vutt,t)[
/\ u(t,t) = r(t) — r(t)

Because this vector, while accounting for
deformation, also accounts for changes in
orientation.

Advanced Const Modeling 2014 13
© Faith A. Morrison, Michigan Tech U.

7(t,t) = Vu(t, t) + [Vu(t,t')]r Accounts for changes in
= - - shape and orientation.
u(t,t) = rt) —r()

'_‘(Iv_r') =!' -r
Origin O
fixed in space

<" P(t) ! urn ’ P(t) ;

, u(rr)
l:’ll(t)l/' ¥ !
! ’

Orientation changes Orientation changes
(r changes direction) Shape changes
Shape does not change
(length of r does not
change)
Advanced Const Modeling 2014 14
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We desire a strain tensor that accurately captures large-strain
deformation without being affected by rigid-body rotation.

Consider: time=t’
Shape and position of a
deforming body at ¢’
a time=t
!/
P.Q dr Shape and position of
the same deforming
body at ¢
P\
r Q
z r
dr

/ ’
fixed coordinate ! x

system (xyz) Advanced Const Modeling 2014 15
© Faith A. Morrison, Michigan Tech U.

Define change-of-shape

How does dr map to dr’ along a particle path? LIS L7 Ol
- - relative location of two

nearby particles

r particle label (reference time t)

r

location at time t' of the particle labeled r

dr dr’ X
y, =1y | =t
!
Z Xyz
dx’
df =|dy'| =2
dz’
Xyz
Advanced Const Modeling 2014 16
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dx'=?

dy' =7

dz'="?
(chain rule)

Advanced Const Modeling 2014
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17

(dx' dy’ dz'),=(dx dy dz),,
dr'=dr-F

Deformation-gradient % Q %

tensor OX OX OX

Fry=| X ¥ 2

= o oy oy

x

oz 07 01

Advanced Const Modeling 2014

ox
0z

Xyz

2|
R

oz E xyz

ar
0

o' ~ .
8rp
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. -1
Define: FF=1
Then use: dr'=dr-F
=7
Advanced Const Modeling 2014 19
© Faith A. Morrison, Michigan Tech U.
Deformation-gradient ' '
tensor 8_X ﬂ
, oX OX
= oy oy ar or,
x
07 0z xyz
Inverse deformation-
gradient tensor % g -
. ox' ox' ox'
=dr’'-F~ ~ OX or or ..
dr=dr’-F Fltt)=| = ﬂ L1 L Pngg
oy oy or' ar,
x oy o
0z 07" 01')y,
Advanced Const Modeling 2014 20
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We desire a strain tensor that accurately captures large-strain
deformation without being affected by rigid-body rotation.

Vu
Z All these strain measures include
= both deformation and orientation
E -1

We canlseparate the deformation and orientation information in E
and E "using a technique called

Advanced Const Modeling 2014 21

© Faith A. Morrison, Michigan Tech U.

Polar Decomposition Theorem

Any tensor for which an inverse exists has two
unique decompositions:

A
=V R Pure rotation tensor
1 -1_pT
U= (5 . A)Z R"=R
o L Orthogonal tensor
T
V= Q‘é F u,v
1 - = - -
R = A~(,=AT -A)_E —A.UT Symmetric, nonsingular
= = = = = tensors
Advanced Const Modeling 2014 22
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EXAMPLE: Calculate the right stretch tensor and rotation tensor for a
given tensor. Calculate the angle through which R rotates the vector

u.
1 0 2 1
é: 0 3 2 u=|2
2 00 1

Xyz Xyz

23
© Faith A. Morrison, Michigan Tech U.

Advanced Const Modeling 2014

We have partially isolated the effect of rotation through
polar decomposition.

rotation tensor
(—~ left stretch tensor

~RU=-VR

\z\ A=R-U
L—- right stretch tensor

original (strain) tensor

We can further isolate stretch from rotation by considering
the eigenvectors of J and V.

Advanced Const Modeling 2014 24
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PATH I
Advanced Const Modeling 2014

>
>

<> |70
[
=
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Finite Strain Tensors

A v? u?

E E-F E'E
E' E'E E-F
1 -1 (5—1)F F—l)F -

Cauchy tensor C=F - ET

Finger tensor g_l = (E_l)T 'i_l

Advanced Const Modeling 2014

proposed deformation
tensors; contain stretch

of eigenvectors, BUT NO
ROTATION

26
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Now we can construct new constitutive
equations using the new strain measures:

Replace: y(t,t") with: —C(t',t)

Finite Strain Hooke’s Law of elastic solids:

E(t) — +G£_1 (t, O) (Reference

time is 0)

Finite Strain Maxwell Model:

Advanced Const Modeling 2014 27
© Faith A. Morrison, Michigan Tech U.

Now we can construct new constitutive
equations using the new strain measures:

Replace: y(t,t") with: —C(t',t)

Finite Strain Hooke’s Law of elastic solids:

1 Time to
7(t) = +GC™'(t,0) take these
out for a
Finite Strain Maxwell Model: spin
d (t—tr)
—(t—tr
(t) = — %e I CcTi(t,t) dt’
—00
Advanced Const Modeling 2014 28
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EXAMPLE: Calculate stress predicted in rigid-body rotation (around z
through a counter-clockwise angle ) by a finite-strain Hooke's law.

z(t) = +GC71(t,0)

(this didn’t work when the infinitesimal
strain tensor y(t, t') was used)

Advanced Const Modeling 2014 29
© Faith A. Morrison, Michigan Tech U.

EXAMPLE: Calculate stress predicted in rigid-body rotation (around z
through a counter-clockwise angle i) by a finite-strain Hooke’s law.

7(t) = +GC71(t,0)

Usual solution steps:
1. Begin with kinematics of the flow
Calculate the needed tensor elements (y before, €~ now)

2
3. Calculate the stress
4. Calculate functions that rely on stress (material functions)

Advanced Const Modeling 2014 30
© Faith A. Morrison, Michigan Tech U.
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EXAMPLE: Calculate stress predicted in rigid-body rotation (around z
through a counter-clockwise angle ) by a finite-strain Hooke's law.

z(t) = +GC71(t,0)

Usually, start with
Usual solution steps: v,¢(t) or £(1), - Y .-
1. Begin wit @ of the flow
2. Calculate theTeeded tensor elements (y before, €~ now)

3. Calculate the stress
4. Calculate functions that rely on stress (material functions)

Advanced Const Modeling 2014 31
© Faith A. Morrison, Michigan Tech U.

Our old constitutive
equations were y-based:

() = —uy(e)
() = —ny(t)
t
(t) = - Z—Oe_(tﬂ_t )Z(t')dt’

t

1(t) = — fG(t = yle Jdr

etc.

And our recipe cards were, therefore, y-based

Advanced Const Modeling 2014 32
© Faith A. Morrison, Michigan Tech U.
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Traditional “recipe card”

Steady Shear Flow Material Functions

Kinematics:
g(t)x , _
v=| 0 ¢(t) = o = constant
0

123

Material Functions:

70

Viscosity

First normal-stress Y = — (Tll ~ 722)
_ T coefficient 7%

Second normal- ¥, = — (722 ~ 733)
stress coefficient 75

= ¥,

3

© Faith A. Morrison, Michigan Tech U.

Our NEW constitutive
equations are strain-based,
Y, t),C71(t',b), etc.:

z(t) = —Goy (0, 1)

t
Mo =(t=th
)=+ | e T y(ttHdt
I 12 14
_0?66( )
t—t'
t)=— | ————=y(t,t")dt
©=- [y
etc.

(t) = +GoC7'(t,0)
t

—(t=t"
() =+ 10 =7 Cci(t', t)dt’
= 12 =

_ogac;( )

t—t'
t)=— | ——=¢~1(t',t)dt’
0 =- [

etc.

Our recipe cards must now be deformation-based, r,r" ...

Advanced Const Modeling 2014 34
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What is the Finger Tensor C~*(¢',t) in CCW Rigid Body
Rotation from t’ to t through an angle ?

tl
y
feosp  P(t)
rI
B rsing
.
X
Advanced Const Modeling 2014 35
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Strain Tensor Prediction for CCW Rigid-Body
Rotation around the z-axis from t' to t:
r =
x' =tcosf From geometry
y' =f7sinf
From trigonometry
x =7 cos(B + ) = 7(cos B cosy — sin B siny)

=x'cosyp — y'siny

y = sin(f + y) = 7(sin B cos P + siny cos )
=y'cosy + x'siny
zZ=12z

From definition:

d
Fi(t't) =

T
or'

Advanced Const Modeling 2014 36
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Strain Tensor Prediction for CCW Rigid-Body
Rotation around the z-axis from t'to t:

cosy siny 0

E_l(t',t)=a—;,= —siny cosyp 0

- 0 0 1

xyz

(matches answer in Table 9.3;
caption definition of Y is in error)

_1(t’, t) — (i_l)T . E_l

Advanced Const Modeling 2014 37

© Faith A. Morrison, Michigan Tech U.

Strain-centric “recipe card”

CCW Rigid Body Rotation “Material Functions”

Kinematics:

v=0 (in a coordinate system with
origin within the fluid)
x' X x' cosy —y' siny
r'=\{y r= (y) =| y cosy + x'siny
z xXyz 2/ xyz z xXyz
ar cosy siny 0
Fl1tt)==—==|—siny cosy 0 Ci(tt)=1
- or 0 0 1 - -

xyz

Material Functions:

There is no such thing since it's not a flow! (no deformation)

T = unchanged

38
© Faith A. Morrison, Michigan Tech U.
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EXAMPLE: Calculate stress predicted in shear by a finite-strain
Hooke’s law. Compare with experimental results.

z(t) = +GC71(t,0)

Advanced Const Modeling 2014 39
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Traditional “recipe card”

Steady Shear Flow Material Functions

Kinematics:
st , ,
v=| 0 ¢(t) = 7o = constant
0

123

Material Functions:

First normal-stress |\ = - (Tll ~ 722)

_ coefficient B 7/5
=5
0
Viscosi Second normal- |, = — (722 ~ 2'33)
Iscosity stress coefficient 7/3

0
© Faith A. Morrison, Michigan Tech U.
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Strain-centric “recipe card”
. . Steady Shear Flow Material Functions
Kinematics:
“(t)x
b= (“3 2) ¢(t) = yo = constant
0 /123
x' x x4+ vyt —t")
r’ = y’ r = <y> = y’
Z /123 #7123 z 123
1 0 O 1+y2 y O
Erte)=(y 1 0 cre o= vy 10 Y =7yo(t—t")
0 0 1/423 0 0 1 123
Material Functions:
Viscosity First normal-stress Second normal-stress
coefficient coefficient
_ T2 —(T11 — T22) —(T22 — T33)
n=— V@y=——F— W =—7m——
Yo Y0 Yo 41
© Faith A. Morrison, Michigan Tech U.

EXAMPLE: Calculate stress predicted in shear by a finite-strain
Hooke’s law. Compare with experimental results.

1+y2 ¥y 0
From shear kinematics: | C*(t',t) = % 10
0 0 1 123
Y=y, t) =yt —t")
z(t) = +GoC (¢, 0)
1+ 7p2t2 —yt 0

recall sign
0 0 1 123 E:onventign
on stress)
Advanced Const Modeling 2014 42
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EXAMPLE: Calculate stress predicted in shear by a finite-strain
Hooke’s law. Compare with experimental results.
NOTE: for the
first time we have 0 1
predicted
11— %22
nonzero normal %
stresses in shear. = 201
[a
=3
% T o T
] 0.4 -0.2 0.2 0.4
n
,20 4
™1
-40 -
Solid lines, G = 160 kPa
: : 7 =7l
F'Q_U"e 9.6, p. 325 DeGroot; Advanced Const Modeling 2014 43
solid rubber © Faith A. Morrison, Michigan Tech U.
ahear in
tensor L-direction uniaxial clongation cow tolation Table 9.3
with gradient in 3-direction round #y .
| in Z-Ercubim{ EFD fromas haS Straln
tensors for
1 0o ef 00 cogyr ~—=gingd
F(t,t) (—? 1 a) [0 et o ) (s'muﬁ- cos1p u) standard
(U VI | 2 n i er . [{] n 1 - ﬂOWS
100 eh 0 0 ot miny 0
e [')‘ 1 U] ( [ U) ( singd cose UJ
001/, 00 e/, o0 1),
1 -y 0 o 00
e (x,- 447 u} (u Ea ] 1
i} 0 [ . 00 e™ -

ﬁ
=a®
=" =
o=
— S
I—

1+9% 4 0
feal () y 10
01 123

(Note there is a typo in
the definition of ¢ in the
caption of Table 9.3;

H——‘
=
e
1
O‘_'.O
-
%
—
-
o
®,
X
-
A
)
o
:“)ﬂa
[
8
=

— 50 et—1 0 [l
Lyt ( 7 0 u) ( 0 et -1 0 ) 0 there is says from r to
L 0 0 -1y r', which is backwards. )
t This is correct
y=yht)= U‘:(t")dt” 1 is the angle from r/ to r in cew
t . rotation around &,
e=e(t’t) = J‘Ue(t”)dt Advanced Const Modeling 2014 44
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TABLE D.1
Cnmpansnn of Nomenclature for Strain Tensors Used in the Literature
Name This Text Larson [138] DPL [26] Macosko [162] | Middleman [179]
Stress tensor N=z+pl [ -I=-g+pl O=1+p] ~I=-t+pl| -L=-z+pl
_ aw, - aw,, aw, . . |
Gradient of a vector Vuw = F’qe‘, Vu = —x;ekep Vw = —al:—:qep Vw = %:e,n Vw= %:e,n
Deformation-gradient tensor E E é?’ E—: ¥ .
Inverse deformation-gradient tensor g_' é_] gr ;:r — __l
Cauchy tensor c [~ g‘l g"' —
—
Finger tensor c! c! B B —
Finite strain based on Cauchy K[ﬂl : c-1 110] g_l -4 - |
" Finite strain based on Finger y -c! ¥ -E — !
=l0] = = =0 | = i
Rate-of-strain tensor | ¥ 2D ¥ | 2D A
| r = £ | = 2
[ Geeoemer [EEY 0] EE | € -
Advanced Const Modeling 2014 45
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Now, let’s fix the Maxwell model.

(t-t)
Integral Maxwell model
(rate version):

r —j%e_

—00

£:+jma—0£¢wm'

GLVE model
(strain version):

oG(t —

Mt-t)=——2 ~

t _(t-t)
Integral Maxwell model 7 =+ I o e 4
(strain version):  — S /1

Advanced Const Modeling 2014

© Faith A. Morrison, Michigan Tech U.

p )t

7t t) dt’

t)

46
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Lodge model

¢ )

Integral Maxwell model 7 =+ I U—ge Ayt t)dt
(strain version):

—00

substitute (-Finger tensor) for — C_l(t"t)
infinitesimal strain tensor =

_=0)
Lodge Model: Z =— I n—ge A C_l(t',t) dt’
0 ﬂ' what does
it predict?
A finite-strain, viscoelastic constitutive equation
Advanced Const Modeling 2014 47

© Faith A. Morrison, Michigan Tech U.

EXAMPLE: Calculate the material functions of steady shear flow for
the Lodge model.

t _(t-t)
Lodge Model: £=—I %e A C_l(t',t)dt'

Advanced Const Modeling 2014 48
© Faith A. Morrison, Michigan Tech U.
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the Lodge model.

EXAMPLE: Calculate the material functions of steady shear flow for

Lodge Model:

t _(t-t)
r=-| Me 2 |c bt
B A
—o0
Advanced Const Modeling 2014 49

© Faith A. Morrison, Michigan Tech U.

Strain-centric “recipe card”

Steady Shear Flow Material Functions

Kinematics:
(t)x
v= (“3 2) ¢(t) =y, = constant
0 123
x' x x"+yet—t")
r'=\y r= <y> = y'
Z /123 #7123 z 123
1 0 O 1+ y2 y O
Ertt)=(y 1 0 cleo=l y 1 0 Y =70t —t")
0 0 1/123 0 0 1/,
Material Functions:
Viscosity First normal-stress Second normal-stress
coefficient coefficient
T —(1t11—7 —(T, — T
= '21 g, = ( 11.2 22) y, = ( 22'2 33)
Yo Yo Yo 50

© Faith A. Morrison, Michigan Tech U.
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Lodge model

107

A=1s
G,=4x10* Pa

108

- 1(7)

material function

10°

n(y)
10¢ |

0.001  0.01 0.1 1 10 100 1000

. . -1
yorég(s™)
Advanced Const Modeling 2014 51
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Needs to become a Strain-centric “recipe card”

Start-up of Steady Shear Flow Material Functions

Kinematics:
c(t)x, 0 t<0
v=| 0 c(t)=1.
0 7o 120

Material Functions:

First normal-stress \gs+ _ M
—7(t) growth function 1 2
= - 7/0
Yo ( )
- —_ T — T
Shear stress Second normal ‘Pg _ T\Tp —Ts)
rowth stress growth 7 >
Fancti function 0
function

2

© Faith A. Morrison, Michigan Tech U.
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Needs to become a Strain-centric “recipe card”
Cessation of Steady Shear Flow Material Functions
Kinematics:
~(t)x: .
s)x . 7, t<0
v=| 0 ¢(t) =
0 0 t>0
123
Material Functions:
First normal-stress \yy— _ — (711 — 2'22)
_ o —T,(t decay function ~1 T .2
g ==t 72
Yo ( )
- _ —\7T,, — T
Shear stress Second normal- - _ ~ 1722~ "3/
decay function stress decay ~2 2
Y function 70
3
© Faith A. Morrison, Michigan Tech U.

EXAMPLE: Does the Lodge model pass the test of objectivity posed
by the turntable example? (remember, the GLVE failed this test)

@ o)

fluid

(@

<l

x|

54
© Faith A. Morrison, Michigan Tech U.
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Turntable Example
t n _(t-t) .
Lodge Model: g=—j /1—(2)6 A |CTH(E, ) dt
—00
x oy &
ox ox oX
Fle =2 Inge | X & &
= or' 8rj' oy oy oy
x o
o7 o7 or xyz
X X'+ pot -t)y
r=y| = y
z 7
Xyz Xyz
Advanced Const Modeling 2014 55
© Faith A. Morrison, Michigan Tech U.

Deformation in shear flow (strain)

Xl (tref )
[(tref ) = X2 (tref )
X3 (tref ) 123

ou

Advanced Const Modeling 2014

Va1 (tref e 6_)(21 Shear strain

Xl (t) X1 (tref ) + (t - tref )70X2
[(t) =1 X, (t) = X, (tref )
X(t) ) Xy (ter)
(t e )70X2 )
Ut D =r®-rty)=| 0 Drepiacement
O 123

56

© Faith A. Morrison, Michigan Tech U.
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Turntable Example

t _(t-t)
Lodge Model: £=—J %e 2 |c i, tyat

Lodge prediction: rotating frame
2
) et [+
T=-— %e A y 1 0| dt
—® 0 0
Xyz
Advanced Const Modeling 2014 57
© Faith A. Morrison, Michigan Tech U.
Lodge turntable - from stationary frame
X Xo + (Y — Yo)- SC'+CS' + CC'y ]+ (X — xo)[SS' + CC' - CS'y
r=|y| =|yo+ /- y)[C'C+SS+SCy]+ (X —x)-CS +SC'—557]
z 7
Xyz Xyz
S =sinQt
S'=sinQt’
C =cosQt
-1 -1 / '
Now, calculate F and C . C'=cost
=yt -t
x o a y =yt 1)
oxX oxX ox
[ (%)) Eg:%éjém _|x oy a ~
= or orf oy oy oy >
OX ﬂ oz

ol (E—ly gl
58
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ot o7 or Xy
Advanced Const Modeling 2014
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Result: 1-2CSy+C%?% (C?
(.t =| (C? - S%y +SCy?
0

Lodge Model prediction in stationary frame:

~S$%y+SCy% 0
1+2CSy+S%2% 0

0 1

Xyz

. el 1-Xsy+CH* (C
r=—[Be 2 |(C?*-sHy+sCy?

2_5%y+SCy% 0
1+2CSy+S%2 0| dt

0 1

Xyz

- 0
S=sinOQt C=cosOt
S'=sinQt’ C' =cosQt’ ;Ou
7 =7t -1)

Advanced Const Modeling 2014

coordinate system, e.g. t=0

© Faith A. Morrison, Michigan Tech U.

compare to previous result,
st consider shear

59

Lodge prediction: stationary frame, t=0
) ) (1 ¥y 0
r=—[ Mg 2 y 1 dt’
—© 0 01
Xyz
Lodge prediction: rotating frame
. ) (1 ¥y
r=—[ Mg 2 y 1 dt’
—© 0 0
Xyz
Advanced Const Modeling 2014 60
© Faith A. Morrison, Michigan Tech U.

4/18/2014

30



Rheometry CM4650 2014

Lodge (Maxwell with Finger strain tensor)
passes test of objectivity

What is the differential form of the Lodge model?

t ()
Lodge Model:  7=-— J‘{%e 4 }g_l(t',t) dt’

dr

= ’)
dt

dc™

dt = (Homework)
Advanced Const Modeling 2014 61

© Faith A. Morrison, Michigan Tech U.

-1
EXAMPLE: What is 6;?
ot

We can answer by writing the definition of the
deformation gradient tensor in Einstein notation.
We will also need the chain rule of differentiation.

(after this, use Table 9.1)

Advanced Const Modeling 2014 62
© Faith A. Morrison, Michigan Tech U.
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Aside: Why did we use —C™'(t',t) in

the Lodge model?

EXAMPLE: What is C™'(t,t) ?

EXAMPLE: Define: g[ol(t,t’)zg—l What is

limit of small strains?

Advanced Const Modeling 2014

Hint: VU=

EXAMPLE: Define: Z[O](t,t’)zi—g1 What is this strain tensor in the

limit of small strains? Hint: V'u =

this strain tensor in the

a(r-r)

or

or'

63
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(Differential Lodge Equation, continued)

Il <
Il
‘n
|

—~~
<]

<

==

IS
|

S
<]

<

Advanced Const Modeling 2014

If we define: 7 =7+ 77— | (does not affect practical predictions since only
= = ﬂ = normal stress differences can be measured)

64
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Note on the total derivative/substantial derivative:
dg(t,xl,xz,x3)_a£+£%+ ag 8X2 2%

dt ot ox ot ox, ot Ox, o
dr or & 6£ X,

+
dt ot f=ox, ot

If the path along which we are taking the derivative is a particle path (which we
have already assumed when conceiving the deformation gradient tensors), then

dr (or & or or Dz
== =4 _=Vm = _=+y.vz- ==
t ot “ox. ot =] Dt

Advanced Const Modeling 2014 65
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Differential Lodge Equation (Upper Convected Maxwell Model)

T+ AL =1y
Dz
gz—i—(Vy)T T-7-VV
upper-convected time derivative

Advanced Const Modeling 2014 66

© Faith A. Morrison, Michigan Tech U.
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The Upper-Convected time derivative can be understood to be the
time derivative calculated in a coordinate system that is translating
and deforming with the fluid (see section 9.3).

) ) . ,R?
material grid at time t' yA
same material
grid at time t
Q
P
S
X, Rt
< AN
Y 11 7
\4

67

Advanced Const Modeling 2014
© Faith A. Morrison, Michigan Tech U.

Other Convected Derivatives
upper-convected time derivative
v DT
EE—T—(VM)T T-7-Vy
lower-convected time derivative
Dr
IT=—=+W 1+1-(VM)T
Corotational time derivative
o Dz 1
gz—¥+— DT—T Q)
w=v-(W)
Advanced Const Modeling 2014 68
© Faith A. Morrison, Michigan Tech U.
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(upper-convected Maxwell)

t
Lodge Model: EZ_I %e J1

)

c 4ttt

Cauchy-Maxwell Model:
(lower-convected Maxwell)

t
-
—0o0

Advanced Const Modeling 2014

e 2

t
Lodge Rubberlike Liquid Model: r=- J‘ M (t —t')g_l(t',t) dt’

© Faith A. Morrison, Michigan Tech U.

_(t-t)

y C(t,t)dt

69

TABLE D.2

Extensional Flows

1. Shear

Advanced Const Modeling 2014

¥
Uniaxial (& = 0, L) L) Ina
biaxial (b = 0, o i i T
Planar (b= 1,dp > 0 iin 4m
1 —digh
i (8 g
1+ Zigh

Predictions of Lodge Equation or Upper Convected Maxwell Model in Shear and

)

¥ (14 §)]

Lodge s
Equation il
q Wi ¥ (]
(UCM)
wiiy) 2Geil =2
i) 0
Cewsation i ¥
Loins)
L]
Step shear sirain Gir, ) ek
G, it 1) G
C f. )
Extension
Startup
Uniaxial (b = 0, dg > O L] 1B
or bixxial (b = 0, ég < '-1‘8( g
B=1

70
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TABLE D.3
Predictions of Cauchy—Maxwell Equation or Lower Convected Maxwell Model in Shear and
Extensional Flows
Cauchy- S
Startup 7t ) m(1-et)
Maxwell a1t 14 )]
E tl n L5 -%)
q u a O Sueady iy} o= Ggh
L C M Wiy 2GoA? = Ingh
waiy) -¥
Cessation L8] npe T
W P Zange T
¥ —w7
 Suep shear strain Git. w) Goet
Gt ) Gor~t
Gyt o) —Gw
L. Extension
Surtep
Uniaial (8 = 0, & > 0) A*ir, da) ® (3-20eF - o)
jaxial (b = 0, dg < oy =]
or biaxial (b = 0, & < 0) ar fg s do) ———
D=1-igh
Flanar (b = 1, dg = 0) iif, it do) 1-Ac? - ce¥)
= 1 — Digh
i (1. 40} iy
A 2 (1-¢%)
Steady
Uniaxial (b = 0,4y > 0) filéa) 3na _ Im
or biaxial (b =0, dg < 0) o i lén) {1+ 20Mg)(1 - Mg} CD
Planag (b = 1,dg = 0) i liégd Ay 4y
T " AC
i (0} ~Im _ —Im
-2 A
Advanced Const Modeling 2014 71
© Faith A. Morrison, Michigan Tech U.

Approaches to finite-strain

constitutive equations

equivalent

I~ <

A
” replace with .

or other time

non-objective time derivative derivatives

differential
Maxwell model

t 7 —(t=t) -0
integral — J. ‘o A l,’ Yt
Maxwell model z 2 © \\Z(t’t ),'dt

A
—00 /\/ ~o_ .-

non-objective strain measure

\ replace with—C ™, C

or other strain measures

Advanced Const Modeling 2014 72
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Methods of Improving Constitutive Equations

Maxwell Model or

We can improve with
new time derivatives
or new strain
measures.

z(t) = —j {%eﬂ}/ (t,t')dt’

(t-t)

basic equation:

elinear modifications

We can also change the

enon-linear modifications

Advanced Const Modeling 2014

© Faith A. Morrison, Michigan Tech U.

73

Other Constitutive Approaches

Simple Maxwell Model, 52'21 _ .
shear fat A =T a
ot
Upper-Convected T+ 2 z — _ 770}7

Maxwell Model, general

or
Simple Jeffreys Model, Ty t+ ﬂ‘l A
shear ot

Upper-Convected
Jeffreys Model, general
(Oldroyd B Fluid)

Advanced Const Modeling 2014

retardation time j

£+/11£=—770(£'+/12£)

. oy
— + 1,2
770(721 2" o1 j

74
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Maxwell Model - Mechanical Analog

or .
Ty+A atZl ="M 2n

Jeffreys Model - Mechanical Analog

or . 0y
Tyt+h at21=—770(7/21+/12 gtﬂj

Advanced Const Modeling 2014

75
© Faith A. Morrison, Michigan Tech U.

Unfortunately, this change only modifies G(t-t);
the Jeffreys Model is a GLVE model

. or ] oy
Simple Jeffreys Model 7+ 4 g =1V + 4=

(not frame-invariant)

Now, solving for z,, explicitly we obtain,

o(t)=- Jj%(l— %je_;“ ¥ %5@ —t’)}Z(t’)dt’

-

_/
~,

G(t=t)

Other linear modifications of the Maxwell model
motivated by springs and dashpots in series and
parallel modify G(t-t’) but do not otherwise introduce

(Might as well use the
Generalized Maxwell model)

Advanced Const Modeling 2014

76
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Non-linear modifications of the Maxwell Model

White-Metzner Model 77(7)

Oldroyd 8-Constant Model

The Oldroyd 8-constant contains many UCM
other constitutive equations as special

Advanced Const Modeling 2014

2_770[7;"'/122‘*‘( ﬂz)& Z)"‘%sz: /

=107

f+ﬂif+ (4 - ﬂltg E'Z)"'%ﬂo(trz)Z"'%le:Z)L

cases. | UCM + terms = UCJ

© Faith A. Morrison, Mlchlgan Tech U.

White-
Metzner

TABLE D.5
Predictions of White—Metzner Equation in Shear

and Extensional Flows [26]
1. Shear =

Startup

Advanced Const Modeling 2014

78
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TABLE D.4
Predictions of Oldroyd B or Convected Jeffreys Model in Shear and Extensional Flows [26]
1. Shear ) '
it § oh-8Y-%
F— ) ua[Jll (l J“)(l . "}]
Oldroyd B e ‘znou.-n.\[l ¢ ﬁ{l':.)]
wiHin ¥ o
(Convected ety .
wiF g (hy = da)
Jeffreys) ) o
" Ay g
[ -ir, 1= M)
i o w(i-2)c
i) m (k= hade N
Vi) 0
" (b = Agde
SAOS @lw) ™
. 1+ Akt
G (@) Tortar 1 l&fu)
2. Extension
Startup
Usicxial (b = 0, dg > 0) At ds) 3w;’-+_;°s(l :’)(s 21870 -a,"’}
o biaial (b = 0, dg < 0} or fig i1, 40} ; _q:l 1 — 2dgdy
B +igh
3 . 3 i
Planar (b= 1,40 > 0) i (rde) ‘nu:—l'+/,‘—":(l—fJ (2—.'»1& Foce J
A= ] = 2igly
€ =1+2ighy
Ja 2 i :
dow (-2
Steady oo 20
Usiaial (b = 0, é > 0) iitds) Im (ﬂJ' mr")
or biaxial (b = 0, dg = 0) or fjwléa)
P
Planar (b = 1, o > 0) fim léa) dne i_.+ m‘.‘)
. iy
Advanced ConstAviodeling 2014 IN(F + I_TJ 79
1
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The Oldroyd 8-Constant model contains all terms linear in stress
tensor and at most quadratic in rate-of-deformation tensor that are also
consistent with frame invariance.

R R e L (29 A0 22

. v R T A
:_770(£+/12£+(/12—,uz)]/:z)+zvzZ:z)lj

Giesekus Model THAT+—TiT=-17

quadratic

in stress
The only way to choose among

these nonlinear models is to
compare predlctlons. Advanced Const Modeling 2014 80

© Faith A. Morrison, Michigan Tech U.
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We can also to add ‘non-linearity
and thus produce new constitutive equations.

Factorized Rivlin-Sawyers Model
t
7(t) = + [ Mt 1)@, (1,,1,)C - @, (1, 1,)C * ot

Factorized K-BKZ Model

ouU

o(t) =+ j M (t—t )(2—c 2==C™ |dt’
I, I, are the al
invariants of the
Finger or Cauchy
strain tensors (these ; ;
are related). Again, the only way to choose among these nonlinear
models is to compare predictions
(see R. G. Larson, Constitutive Equations for Polymer Melts).

Advanced Const Modeling 2014 81
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Factorized
Rivlin-
TABLE D.6
S awyers Predictions of Factorized Rivlin-Sawyers Modelin Shear and Extensional Flows (261
1. Shear S — T
Steady w3 Jf M(s)a(®) +&2) ds
A
i) ‘{”m;]:’w. + @) ds
lo
) : Jf;”umﬁm ds
=
SADS &) J{ M) — cos wr) dy
(™) sz M(s) sin we di
1. Extenzion
Steady
Unisxil (b= 0,49 = 0)  Fléo) (n fju-:n [@_ (P~ ) 4y (M - e "N)] ds

o biaxiad (b=0.dp < 0) o faldo)
Pl (b=1dp>00  iin o) (L’}l:_m,;[o. (e = em) 2 (0 — ) s

1 P e W, |
intla) _an; M) (@1 ) (¢ = ¢)] as
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We have fixed all the obvious flaws in our constitutive
equations, and now we have too many choices!

We could make predictions and compare with
experimental data, but some of the models (Rivlin
Sawyer, K-BKZ) have undefined functions that must be
specified.

How to proceed?  We need some guidance.

All along we have taken a continuum-mechanics
approach. We have run that course all the way through.
Now we must go back and seek some insight from
molecular ideas of relaxation and polymer dynamics.

Advanced Const Modeling 2014 83
© Faith A. Morrison, Michigan Tech U.

Some of what we have learned from Continuum Modeling

*We can model linear viscoelasticity. The GMM does a good job; there is no
reason to play around with springs and dashpots to improve linear viscoelasticity

*We can model shear normal stresses. The kind of deformation described by the
Finger tensor gives a first normal stress difference and zero second-normal
stress; the kind of deformation described by the Cauchy tensor gives both stress
differences, but too much second.

*We can model shear thinning. But only by brute force (GNF, White-Metzner)

*We can model elongational flows. But we predict singularities that do not appear
to be present.

*Frame-Invariance is important. Calculations outside the linear viscoelastic
regime are incorrect if the equations are not properly frame invariant.

*Thinking in terms of strain is an advantage. When we think only in terms of rate
we can only model Newtonian fluids.

*Looking for contradictions when stretching a model to its limits is productive.

«Continuum models do not give molecular insight. We can fit continuum models
and obtain material functions (viscosity, relaxation times) but we cannot predict
these functions for new, related materials
Advanced Const Modeling 2014 84
© Faith A. Morrison, Michigan Tech U.
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Molecular Constitutive Modeling

*Begin with a picture (model) of the kind of material
that interests you

*Derive how stress is produced by deformation of that
picture

*Write the stress as a function of deformation
(constitutive equation)

Advanced Const Modeling 2014 85
© Faith A. Morrison, Michigan Tech U.

At the beginning of the course . . .

Chapter 3: Newtonian Fluid Mechanics Polymer Rheology

Molecular Forces (contact) — this is the tough one

chooseasurface

f=|atp|ds ] through P

S on dS
the
forceon P
that
surface /\/

We need an expression for the
state of stress at an arbitrary
pointPina flow.

Advanced Const Modeling 2014 86
© Faith A. Morrison, Michigan Tech U.
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At the beginning of the course . . .

At that
time we
wanted to
avoid
specifying
much
about our
materials.

Molecular Forces (continued)

Think back to the molecular !
picture from chemistry:

\
° s*
o —@

’

The specifics of these forces;
connections, and interactions
must be captured by the
molecular forces term that wi
seek.

Advanced Const Modeling 2014 87
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At the beginning of the course . . .

Molecular Forces (continued)

*We will concentrate on expressing the molecular
forces mathematically;

*We leave to later the task of relating the resulting
mathematical expression to experimental observations.

First, choose a
surface: A
«arbitrary shape
small X f

stress /\

ap joS=1 Whatis 2

on dS

Advanced Const Modeling 2014 88
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At the beginning of the course . . .

Molecular Forces (continued)
Assembling the force vector:
£ =dS A-[M1,,66 + 00 + 588
We swept all + 111,668, + 1168, + 113,68,
molecular contact + T80 + 88 + 588,
q 3.3
forces into the —dsn-3 3,68,
stress tensor. p=1m=1
=dS n-T1,,6,6,
f=dsnOo7)
Total stress tensor
Now, we seek to (molecular stresses)
calculate molecular
contact forces
directly from a
molecular pICtU re. Advanced Const Modeling 2014 89
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Long-Chain Polymer Constitutive Modeling

molecular tension  ~ R
force on arbitrary  f =dAN-(— stress tensor

surface \/

We now attempt to calculate
molecular forces by considering
molecular models.

=

|70

Polymer Dynamics end-to-end
vector, R

Long-chain polymers
may be modeled as

random walks.
Advanced Const Modeling 2014 90
© Faith A. Morrison, Michigan Tech U.
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Polymer coil responds to deformation

A polymer chain adopts
the most random
configuration at

equilibrium. end-to-end R
vector, R
When deformed, the chain
tries to recover that most
random configuration,
giving rise to a spring-like spring of equilibrium
restoring force. length and orientation R

We will model the chain dynamics
with a random walk.
Advanced Const Modeling 2014 91
© Faith A. Morrison, Michigan Tech U.

Gaussian Springs (random walk)
Equilibrium configuration distribution ﬂ 3 )
function - probability a walk of N steps v, (R)=| = e A'RR
of length a has end-to-end distance R - NTT
3
= 2Na?
From an entropy calculation of the work needed to 3kT
extend a random walk, we can calculate the force f = R
needed to deform a the polymer coil — Na2 -
If we can relate this force, the force to
extend the spring, to the force on an
arbitrary surface, we can predict rheological
properties
lecular tensi d 7
molecular tension ~
forceonarvirary f =—dAR-7 SUEsS|TRNSol
surface - =
Advanced Const Muodeling 2014 92
© Faith A. Morrison, Michigan Tech U.
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Molecular force generated by deforming chain

ry Tension Force on surface
f= [force on d AJ J-J-J. dA due to chains

- of ETER
' N
Z:g:):g'fl II?'/I'E R Probability Force exerted
— || chain has ETE || by chain w/
crosses surface
R ETER
dA
1

(A-R)v3 _3kT R
see next slide — 2 —
‘ " y(RIRARR, Na

v = number of polymer Advanced Const Modeling 2014 93

chains per unit volume

© Faith A. Morrison, Michigan Tech U.

Probability chain of ETE R crosses surface dA

intersection

ith dA
a.W It Wv ,,,,,,,,,,,,,,,,,,, b

Probability =
chain of ETE R
crosses surface

sartace |y e b b .

Advanced Const Modeling 2014 94

I/v = volume per polymer chain © Faith A. Morrison, Michigan Tech U.
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Molecular force generated by deforming chain

1
= 3KTve .
f==7 (R R)

(R-R)=[[[R-Ry(R)IR.dR,dR;

BUT, from before . . .
molecular tension

f =—dAN-7| = forceon arbitrary
— = surface in terms of z

Comparing these two
we conclude, 3kTv 2
r=———->(R-R) (dA=v 3)
= Na
Molecular force generated by .
5

d eformiﬁ%v%rﬁ:srilr?onst Modeling 2014
© Faith A. Morrison, Michigan Tech U.

How can we convert this equation,

Molecular stress in a fluid generated
by a deforming chain

which relates molecular ETE vector and stress, into a constitutive
equation, which relates stress and deformation?

We need a idea that connects ETE vector motion
to macroscopic deformation of a polymer

network or melt.

Advanced Const Modeling 2014 96
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Elastic (Crosslinked) Solid

Between every two crosslinks there is a
polymer strand that follows a random
walk of N steps of length a.

Ry

A ETE = end-to-end vector B

Distribution of
ETE vectors

g

Advanced Const Modeling 2014
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How can we relate changes in end-to-end
vector to macroscopic deformation?

AN ANSWER: affine-motion assumption: the macroscopic
dimension changes are proportional to the
microscopic dimension changes

before after

@ C_\%/ e =

98
© Faith A. Morrison, Michigan Tech U.
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Consider a general elongational deformation:

4 0 0
F'=l0 4, 0
0 0 13 123

For affine motion we can relate the components of the
initial and final ETE vectors as,

ETE\after ﬂlRl,
;}Q kel a=k RM)=| AR,
!
ETE before AGR3 123
Advanced Const Modeling 2014 99
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We are attempting to calculate the stress tensor with this

equation:
g=—3kTv<B-B>

P

(R-R)=[[[R-Ry(R)IR,dR,0R;

!’
ﬂlRl But, where do
R(t) =| 4,R, we get this?
!’
23R3 123
Advanced Const Modeling 2014 100
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Probability chain has ETE
between R and R+dR: Q‘/f (R)dR,dR,dR,

Configuration
distribution function

distribution function:

Jz

3
Equilibrium configuration p _AR'R’
- ]

2Na’
But, if the deformation is affine, then the number of
ETE vectors between R and R+dR at time t is equal to
the number of vectors with ETE between R and
R’+dR’ att’

Conclusion: w(R)=yw,(R") = [%j e /R
T

Advanced Const Modeling 2014 101
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Now we are ready to calculate the stress tensor.

3kTv

(R-R)=[[][R-Ry(RIRARAR, ¢
AR, | ”“'>
R(t)=| LR

) _ o[ P 3 PR
AR} ). w(R)=yo(R) [\/;j e

. . 2 A A
(much aigebra Final solution: 7 =—VvKTA €6
omitted; solved in — I
Problem 9.57)

Advanced Const Modeling 2014 102
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Z 0 0
Final solution for stress: z=—-vkTA6& =—vkT| 0 23 O
0 O ﬂ; 123

Compare this solution with the Finger strain tensor for this flow.

2 0 0
_ Y
-] Fi=jo 2 o
2
0 0 /?'3 123
Since the Finger tensor for S -1
any deformation may be ﬁ |4 kT g
written in diagonal form
(symmetric tensor) our Which is the same as the finite-strain
derivation is valid for all Hooke’s law discussed earlier, with G=1kT.
deformations.
Advanced Const Modeling 2014 103

© Faith A. Morrison, Michigan Tech U.

What about polymer melts?

Non permanent crosslinks Green-Tobolsky
Temporary Network
Model

* v junction points per unit volume = constant
*ETE vectors have finite lifetimes

*when old junctions die, new ones are born
enewly born ETE vectors adopt the
equilibrium distribution v,

Probability per unit Probability that strand

time th_at strand dies — i retains same ETE fromt” | =P
andis rebomat | =" o't (survival probability) vt
equilibrium P y
Advanced Const Modeling 2014 104
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What is the probability that a strand retains the same ETE vector
between t' and t'+At?

Probability that strand Probability that
— |retains same ETE from t’ strand does not die
to t (survival probability) over interval At

1
Pt',t+At = Pt',t (1_ ZAtj

dp,
t't =_£Pt't
dt A

In Ptryt = _Z—}_Cl

(t-t)
— A
Pie=¢
Advanced Const Modeling 2014 105
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PI',t+AI

The contribution to the stress tensor of the individual strands can be
calculated from,

Stress at t from Probability that Probability Stress generated by
strands born — strand is born that a strand an affinely
betweent’and | = | betweent’ and survives from deforming strand
t’+dt’ t’+dt’ ttot between t” and t

_(t=t)
dz-| Jar)e foc )

A
t _(t-t)
— %e R §

Green-Tobolsky temporary network
mode (Laklgeeamaaiodeling 2014 106
© Faith A. Morrison, Michigan Tech U.
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Oh no, back where we started! ¢ G (1)

r=—|=e * C(t,t)dt’
NO! B e o

Green-Tobolsky temporary network
mode (Lodge model)

We now know that affine motion of strands with equal birth and death rates
gives a model with no shear-thinning, no second-normal stress difference.

To model shear-thinning, N,, etc., therefore, we must add something else to
our physical picture, e.g.,

*Anisotropic drag
enonaffine motion of various types

Advanced Const Modeling 2014 107
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Anisotropic drag - Giesekus

In a system undergoing deformation, the surroundings of a given molecule
will be anisotropic; this will result in the drag on any given molecule being

anisotropic too.

2
Starting with the dumbbell model (gives UCM), replace &I with an

anisotropic mobility tensor = . Assume also that the aniséropy in B is
proportional to the anisotropy in Z .

v
Giesekus Model 7+ /1£ +

see Larson, Constitutive Equations for Polymer |
Melts. Butterworths, 1988 Advanced Const Modeling 2014 108

© Faith A. Morrison, Michigan Tech U.
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Constitutive equations incorporating non-affine motion include:

Gordon and Schowalter: “strands of polymer slip with respect to the
deformation of the macroscopic continuum”; see Larson, p130 (this model has
problems in step-shear strains) (__ strand slippage

PepE- ) ere Vi flopeye)

=

I

*Phan-Thien/Tanner
«Johnson-Segalman

Larson: uses nonaffine motion that is a generalization of the motion in the Doi
Edwards model; see Larson, Chapter 5

Wagner: uses irreversible nonaffine motion; see Larson, Chapter 5

see Larson, Constitutive Equations for Polymer
Melts, Butterworths, 1988

Advanced Const Modeling 2014 109
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Reptation Theory (de Gennes)

Non-affine
motion

Advanced Const Modeling 2014 110
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Step shear strain - strain dependence

10,000

G(t), Pa

1,000 4

100

101

Figure 6.57, p. 212
Einaga et al.; PS soln
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Step shear strain - Damping Function

100000
After retraction the
relaxation is governed by
10000 1 ‘e the memory function M(t-t')
P A
»
*%e “0!%_ Vd Y
©

2 1000 - 'k\“

s Y e

o .

o Depending on \"9‘

2 the strain, a ¥,

= 1004 '

& different &
amount of ®
stress is °®
relaxed during o9

10 + :
retraction x
- - +
fRetractlon time
1 . . .
1 10 100 1000 1000

timAdyanced Const Modeling 2014

damping function, h
L ]

strain

The Doi-Edwards
model does a good job
of predicting the
damping function, h(y)
(see Larson p108)

Figure 6.58, p. 213
Einaga et al.; PS soln
112
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Doi-Edwards Model

t
_ ’ ’ ' Predicts a
= _J M(t-t )g(t )t strain measure

, 1 2% |G- FraFt| Predicts a
Q(t ,t)=—”5 = = |sinodalg relaxation
T 5% a’- Ffl‘ time
B distribution
Predicts a
memory , G = 8G?
function M (t-t)=> —te * G, = 2_'\; A :iiz

iodd /4 7Tl

0" = unit vector that gives
orientation of strands at time t’

M. Doi and S. Edwards J. Chem Soc. Faraday Fdwancéd, C8h8t Modeling 2014
(1978); ibid 74 560, 918 (1978); ibid 75, 32 (1979); ibid 75, 38

(Factorized K-BKZ type)

113
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(1979)

Doi-Edwards Model
Steady Shear
SAOS

R] S

w11 410)

AALRR AL

o

%)/ 310)

o1k

. L
01 1 10

wly, «Ty

Fig, 3.—Non-linear viscosity w(«) in steady state, the modulus, |[7*(w)], and the real part, v{w) of

the linear dynamic viscosity. All quantities are normalized by the steady state viscosity at zero
shear rate, (0).

Ad
M. Doi and S. Edwards J. Chem Soc. Faraday Trans Il 75, 38 (1

FiG. 5.—First and the second normal stress coefficients i;[x}and ﬂ;(n] in steady shear flow,

vanced Corzst M?delmg 2014

1 10
wly
[Note
that ¢(0) < 0, 50 that () < 0]
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Doi-Edwards Model z
Shear Start Up

axlts w)agloo ; x)

1 1 L L L
1 2 3

Ty
Fio. 7.—Growth of the first normal stress component when a shear flow is started at ¢ = 0_with

lozslts #)— apdt; ) floxsloo ; x)=aplea ; «)]

shear rate «
"Advanced Const Modellng 2014
M. Doi and S. Edwards J. Chem Soc. Faraday Trans Il 75, 38 (1979)

1 2 3
1Ta

Fio. 6.—Shear stress when a shear flow is started at 1 = 0 with shear rate «.
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o

Doi-Edwards Model
Steady Elongation
Elongation Startup

=
@

=3
m

=
r

[oslts ®)— ot ; lamlen ; k)= apleo; <]
(=]
= -~

7 (%) /710)

=) f H(0)

0L

L8] 1 10
®
Fio, 12.—Steady elongational viscosity 7(«) and the steady shear viscosity 3n{x). Both are normalized

By O = 3507 4\/anced Const t Modeling 2014
M. Doi and S. Edwards J. Chem Soc. Faraday Trans |1 75, 38 (1979)

1Ty

Fia. 13.—Growth of stress when an elongational flow is started at ¢ = 0,
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Doi-Edwards Model .
. ' g
Large-Amplitude Step Shear PR .1 v
O Teln, et e
RSN I T
A
10 “oot Tex, i\ -
1 ohved
: "
ol ime, s
) © 10
z
._:..
; 1 | ] n
10t g -
2 [ ]
2 L]
w0 10° £ o .
° L]
N L}
Fio. 6.—Strain dependent part of the stress relaxation function for simple shear [eqn (6.7)].  Circles, n
observed values [after ref. (11): sample, polystyrene solution in diethyl phihalate ; molecular weight,
3w 10°; concentration, O 0.166 gem™, O- 0,221 gem~*, 3 0.275 gem~]. Solid curve, eqn (6.8).
Broken curve, eqn (7.4).  In the ideal ganssian rubber fiu/) is constant. oot T - o
strain
Figure 6.58, p. 213 Einaga et al.; PS soln
) Advanced Const Modeling 2014 117
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Doi-Edwards Model

Correctly predicts:

*Ratio of ¥/,
eshape of start-up curves

eshape of h(yo) (nonlinear step strain, damping function)
«predicts n1=AM?

1 sshear thinning of n, ‘¥'; | Tentatively
tension-thinning elongational viscosity conclude:
shear
_ _ thinning is an
Fails to predict: issue of non-
. nzAM3-4 affine motion

»shape of shear thinning of 1, ‘¥';
sreversing flows
*Elongational strain hardening (branched polymers)

Advanced Const Modeling 2014 118
© Faith A. Morrison, Michigan Tech U.
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Advanced Models

Long-chain branched polymers

Pom-Pom Model (McLeish and Larson, JOR 42 81, 1998)
Extended Pom-Pom (Verbeeten, Peters, and Baaijens, JOR 45 823, 2001)

«Single backbone with multiple branches

*Backbone can readily be stretched in an extensional flow, producing strain
hardening

«In shear startup, backbone stretches only temporarily, and eventually collapses,
producing strain softening

*Based on reptation ideas; two decoupled equations, one for orientation, one for

stretch; separate relaxation times for orientation and stretch)
Advanced Const Modeling 2014 119
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Extended Pom-Pom (Verbeeten, Peters, and Baaijens, JOR 45 823, 2001)

LDPE melt, BASF Lupolen 1810H at T=150°C

10 T
O e=00030 <)
®  E=0002 5]
. - +  e=0U3S )
Predicts I R o s
elongational SO0 =t 1 ; y
strain z
hardening 3
20t
B
E
=] i 1
i !
10 -1 0 2 4
10 10 10 10

Time t Is]

FIG. 5. Transient and quasisteady state (insef) uniaxial elongational viscosity #,, of the XPP model for Lupolen
1810H melt at T = 150°C. »; = 2/g;, & = 0.0030, 0,0102, 0.0305, 0.103, 0.312, 1.04 sl

Advanced Const Modeling 2014 120
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Extended Pom-Pom (Verbeeten, Peters, and Baaijens, JOR 45 823, 2001)

LDPE meh, BASF Lupolen 1810H at T=150°C LDPE melt, BASF Lupolen 1810H at T=150°C
10’ — — 10
O = ol ] e O ¥= 0015
L RN ] F X = 03
* =00 <] —_ + =03 [s)
o =00 | '}" * = lu )
- @ =03 15 = 10°} @ rewoh
. O = 1w 1) -
é R B U TOR | §
= P
é é 10
] @
> =
E
g 5
Z00
10’ - g Samace
107 10" 10* 10* 10 10’ 10’ 10’

Time t1sl Time t1sl

FIG. 8. Transient and steady state (inset) shear viscosity # (/eft) and first normal stress coefficient W (right)
of the XPP model for Lupolen 1810H melt at T = 150°C. v; = 2/g;. y = 0.001, 0.01, 0.03, 0.1, 0.3, 1,
10s L.
Advanced Const Modeling 2014 121
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What about polymer solutions?

«Dilute solutions: chains do not interact Elastic Dumbbell Model
ecollisions with solvent molecules are W. Kuhn, 1934

modeled stochastically

ecalculate y(R) by a statistical-mechanics

solution to the Langevin equation Random force
(ensemble averaging) models random

-
X\ collisions
R
Drag on beads

models friction

Advanced Const Modeling 2014 122
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Elastic Dumbbell Model

Continuum modeling
Momentum balance on a control volume (Navier-Stokes Equation)

p(%w'v\_/}—vmwzwpg

Inertia = surface + body

Mixed Continuum/Stochastic modeling (Langevin Equation)
Momentum balance on a discrete body (mass m, velocity u)

In a fluid continuum (velocity field v) Construct an
ensemble of
du 2 dumbbells and
m[a]=—§(U—R'VV)—4kTﬂ R+A e
probability of a
Inertia = drag + spring + random (Brownian) given ETE at t
Advanced Const Modeling 2014 123
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Construct an

A ensemble of
Elastic Dumbbell Model dumbbells and
Langevin Equation seek the

probability of a

m(i:’j:—g(u—R-Vv)—4kTﬂ2R+A given ETE att

To solve, (see Larson pp41-45). Consider an ensemble of dumbbells and seek the
probability v that a dumbbell has an ETE R at a given time t. The equation for v is the
Smoluchowski equation:

2
0y, 0 [pgyy M6 g, 2T oy
¢ R

3;12‘/ [[[R-Ry/(R)AR,dR,dR,

We can calculate stress from: T =

If we multiply the Smoluchowski equation by R-R and integrate over R space, we
obtain an expression for 7 (i.e. the constitutive equation for this model)
"~ Advanced Const Modeling 2014 124
© Faith A. Morrison, Michigan Tech U.
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|nteg ration yields: see Larson, Constitutive Equations for Polymer Melts,
Butterworths, 1988

L+AL= 1oy

Upper-Convected Maxwell Model!

(\number of dumbbells/volume

Two different models give G= VkT
the same constitutive
equation (because stress g bead friction factor

only depends on the

second moment of vy, not N 2
on details of ) 8kTﬁ

, 3
,B - 2Na? from random walk
Advanced Const Modeling 2014 125
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Elastic Dumbbell Model for Dilute
Polymer Solutions

(N /Iz_Yp =-1,7  Polymer contribution
L= _7751 Solvent contribution
L=, L, Dumbbell Model
(Oldroyd B) See problem 9.49

see Larson, Constitutive
Equations for Polymer Melts, Advanced Const Modeling 2014 126
Butterworths, 1988 . . o

© Faith A. Morrison, Michigan Tech U.
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Rouse Model

*Multimodal bead-spring model

*Springs represent different sub-molecules

*Drag localized on beads (Stokes)

*No hydrodynamic interaction N+1beads

N springs

127
© Faith A. Morrison, Michigan Tech U.

Advanced Const Modeling 2014

see Larson, Constitutive Equations for Polymer Melts,

RO use MOd el Butterworths, 1988

*Rouse wrote the Langevin equation for each spring. Each spring’s equation is
coupled to its neighbor springs which produces a matrix of equations to solve.

Langevin Equation

du
m(dt =—¢(U-R-Vv)-4kTB’R+A
*Rouse found a way to diagonalize the matrix of the averaged Langevin equations; this
allowed him to find a Smoluchowski equation for each transformed “mode” R; of the

Rouse chain -
*Each Smoluchowski equation gives a UCM for each of the modes R;

N Rouse Model for
g= ZL G =vkT polymer solutions
i=1 (multi-mode UCM)
v g

A=
t+Az,=-GlL " 16kTAsin?(iz/2(N +1))

Advanced Const Modeling 2014 128
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see Larson, Constitutive Equations for Polymer Melts,

Zimm Model Butterworths, 1988

*Multimodal bead-spring model
*Springs represent different sub-molecules
*Drag localized on beads (Stokes)

Ialelnlistlalt hydrodynamic interaction N+1beads
N springs

Rouse: solvent velocity near one bead is
unaffected by motion of other beads (no
hydrodynamic interaction)

Zimm: dominant
hydrodynamic
interaction)

Advanced Const Modeling 2014 129
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. (Mewis and Wagner, Colloidal Suspension
What about suspensions?  Rheology, Cambridge 2012)
| I B
——
—_ - o
uniform flow o
—— — 9
—_ —— Dilute solution
—_ Einstein relation
——
e 17 =n,1+25¢)
—> . Stokes flow
—_—> "
——
——
’ ‘ Increasing Concentrated
— . complexity; suspensions
— solve NS Stokesian dynamics
——
. o . . LY ‘
— g 0 ° o o % %o . ° ‘g
= ® B
— @ o'f Qes% 0
- v
‘ Advanced Const Modeling 2014 130
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Brady and Bossis, Ann. Rev. Fluid Mech, 20 111 1988
Wagner and Brady, Phys. Today 2009, p27

Stokesian Dynamics

Langevin Equation for Dumbbells

dt
Inertia = drag + spring + random (Brownian)

m(dgj =—¢(U-R-Vv)-4kTB’R+ A

Another Langevin Equation
Stokesian Dynamics for Concentrated Suspensions

F +F 4+ [E

= ~—hydrodynamic ' =—particle ' =—Brownian

du

M Py —
= dt
Hydrodynamic = everything the suspending fluid is doing (including drag)

Particle = interparticle forces, gravity (including spring forces)
Brownian = random thermal events

Advanced Const Modeling 2014 131
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Stokesian Dynamics

Brady and Bossis, Ann. Rev. F
Mech, 20 111 1988

Spanning clusters
increase viscosity

- X >
Figure 14 Snapshots of i particle configurations for the sheared suspension of
Figure [3. The sequence (from top to bottom) corresponds in time to that indicated by the
arrows in Figure 13. These arrows correspond to the maxima and minima of the viscosity

jons.
connenies pat IR R e e et S e 132

frame, no spanning cluster is present and the viscosity is relatively low,

© Faith A. Morrison, Michigan Tech U.
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Summary

Molecular models may lead to familiar constitutive equations

*Rubber-elasticity theory = Finite-strain Hooke’s law model
*Green-Tobolsky temporary network theory = Lodge equation (UCM)
*Reptation theory = K-BKZ type equation

«Elastic dumbbell model for polymer solutions = Oldroyd B equation

Model parameters have greater meaning when connected to a
molecular model

*G = vkT

*G;, A; specified by model

As always, the

Molecular models are essential to narrowing down proof is in the  |see

the choices available in the continuum-based

prediction. Larson,
models (e.g. K-BKZ, Rivlin-Sawyers, etc.) esp. Ch7
Modeling may lead directly to information sought
(without ever calculating the stress tensor)
Advanced Const Modeling 2014 133
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Summary

Molecular models may lead to familiar constitutive equations

*Rubber-elasticity theory = Finite-strain Hooke’s law model

[ *Green-Tobolsky temporary network theory = Lodge equation (UCM) ]
*Reptation theory = K-BKZ type equation

[ *Elastic dumbbell model for polymer solutions = Oldroyd B equation (UCM]

Caution: correct stress predictions do not
imply that the molecular model is correct

Stress is proportional to the second moment of y(R), but
different functions may have the same second moments.

Advanced Const Modeling 2014 134
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Summary

Materials Discussed

Elastic solids

sLinear polymer melts with affine motion (temporary network)

sLinear polymer melts with anisotropic drag

sLinear polymer melts with various types of non-affine motion
«Chain slip
*Reptation

*Branched melts (pom-pom)

*Polymer solutions

sSuspensions

Resources

R. G. Larson, Constitutive Equations for Polymer Melts
R. G. Larson, The Structure and Rheology of Complex Fljuids
J. Mewis and N. Wagner, Colloidal Suspension Rheology
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Chapter 10: Rheometry

piston J

T Capillary Rheometer
E

- entrance region

polymer melt
reservoir

L
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Polymer Rheology
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