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Advanced Constitutive Modeling

tdtttG
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 


)()(  Generalized Linear-
Viscoelastic Model:

Good only for small strains, small strain-rates

To develop constitutive equations 
for large strain, large strain-rate 

flows, the strain and strain history
are important.

strain-rate 
tensor

What is the strain measure that is used in 
the GLVE model?
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(use integration by parts; 
see hand calculations)

What is the strain measure that is used in the GLVE model?
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Generalized Linear-
Viscoelastic Model: 

(strain version)
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memory 
function

infinitesimal 
strain tensor

It is the use of the infinitesimal strain 
tensor as the strain measure that causes 
the frame-variance in the GLVE model.

5Advanced Const Modeling 2014

We have seen the infinitesimal strain tensor before:  when we first 
defined strain (when we discussed material functions).

 T
u u    

Infinitesimal 
strain tensor

( , ) ( ) ( )ref refu t t r t r t Displacement 
function

1233

2

1

)(

)(

)(

)(

















tx

tx

tx

trParticle
tracking vector

6

© Faith A. Morrison, Michigan Tech U.

Advanced Const Modeling 2014



Rheometry CM4650 2014 4/18/2014

4

P(tref)

x1

x2

x3

r(tref)
P(t)

r(t)

u(tref,t) particle path

flow

Strain in Shear Flow
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Deformation  in shear flow (strain)
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Deformation  in shear flow (strain)
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No stress is generated when a fluid is rotated CCW through ෨߰ (from 
position at time ݐ to position at time ݐ′, what does the GLVE 
predict?

• calculate the infinitesimal strain tensor for rigid body rotation 
• use the strain-evident version of the GLVE
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(Warning:  later, we are going to consider 
CCW rotation from ݐ′ to ݐ through an angle 

߰ ൌ െ ෨߰; see Table 9.3)

෨߰

෨߰

(note:  we need ߛഭ ,ݐ ᇱݐ 	in the GLVE)
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പݎ ൌ
ݔ
ݕ
ݖ ௫௬௭

′പݎ	 ൌ
′ݔ
′ݕ
′ݖ ௫௬௭

ഫݑ ,ݐ ᇱݐ ൌ പᇱݎ െ പݎ

ഭߛ ,ݐ ′ݐ ൌ ഫݑߘ ൅ ഫݑߘ ்

You try.

What does the GLVE Predict for CCW Rigid-Body 
Rotation around the z-axis from ݐ to ݐᇱ?
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ݕ ൌ ݎ̅ sin ߚ
ݔ ൌ ݎ̅ cos ߚ

′ݕ ൌ ݎ̅ sin ߚ ൅ ෨߰ ൌ ݎ̅ sin ߚ cos ෨߰ ൅ sin ෨߰ cos ߚ
ൌ ݕ cos ෨߰ ൅ ݔ sin ෨߰	

′ݔ ൌ ݎ̅ cos ߚ ൅ ෨߰ ൌ ݎ̅ cos ߚ cos ෨߰ െ sin ߚ sin ෨߰

ൌ ݔ cos ෨߰ െ ݕ sin ෨߰
ݖ ൌ ′ݖ

ഫݑ ൌ പ̅ᇱݎ െ പݎ̅ ൌ
ݔ cos ෨߰ െ ݕ sin ෨߰ െ ݔ
ݕ cos ෨߰ ൅ ݔ sin ෨߰ െ ݕ

0 ௫௬௭

From geometry

From trigonometry

From definition

ഭߛ ,ݐ ′ݐ ൌ ഫݑߘ ൅ ഫݑߘ ் ൌ

What does the GLVE Predict for CCW Rigid-Body 
Rotation around the z-axis from ݐ to ݐᇱ?
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Stress depends on angle of rotation!  

Why does GLVE make this erroneous 
prediction?

 
)()(),(

),(),(),(

trtrttu

ttuttutt T





Because this vector, while accounting for 
deformation, also accounts for changes in 
orientation.

13

© Faith A. Morrison, Michigan Tech U.

Advanced Const Modeling 2014

ഭ߬ ݐ ൌ ൅න ܯ ݐ െ ᇱݐ
2 cos ෨߰ െ 1 0 0

0 2 cos ෨߰ െ 1 0
0 0 0 ௫௬௭

′ݐ݀
௧

ିஶ

(note:  we need ߛഭ ,ݐ ᇱݐ 	in the GLVE)

GLVE Prediction for CCW Rigid-Body Rotation 
around the z-axis from ݐ to ݐ′: 

 
)()(),(

),(),(),(

trtrttu

ttuttutt T



 Accounts for changes in 
shape and orientation.
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We desire a strain tensor that accurately captures large-strain 
deformation without being affected by rigid-body rotation.

Consider:

P Q

P

Q

rd

rd

fixed coordinate 
system (xyz)

time=t’

time=t
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location at time t’ of the particle labeled r

particle label (reference time t)
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How does dr map to dr’ along a particle path?
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Define change-of-shape 
tensors that rely on 

relative location of two 
nearby particles
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(chain rule)
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Deformation-gradient 
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Frdrd 
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Frdrd 

IFF 1
Define:

Then use:

?
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Frdrd 

1 Frdrd
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We desire a strain tensor that accurately captures large-strain 
deformation without being affected by rigid-body rotation.

F

1F

All these strain measures include 
both deformation and orientation

u


We can separate the deformation and orientation information in      

and        using a technique called polar decomposition.
F

1F

21
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Polar Decomposition Theorem

Any tensor for which an inverse exists has two 
unique decompositions:

RV

URA
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 
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  12
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2
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2
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





UAAAAR

AAV

AAU

T

T

T
TRR 1

Orthogonal tensor

VU ,

Symmetric, nonsingular 
tensors

Pure rotation tensor
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EXAMPLE: Calculate the right stretch tensor and rotation tensor for a 
given tensor.  Calculate the angle through which മܴ rotates the vector 
u.
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We have partially isolated the effect of rotation through 
polar decomposition.  

We can further isolate stretch from rotation by considering 
the eigenvectors of മܷ and മܸ.  

RVURA 

original (strain) tensor

rotation tensor

right stretch tensor

left stretch tensor

24
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Physical Interpretation
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  11   FF
T

F

TF

1F

 TF 1

TFF 

FFT 

 TFF 11  

FFT 

TFF 

  11   FF
T

 TFF 11  

A 2V 2U

proposed 
deformation tensors; 

contain stretch and 
rotation

proposed deformation 
tensors; contain stretch 

of eigenvectors, BUT NO 
ROTATION

Finite Strain Tensors

  111  



FFC

FFC

T

T
Cauchy tensor

Finger tensor
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Finite Strain Hooke’s Law of elastic solids:

Finite Strain Maxwell Model:

27
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ഭ߬ ݐ ൌ ൅ܥܩമିଵሺݐ, 0ሻ

ഭ߬ ݐ ൌ െ න
଴ߟ
ߣ
݁
ିሺ௧ି௧ᇱሻ

ఒ ,′ݐമିଵሺܥ ′ݐ݀ ሻݐ

௧

ିஶ

Now we can construct new constitutive 
equations using the new strain measures:

Replace: ߛഭሺݐ, ᇱሻݐ െܥമሺݐ′, :ሻwithݐ

(Reference 
time is 0)

Finite Strain Hooke’s Law of elastic solids:

Finite Strain Maxwell Model:

28
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ഭ߬ ݐ ൌ ൅ܥܩമିଵሺݐ, 0ሻ

ഭ߬ ݐ ൌ െ න
଴ߟ
ߣ
݁
ିሺ௧ି௧ᇱሻ

ఒ ,′ݐമିଵሺܥ ′ݐ݀ ሻݐ

௧

ିஶ

Now we can construct new constitutive 
equations using the new strain measures:

Replace: ߛഭሺݐ, ᇱሻݐ െܥമሺݐ′, :ሻwithݐ

Time to 
take these 
out for a 

spin
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EXAMPLE: Calculate stress predicted in rigid-body rotation (around ݖ
through a counter-clockwise angle ߰) by a finite-strain Hooke’s law.

29
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ഭ߬ ݐ ൌ ൅ܥܩമିଵሺݐ, 0ሻ

(this didn’t work when the infinitesimal 
strain tensor ߛഭ ,ݐ ᇱݐ was used)

EXAMPLE: Calculate stress predicted in rigid-body rotation (around ݖ
through a counter-clockwise angle ߰) by a finite-strain Hooke’s law.

30
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Usual solution steps:
1. Begin with kinematics of the flow
2. Calculate the needed tensor elements (ߛഭሶ before, ܥമିଵ now)

3. Calculate the stress
4. Calculate functions that rely on stress (material functions) 

ഭ߬ ݐ ൌ ൅ܥܩമିଵሺݐ, 0ሻ
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Usual solution steps:
1. Begin with kinematics of the flow
2. Calculate the needed tensor elements (ߛഭሶ before, ܥമିଵ now)

3. Calculate the stress
4. Calculate functions that rely on stress (material functions) 

EXAMPLE: Calculate stress predicted in rigid-body rotation (around ݖ
through a counter-clockwise angle ߰) by a finite-strain Hooke’s law.

31
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Usually, start with
ഫ࢜, ࣍ሺ࢚ሻሶ ሺ࢚ሻሶࢿ	࢘࢕	 , → ሶമࢽ 	…	

ഭ߬ ݐ ൌ ൅ܥܩമିଵሺݐ, 0ሻ

32
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Our old constitutive 
equations were ߛሶഭ-based:

ഭ߬ ݐ ൌ െߛߤഭሶ ݐ
ഭ߬ ݐ ൌ െߛߟഭሶ ݐ

ഭ߬ ݐ ൌ െ න
଴ߟ
ߣ
݁
ିሺ௧ି௧ᇲሻ

ఒ ഭሶߛ ᇱݐ ᇱݐ݀
௧

ିஶ

ഭ߬ ݐ ൌ െ නܩሺݐ െ ഭሶߛᇱሻݐ ′ݐ ′ݐ݀

௧

ିஶ
.ܿݐ݁

And our recipe cards were, therefore, ߛഭሶ -based 

…	



Rheometry CM4650 2014 4/18/2014

17

Steady Shear Flow Material Functions

constant)( 0    t

Kinematics:
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Material Functions:

0

21








 
2
0

2211
1 







 
2
0

3322
2 





Viscosity

First normal-stress 
coefficient

Second normal-
stress coefficient
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33

Traditional “recipe card”

34
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Our NEW constitutive 
equations are strain-based, 
ഭߛ ,ݐ ᇱݐ , മିଵܥ ,ᇱݐ ݐ ,	 etc.:

ഭ߬ ݐ ൌ െܩ଴ߛഭሺ0, ሻݐ

ഭ߬ ݐ ൌ ൅ න
଴ߟ
ଶߣ
݁
ିሺ௧ି௧ᇲሻ

ఒ ഭߛ ,ݐ ᇱݐ ᇱݐ݀
௧

ିஶ

ഭ߬ ݐ ൌ െ න
ܩ߲ ݐ െ ᇱݐ

′ݐ߲
ഭߛ ,ݐ ᇱݐ ′ݐ݀

௧

ିஶ
.ܿݐ݁

Our recipe cards must now be deformation-based, ݎപ, പᇱݎ …	

ഭ߬ ݐ ൌ ൅ܩ଴ܥമିଵሺݐ, 0ሻ

ഭ߬ ݐ ൌ ൅ න
଴ߟ
ଶߣ
݁
ିሺ௧ି௧ᇲሻ

ఒ മିଵܥ ,ᇱݐ ݐ ᇱݐ݀
௧

ିஶ

ഭ߬ ݐ ൌ െ න
ܩ߲ ݐ െ ᇱݐ

′ݐ߲
മିଵܥ ,ᇱݐ ݐ ′ݐ݀

௧

ିஶ
.ܿݐ݁
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t

P(t)

x


r

y

sinr

cosr

r

P(t')

x





'r

y

't



What is the Finger Tensor ܥമିଵሺݐᇱ, ሻݐ in CCW Rigid Body 
Rotation from ݐ′ to ݐ through an angle ߰?

35
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′ݐ ݐ

′പݎ

ܲሺݐᇱሻ

ܲሺݐሻ

′പݎ

പݎ

Strain Tensor Prediction for CCW Rigid-Body 
Rotation around the z-axis from ݐ′	to ݐ: 

36
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മିଵܨ ,ᇱݐ ݐ ൌ
പݎ߲
′പݎ߲

ൌ

ᇱݔ ൌ ݎ̅ cos ߚ
′ݕ ൌ ݎ̅ sin ߚ

ݔ ൌ ݎ̅ cos ߚ ൅ ߰ ൌ ݎ̅ cos ߚ cos߰ െ sin ߚ sin߰
ൌ ᇱݔ cos߰ െ ᇱݕ sin߰

ݕ ൌ ݎ̅ sin ߚ ൅ ߰ ൌ ݎ̅ sin ߚ cos߰ ൅ sin߰ cos ߚ
ൌ ′ݕ cos߰ ൅ ′ݔ sin߰	

ݖ ൌ ′ݖ

From geometry

From trigonometry

From definition:

…	
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Strain Tensor Prediction for CCW Rigid-Body 
Rotation around the z-axis from ݐ′	to ݐ: 

37
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മିଵܨ ,ᇱݐ ݐ ൌ
പݎ߲
′പݎ߲

ൌ
cos߰ sin߰ 0
െsin߰ cos߰ 0

0 0 1 ௫௬௭

(matches answer in Table 9.3; 
caption definition of ߰ is in error)

മିଵܥ ,ᇱݐ ݐ ൌ മିଵܨ ் ⋅ മିଵܨ

CCW Rigid Body Rotation “Material Functions”

Kinematics:

Material Functions:

© Faith A. Morrison, Michigan Tech U.

38

There is no such thing since it’s not a flow!  (no deformation)

ഭ߬ ൌ ݄݀݁݃݊ܽܿ݊ݑ

′പݎ ൌ
′ݔ
′ݕ
′ݖ ௫௬௭

പݎ ൌ
ݔ
ݕ
ݖ ௫௬௭

ൌ
ᇱݔ cos߰ െ ᇱݕ sin߰
′ݕ cos߰ ൅ ′ݔ sin߰

′ݖ ௫௬௭

പݒ ൌ 0 (in a coordinate system with 
origin within the fluid)

മିଵܨ ,ᇱݐ ݐ ൌ
പݎ߲
′പݎ߲

ൌ
cos߰ sin߰ 0
െ sin߰ cos߰ 0

0 0 1 ௫௬௭

മିଵܥ ,ᇱݐ ݐ ൌ ܫ̳

Strain-centric “recipe card”
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EXAMPLE: Calculate stress predicted in shear by a finite-strain 
Hooke’s law.  Compare with experimental results.

39
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ഭ߬ ݐ ൌ ൅ܥܩമିଵሺݐ, 0ሻ

Steady Shear Flow Material Functions

constant)( 0    t

Kinematics:

123

2

0

0

)(


















xt

v



Material Functions:

0

21








 
2
0

2211
1 







 
2
0

3322
2 





Viscosity

First normal-stress 
coefficient

Second normal-
stress coefficient

© Faith A. Morrison, Michigan Tech U.
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Traditional “recipe card”



Rheometry CM4650 2014 4/18/2014

21

Steady Shear Flow Material Functions
Kinematics:

Material Functions:

Viscosity Second normal-stress 
coefficient

First normal-stress 
coefficient

© Faith A. Morrison, Michigan Tech U.
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߫ሶ ݐ ൌ ଴ߛ ൌ constantݒപ ≡
߫ሶሺݐሻݔଶ
0
0 ଵଶଷ

′പݎ ൌ
′ݔ
′ݕ
′ݖ ଵଶଷ

പݎ ൌ
ݔ
ݕ
ݖ ଵଶଷ

ൌ
ᇱݔ ൅ ݐሶ଴ሺߛ െ ᇱሻݐ

′ݕ
′ݖ ଵଶଷ

ߟ ≡
െ߬ଶଵ
ሶ଴ߛ

Ψଵ ≡
െ ߬ଵଵ െ ߬ଶଶ

ሶ଴ߛ
ଶ Ψଶ ≡

െ ߬ଶଶ െ ߬ଷଷ
ሶ଴ߛ
ଶ

മିଵܨ ,ᇱݐ ݐ ൌ
1 0 0
ߛ 1 0
0 0 1 ଵଶଷ

മିଵܥ ,ᇱݐ ݐ ൌ
1 ൅ ଶߛ ߛ 0
ߛ 1 0
0 0 1 ଵଶଷ

ߛ ൌ ݐሶ଴ሺߛ െ ᇱሻݐ

Strain-centric “recipe card”

42
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ഭ߬ ݐ ൌ ൅ܩ଴ܥമିଵሺݐ, 0ሻ

EXAMPLE: Calculate stress predicted in shear by a finite-strain 
Hooke’s law.  Compare with experimental results.

മିଵܥ ,ᇱݐ ݐ ൌ
1 ൅ ଶߛ ߛ 0
ߛ 1 0
0 0 1 ଵଶଷ

From shear kinematics:

ߛ ൌ ,′ݐሺߛ ሻݐ ൌ ݐሶ଴ሺߛ െ ᇱሻݐ

ഭ߬ ݐ ൌ ଴ܩ
1 ൅ ሶ଴ߛ

ଶݐଶ െߛሶ଴0 ݐ
െߛሶ଴1 ݐ 0
0 0 1 ଵଶଷ

(recall sign 
convention 
on stress)
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P
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21

2211  

Solid lines, G = 160 kPa

t0 
Figure 9.6, p. 325 DeGroot; 
solid rubber

NOTE: for the 
first time we have 
predicted 
nonzero normal 
stresses in shear.

43
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EXAMPLE: Calculate stress predicted in shear by a finite-strain 
Hooke’s law.  Compare with experimental results.

Table 9.3 
has strain 
tensors for 
standard 
flows

44

© Faith A. Morrison, Michigan Tech U.
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(Note there is a typo in 
the definition of ߰ in the 

caption of Table 9.3; 
there is says from ݎപ to 
( .പ′, which is backwardsݎ

This is correct



Rheometry CM4650 2014 4/18/2014

23

© Faith A. Morrison, Michigan Tech U.

45Advanced Const Modeling 2014

Now, let’s fix the Maxwell model.

 
tdte

t tt

 





)(0 

  Integral Maxwell model 

(rate version):

tdttttM
t

 


),()( 

t

ttG
ttM





)(

)(

Integral Maxwell model 
(strain version):

tdtte
t tt















 






),(
)'(

2
0 

 

GLVE model 
(strain version):

46
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Lodge model

Integral Maxwell model 
(strain version):

tdtte
t tt















 






),(
)'(

2
0 

 

),'(1 ttCsubstitute (-Finger tensor) for 
infinitesimal strain tensor

Lodge Model: tdttCe
t tt















 







),'(1

)'(

2
0 



A finite-strain, viscoelastic constitutive equation

what does 
it predict?

47
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EXAMPLE: Calculate the material functions of steady shear flow for 
the Lodge model.

Lodge Model: tdttCe
t tt















 







),'(1

)'(

2
0 



48
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Lodge Model: tdttCe
t tt















 







),'(1

)'(

2
0 



49
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You try.

EXAMPLE: Calculate the material functions of steady shear flow for 
the Lodge model.

Steady Shear Flow Material Functions
Kinematics:

Material Functions:

Viscosity Second normal-stress 
coefficient

First normal-stress 
coefficient

© Faith A. Morrison, Michigan Tech U.
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߫ሶ ݐ ൌ ଴ߛ ൌ constantݒപ ≡
߫ሶሺݐሻݔଶ
0
0 ଵଶଷ

′പݎ ൌ
′ݔ
′ݕ
′ݖ ଵଶଷ

പݎ ൌ
ݔ
ݕ
ݖ ଵଶଷ

ൌ
ᇱݔ ൅ ݐሶ଴ሺߛ െ ᇱሻݐ

′ݕ
′ݖ ଵଶଷ

ߟ ≡
െ߬ଶଵ
ሶ଴ߛ

Ψଵ ≡
െ ߬ଵଵ െ ߬ଶଶ

ሶ଴ߛ
ଶ Ψଶ ≡

െ ߬ଶଶ െ ߬ଷଷ
ሶ଴ߛ
ଶ

മିଵܨ ,ᇱݐ ݐ ൌ
1 0 0
ߛ 1 0
0 0 1 ଵଶଷ

മିଵܥ ,ᇱݐ ݐ ൌ
1 ൅ ଶߛ ߛ 0
ߛ 1 0
0 0 1 ଵଶଷ

ߛ ൌ ݐሶ଴ሺߛ െ ᇱሻݐ

Strain-centric “recipe card”
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)( 

)( 

)(1 

Lodge model

)( 1sor  

104

105

106

107

51

© Faith A. Morrison, Michigan Tech U.

Advanced Const Modeling 2014

Start-up of Steady Shear Flow Material Functions









0

00
)(

0 t

t
t







Kinematics:

123

2

0

0

)(


















xt

v



Material Functions:

0

21 )(





t


 
2
0

2211
1 







 
2
0

3322
2 






Shear stress 
growth 
function

First normal-stress 
growth function

Second normal-
stress growth 

function

© Faith A. Morrison, Michigan Tech U.
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Needs to become a Strain-centric “recipe card”
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







00

0
)( 0

t

t
t







Cessation of Steady Shear Flow Material Functions
Kinematics:

123

2

0

0

)(


















xt

v



Material Functions:

0

21 )(





t


 
2
0

2211
1 







 
2
0

3322
2 






Shear stress 
decay function

First normal-stress 
decay function

Second normal-
stress decay 

function

© Faith A. Morrison, Michigan Tech U.
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Needs to become a Strain-centric “recipe card”

EXAMPLE: Does the Lodge model pass the test of objectivity posed 
by the turntable example? (remember, the GLVE failed this test)

 zyx ,,

 zyx ,,



fluid
x

 y

54

© Faith A. Morrison, Michigan Tech U.
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Lodge Model: tdttCe
t tt















 







),'(1

)'(

2
0 



Turntable Example

xyz

mj
j

m

z

z

z

y

z

x

y

z

y

y

y

x

x

z

x

y

x

x

ee
r

r

r

r
ttF






























































'''

'''

'''

ˆˆ
''

),'(1

xyzxyz
z

y

yttx

z

y

x

r








































)(0
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Deformation  in shear flow (strain)

2

1
21 ),(

x

u
ttref 




1233

2

1

)(

)(

)(

)(


















ref

ref

ref

ref

tx

tx

tx

tr

1233

2

201

1233

2

1

)(

)(

)()(

)(

)(

)(

)(














 



















ref

ref

refref

tx

tx

xtttx

tx

tx

tx

tr



Shear strain

Displacement 
function

123

20

0

0

)(

)()(),(














 


xtt

trtrttu
ref

refref


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Lodge Model: tdttCe
t tt















 







),'(1

)'(

2
0 



Turntable Example

tde
t

zyx

tt



















 

 





100

01

01 2
)'(

2
0 




 

zyx

C

















 



100

01

01 2

1 


Lodge prediction: rotating frame
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   
   

xyzxyz
z

SSCSSCxxCSSSCCyyy

SCCCSSxxCCSCCSyyx

z

y

x

r






































 


)()(

)()(

000

000

Lodge turntable - from stationary frame

)(

cos

cos

sin

sin

0 tt

tC

tC

tS

tS









 
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z

z

y
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y
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y

y

y

x

x

z

x

y

x

x
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r

r
ttF






























































'''

'''

'''

ˆˆ
''

),'(1

Now, calculate       and      .
1F 1C

  111   FFC
T
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xyz

SCSSCSC

SCSCCCS

ttC

























100

021)(

0)(21

),( 22222

22222

1 
Result:

Lodge Model prediction in stationary frame:

tdSCSSCSC

SCSCCCS

e
t

xyz

tt

























 





100

021)(

0)(21
22222

22222
)'(

2
0 




 

)(

cossin

cossin

0 tt

tCtS

tCtS






 

To compare to previous result, 
must consider shear 
coordinate system, e.g. t=0
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tde
t

zyx

tt



















 

 





100

01

01 2
)'(

2
0 




 

Lodge prediction: rotating frame

tde
t

zyx

tt



















 

 





100

01

01 2
)'(

2
0 




 

Lodge prediction: stationary frame, t=0

IDENTICAL
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What is the differential form of the Lodge model?

Lodge Model:

?

?

),'(

1

1
)'(

2
0


























dt

Cd

dt

d

tdttCe
t tt




 

(Homework)

Lodge (Maxwell with Finger strain tensor) 
passes test of objectivity

Advanced Const Modeling 2014

EXAMPLE: What is          ?
t

F



 1

We can answer by writing the definition of the 
deformation gradient tensor in Einstein notation.  
We will also need the chain rule of differentiation.
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(after this, use Table 9.1)
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EXAMPLE: What is             ?),(1 ttC 
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EXAMPLE: Define:                            What is this strain tensor in the 

limit of small strains?

ICtt ),(]0[

EXAMPLE: Define:                             What is this strain tensor in the 

limit of small strains?

1

]0[
),(  CItt

 
r

rr
u





'

Hint:

 
'

'

r

rr
u




Hint:

Aside:  Why did we use                  in the Lodge model? ),(1 ttC  
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(Differential Lodge Equation, continued)

I

 0

  vv
dt

d T  




64

I

 0~ If we define: (does not affect practical predictions since only 

normal stress differences can be measured)
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Note on the total derivative/substantial derivative:


 









































3

1

3

3

2

2

1

1

321 ),,,(

m

m

m t

x

xtdt

d

t

x

xt

x

xt

x

xtdt

xxxtd





65

Dt

D
v

t
v

xtdt

d

m
m

m




































 



3

1

If the path along which we are taking the derivative is a particle path (which we 

have already assumed when conceiving the deformation gradient tensors), then
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Differential Lodge Equation (Upper Convected Maxwell Model)

 0

  vv
Dt

D T  




upper-convected time derivative








 v
tDt

D
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1, xx

2, xy

S1x

same material
grid at time t

-11

Q

P

material grid at time t'

Q
S

2x

P

The Upper-Convected time derivative can be understood to be the 
time derivative calculated in a coordinate system that is translating 
and deforming with the fluid (see section 9.3).
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Other Convected Derivatives

  vv
Dt

D T  




upper-convected time derivative

 Tvv
Dt

D
 




lower-convected time derivative

 


 
2

1

Dt

D

Corotational time derivative

 Tvv 
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Lodge Model: 
(upper-convected Maxwell)

tdttCe
t tt















 







),'(1

)'(

2
0 



Cauchy-Maxwell Model:
(lower-convected Maxwell)

tdttCe
t tt















 






),(
)'(

2
0 



Lodge Rubberlike Liquid Model: tdttCttM
t

 


 ),'()( 1
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Lodge 
Equation
(UCM)
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71

Cauchy-
Maxwell 
Equation
(LCM)
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Approaches to finite-strain 
constitutive equations

72

eq
ui

va
le

nt

differential
Maxwell model

integral
Maxwell model

non-objective time derivative




 ot













t tt

o dttte ')',(
)'(

2



 

non-objective strain measure

replace with
or other strain measures

CC ,1

replace with
or other time
derivatives




,


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Methods of Improving Constitutive Equations




 0





t

Maxwell Model

')',()(
)'(

2
0 dtttet

t tt



 
















We can improve with 
new time derivatives 
or new strain 
measures.

We can also change the 
basic equation:

•linear modifications
•non-linear modifications
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















tt
21

2210
21

121



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Other Constitutive Approaches

210
21

21  




t

Simple Maxwell Model, 
shear

Upper-Convected 
Maxwell Model, general  0

   201 

Simple Jeffreys Model, 
shear

Upper-Convected 
Jeffreys Model, general

(Oldroyd B Fluid)

retardation time
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Jeffreys Model - Mechanical Analog

















tt
21

2210
21

121




Maxwell Model - Mechanical Analog

210
21

21  




t
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Unfortunately, this change only modifies G(t-t’);
the Jeffreys Model is a GLVE model

Simple Jeffreys Model 
(not frame-invariant)

Now, solving for 21 explicitly we obtain,






























t tt

tdtttet )()(
2

1)(
1

20

1

2

1

0 1 







  

)( ttG 

Other linear modifications of the Maxwell model 
motivated by springs and dashpots in series and 
parallel modify G(t-t’) but do not otherwise introduce 
new behavior.






















tt








 201

(Might as well use the 
Generalized Maxwell model)
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Non-linear modifications of the Maxwell Model

White-Metzner Model

Oldroyd 8-Constant Model

      
     






 



I

I









:
2

1
:

:
2

1
tr

2

1

2

1

22220

10111

UCM

UCM terms UCJ

The Oldroyd 8-constant contains many 
other constitutive equations as special 

cases.
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White-
Metzner
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Oldroyd B
(Convected
Jeffreys)
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The Oldroyd 8-Constant model contains all terms linear in stress 
tensor and at most quadratic in rate-of-deformation tensor that are also 
consistent with frame invariance.

      
     






 



I

I









:
2

1
:

:
2

1
tr

2

1

2

1

22220

10111



 0

0

: Giesekus Model

quadratic 
in stress

The only way to choose among 
these nonlinear models is to 
compare predictions. 80Advanced Const Modeling 2014
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We can also modify integral models to add non-linearity 
and thus produce new constitutive equations.

  tdCIICIIttMt
t

 


1
211212 ),(),()()(

Factorized Rivlin-Sawyers Model

tdC
I

U
C

I

U
ttMt

t














 



1

12

22)()(

Factorized K-BKZ Model

I1, I2 are the 
invariants of the 
Finger or Cauchy 
strain tensors (these 
are related). Again, the only way to choose among these nonlinear 

models is to compare predictions 
(see R. G. Larson, Constitutive Equations for Polymer Melts).
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Factorized 
Rivlin-
Sawyers

Advanced Const Modeling 2014



Rheometry CM4650 2014 4/18/2014

42

© Faith A. Morrison, Michigan Tech U.

We have fixed all the obvious flaws in our constitutive 
equations, and now we have too many choices!

Choosing Constitutive Equations

We could make predictions and compare with 
experimental data, but some of the models (Rivlin
Sawyer, K-BKZ) have undefined functions that must be 
specified.

How to proceed?

All along we have taken a continuum-mechanics 
approach.  We have run that course all the way through.  
Now we must go back and seek some insight from 
molecular ideas of relaxation and polymer dynamics.

We need some guidance.
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Some of what we have learned from Continuum Modeling

•We can model linear viscoelasticity.  The GMM does a good job; there is no 
reason to play around with springs and dashpots to improve linear viscoelasticity

•We can model shear normal stresses.  The kind of deformation described by the 
Finger tensor gives a first normal stress difference  and zero second-normal 
stress; the kind of deformation described by the Cauchy tensor gives both stress 
differences, but too much second.

•We can model shear thinning.  But only by brute force (GNF, White-Metzner)

•We can model elongational flows.  But we predict singularities that do not appear 
to be present.

•Frame-Invariance is important.  Calculations outside the linear viscoelastic
regime are incorrect if the equations are not properly frame invariant.

•Thinking in terms of strain is an advantage.  When we think only in terms of rate 
we can only model Newtonian fluids.

•Looking for contradictions when stretching a model to its limits is productive.

•Continuum models do not give molecular insight.  We can fit continuum models 
and obtain material functions (viscosity, relaxation times) but we cannot predict 
these functions for new, related materials
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Molecular Constitutive Modeling

•Begin with a picture (model) of the kind of material 
that interests you

•Derive how stress is produced by deformation of that 
picture

•Write the stress as a function of deformation 
(constitutive equation)

Advanced Const Modeling 2014
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86

At the beginning of the course . . . 

Chapter 3:  Newtonian Fluid Mechanics Polymer Rheology

Molecular Forces  (contact) – this is the tough one

We need an expression for the 
state of stress at an arbitrary 

point P in a flow.

P

dS
dSon
Pat

stress
f


















choose a surface 
through P

the 
force on 
that 
surface
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87

At the beginning of the course . . . 

Molecular Forces (continued)

Think back to the molecular 
picture from chemistry:

The specifics of these forces, 
connections, and interactions 

must be captured by the 
molecular forces term that we 

seek.

At that 
time we 
wanted to 
avoid 
specifying 
much 
about our 
materials.
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88

At the beginning of the course . . . 

Molecular Forces (continued)

•We will concentrate on expressing the molecular 
forces mathematically;

•We leave to later the task of relating the resulting 
mathematical expression to experimental observations.

•arbitrary shape
•small

First, choose a 
surface: n̂

f
dS

fdS

dSon

Pat

stress


















What is f ?
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89

At the beginning of the course . . . 

Molecular Forces (continued)

Assembling the force vector:
















 

ndSf

eendS

eendS

eeeeee
eeeeee

eeeeeendSf

mppm

p m
mppm

ˆ

ˆˆˆ

ˆˆˆ

ˆˆˆˆˆˆ
ˆˆˆˆˆˆ

ˆˆˆˆˆˆˆ

3

1

3

1

333332233113

233222222112

133112211111

Total stress tensor
(molecular stresses)

We swept all 
molecular contact 

forces into the 
stress tensor.

Now, we seek to 
calculate molecular 

contact forces 
directly from a 

molecular picture. Advanced Const Modeling 2014
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R

Long-Chain Polymer Constitutive Modeling

)(ˆ
~  ndAf

molecular tension 
force on arbitrary 
surface

We now attempt to calculate 
molecular forces by considering 
molecular models.

stress tensor

end-to-end 
vector, R

Polymer Dynamics

Long-chain polymers 
may be modeled as 
random walks.
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Rend-to-end 
vector, R

A polymer chain adopts 
the most random 
configuration at 
equilibrium.

When deformed, the chain 
tries to recover that most 
random configuration, 
giving rise to a spring-like 
restoring force.

spring of equilibrium 
length and orientation R

Polymer coil responds to deformation

We will model the chain dynamics 
with a random walk.
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Equilibrium configuration distribution 
function - probability a walk of N steps 
of length a has end-to-end distance R

From an entropy calculation of the work needed to 
extend a random walk, we can calculate the force 
needed to deform a the polymer coil

Gaussian Springs (random walk)

R
Na

kT
f

2

3


 ndAf ˆ
~molecular tension

force on arbitrary
surface

stress tensor

If we can relate this force, the force to 
extend the  spring, to the force on an 
arbitrary surface, we can predict rheological 
properties

RReR 







2

3

0 )( 




92

22

3

Na

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R
Na

kT
f

2

3


Probability 
chain has ETE 
R

Probability 
chain of ETE R
crosses surface 
dA

Force exerted 
by chain w/ 
ETE R 


Force on surface 
dA due to chains 
of ETE R

Tension 
force on dA

321)( dRdRdRR(see next slide)

Molecular force generated by deforming chain

f
~

  3

1

ˆ Rn 

93= number of polymer 
chains per unit volume
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31
1



31
1



31
1



n̂

dA

a

b

c

d

Rn ˆ
n̂

R

a b

cd

intersection
with dA

Probability 
chain of ETE R
crosses surface 

dA

 

 33/1

3

1

3

1

ˆ


























Rn

Probability chain of ETE R crosses surface dA

94
= volume per polymer chain

I put that in 
because this 
does not print 
to PDF right 
fam 2012
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Molecular force generated by deforming chain

 RRn
Na

kT
f  ˆ

3~
2

3

1



321)( dRdRdRRRRRR  

 ndAf ˆ
~

Comparing these two 
we conclude,

RR
Na

kT


2

3 

molecular tension 
force on arbitrary 
surface in terms of 

BUT, from before . . .

)( 3

2


dA

Molecular force generated by 
deforming chain 95Advanced Const Modeling 2014
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How can we convert this equation,

RR
Na

kT


2

3 

Molecular stress in a fluid generated 
by a deforming chain

which relates molecular ETE vector and stress, into a constitutive 
equation, which relates stress and deformation?

We need a idea that connects ETE vector motion 
to macroscopic deformation of a polymer 
network or melt.

96Advanced Const Modeling 2014



Rheometry CM4650 2014 4/18/2014

49

© Faith A. Morrison, Michigan Tech U.

1R

2R

Elastic (Crosslinked) Solid

RETE = end-to-end vector

Between every two crosslinks there is a 
polymer strand that follows a random 
walk of N steps of length a.

Distribution of 
ETE vectors

97Advanced Const Modeling 2014
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How can we relate changes in end-to-end 
vector to macroscopic deformation?

affine-motion assumption:  the macroscopic 
dimension changes are proportional to the 
microscopic dimension changes

AN ANSWER:

before after
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Rheometry CM4650 2014 4/18/2014

50

© Faith A. Morrison, Michigan Tech U.

Consider a general elongational deformation:

1233

2

1
1

00

00

00






















F

For affine motion we can relate the components of the 
initial and final ETE vectors as,

1

1
1 R

R



2

2
2 R

R



3

3
3 R

R




ETE before

ETE after

12333

22

11

)(





















R

R

R

tR




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321)( dRdRdRRRRRR  

RR
Na

kT


2

3 

12333

22

11

)(





















R

R

R

tR





We are attempting to calculate the stress tensor with this 
equation:

But, where do 
we get this?
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Probability chain has ETE 
between R and R+dR:

RReR 







2

3

0 )( 


Equilibrium configuration 

distribution function:

Configuration 
distribution function

But, if the deformation is affine, then the number of 
ETE vectors between R and R+dR at time t is equal to 
the number of vectors with ETE between R’ and 
R’+dR’ at t’

RReRR 







2

3

0 )'()( 


Conclusion:

101

22

3

Na

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RR
Na

kT


2

3 

12333

22

11

)(





















R

R

R

tR





Now we are ready to calculate the stress tensor.

RReRR 







2

3

0 )()( 




iii eekT ˆˆ2 Final solution:

i

i
i

R
R




102

(much algebra 
omitted; solved in 
Problem 9.57)
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Compare this solution with the Finger strain tensor for this flow.

123

2
3

2
2

2
1

2

00

00

00

ˆˆ






















 kTeekT iiiFinal solution for stress:

 
123

2
3

2
2

2
1

111

00

00

00

),(
















 





FFttC

T

1 CkT

Which is the same as the finite-strain 
Hooke’s law discussed earlier, with G=kT.

Since the Finger tensor for 
any deformation may be 
written in diagonal form 
(symmetric tensor) our 
derivation is valid for all 
deformations.
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What about polymer melts?
Non permanent crosslinks

•  junction points per unit volume = constant
•ETE vectors have finite lifetimes
•when old junctions die, new ones are born
•newly born ETE vectors adopt the 
equilibrium distribution 0

Green-Tobolsky
Temporary Network 
Model

Probability per unit 
time that strand dies 

and is reborn at 
equilibrium 

1


Probability that strand 
retains same ETE from t’ 
to t (survival probability)

ttP ,
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What is the probability that a strand retains the same ETE vector 

between t’ and t’+t?

Probability that 
strand does not die 

over interval t

Probability that strand 
retains same ETE from t’
to t (survival probability)







   tPP ttttt 

1
1,,

 tttP ,

 






tt

tt

tt

tt
tt

eP

C
t

P

P
dt

dP

















,

1,

,
,

ln

1
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The contribution to the stress tensor of the individual strands can be 
calculated from,

Probability that 
strand is born 
between t’ and 

t’+dt’

Stress generated by 
an affinely

deforming strand 
between t’ and t

 
 ),(

1 1 ttCGetdd
tt













  









Probability 
that a strand 

survives from 
t’ to t

Stress at t from 
strands born 

between t’ and 
t’+dt’

=

 










t tt

tdttCe
G

),(1




Green-Tobolsky temporary network 
mode (Lodge model) 106Advanced Const Modeling 2014
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 










t tt

tdttCe
G

),(1




Green-Tobolsky temporary network 
mode (Lodge model)

Oh no, back where we started!

NO!

We now know that affine motion of strands with equal birth and death rates 
gives a model with no shear-thinning, no second-normal stress difference.

To model shear-thinning, N2, etc., therefore, we must add something else to 
our physical picture, e.g.,

•Anisotropic drag
•nonaffine motion of various types

107Advanced Const Modeling 2014
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Anisotropic drag - Giesekus
In a system undergoing deformation, the surroundings of a given molecule 
will be anisotropic; this will result in the drag on any given molecule being 

anisotropic too.



 0

0

: Giesekus Model

Starting with the dumbbell model (gives UCM), replace             with an 

anisotropic mobility tensor    .  Assume also that the anisotropy in       is 
proportional to the anisotropy in      .


 28kT


B B




G

IB 

see Larson, Constitutive Equations for Polymer 
Melts, Butterworths, 1988 108Advanced Const Modeling 2014
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Constitutive equations incorporating non-affine motion include:

Gordon and Schowalter: “strands of polymer slip with respect to the 
deformation of the macroscopic continuum”;  see Larson, p130  (this model has 
problems in step-shear strains)

Larson: uses nonaffine motion that is a generalization of the motion in the Doi
Edwards model;  see Larson, Chapter 5

Wagner: uses irreversible nonaffine motion;  see Larson, Chapter 5

see Larson, Constitutive Equations for Polymer 
Melts, Butterworths, 1988

109

   


  
2

vv
Dt

D T

strand slippage

•Phan-Thien/Tanner
•Johnson-Segalman
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Reptation Theory (de Gennes)

Retraction (Doi-Edwards)

110

Non-affine 
motion
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112

Retraction time

Depending on 
the strain, a 
different 
amount of 
stress is 
relaxed during 
retraction

The Doi-Edwards 
model does a good job 
of predicting the 
damping function, h() 
(see Larson p108)

After retraction the 
relaxation is governed by 
the memory function M(t-t’)
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Doi-Edwards Model

 
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(Factorized K-BKZ type)û unit vector that gives 
orientation of strands at time t’                

113

Predicts a 
memory 
function

Predicts a 
relaxation 

time 
distribution

M. Doi and S. Edwards J. Chem Soc. Faraday Trans II 74, 1818 
(1978); ibid 74 560, 918 (1978); ibid 75, 32 (1979); ibid 75, 38 
(1979)

Predicts a 
strain measure
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Doi-Edwards Model
Steady Shear
SAOS

114
M. Doi and S. Edwards J. Chem Soc. Faraday Trans II 75, 38 (1979)
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Doi-Edwards Model
Shear Start Up

115
M. Doi and S. Edwards J. Chem Soc. Faraday Trans II 75, 38 (1979)
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Doi-Edwards Model
Steady Elongation
Elongation Startup

116
M. Doi and S. Edwards J. Chem Soc. Faraday Trans II 75, 38 (1979)
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Doi-Edwards Model
Large-Amplitude Step Shear

117
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Doi-Edwards Model

•Ratio of 1/2
•shape of start-up curves
•shape of h(0) (nonlinear step strain, damping function)

•predicts =AM3

•shear thinning of , 1
•tension-thinning elongational viscosity

Correctly predicts:

• =AM3.4

•shape of shear thinning of , 1
•reversing flows
•Elongational strain hardening (branched polymers)

Fails to predict:

118

Tentatively 
conclude:  

shear 
thinning is an 
issue of non-
affine motion
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Advanced Models

119

Pom-Pom Model (McLeish and Larson, JOR 42 81, 1998)
Extended Pom-Pom (Verbeeten, Peters, and Baaijens, JOR 45 823, 2001)

Long-chain branched polymers

•Single backbone with multiple branches
•Backbone can readily be stretched in an extensional flow, producing strain 
hardening
•In shear startup, backbone stretches only temporarily, and eventually collapses, 
producing strain softening 
•Based on reptation ideas; two decoupled equations, one for orientation, one for 
stretch; separate relaxation times for orientation and stretch)

Advanced Const Modeling 2014
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Extended Pom-Pom (Verbeeten, Peters, and Baaijens, JOR 45 823, 2001)

Predicts 
elongational
strain 
hardening
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121

Extended Pom-Pom (Verbeeten, Peters, and Baaijens, JOR 45 823, 2001)

Advanced Const Modeling 2014
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What about polymer solutions?

Elastic Dumbbell Model

R

R

Drag on beads 
models friction

•Dilute solutions: chains do not interact
•collisions with solvent molecules are 
modeled stochastically
•calculate (R) by a statistical-mechanics 
solution to the Langevin equation 
(ensemble averaging)

Random force 
models random 
collisions

122

W. Kuhn, 1934

Advanced Const Modeling 2014



Rheometry CM4650 2014 4/18/2014

62

© Faith A. Morrison, Michigan Tech U.

Elastic Dumbbell Model

Continuum modeling
Momentum balance on a control volume (Navier-Stokes Equation)

123

gvpvv
t

v  





 

 2

Inertia        =      surface    + body

Mixed Continuum/Stochastic modeling (Langevin Equation)
Momentum balance on a discrete body (mass m, velocity u)
In a fluid continuum (velocity field v)

  ARkTvRu
dt

ud
m 






 24 

Inertia =         drag          +   spring   + random (Brownian)

Construct an 
ensemble of 

dumbbells and 
seek the 

probability of a 
given ETE at t

Advanced Const Modeling 2014

© Faith A. Morrison, Michigan Tech U.

Elastic Dumbbell Model

124

Langevin Equation

  ARkTvRu
dt

ud
m 






 24 

Construct an 
ensemble of 

dumbbells and 
seek the 

probability of a 
given ETE at t

To solve, (see Larson pp41-45).  Consider an ensemble of dumbbells and seek the 
probability  that a dumbbell has an ETE R at a given time t.  The equation for  is the 
Smoluchowski equation:

0
24 2




















R

kT
R

kT
vR

Rt








We can calculate stress from: 3212
)(

3
dRdRdRRRR

Na

kT   

If we multiply the Smoluchowski equation by          and integrate over R space, we 
obtain an expression for    (i.e. the constitutive equation for this model)

RR 

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Integration yields:

 0

Upper-Convected Maxwell Model!

kTG 

28 


kT


number of dumbbells/volume

bead friction factor

2
2

2

3

Na
 from random walk

125

see Larson, Constitutive Equations for Polymer Melts, 
Butterworths, 1988

Two different models give 
the same constitutive 

equation (because stress 
only depends on the 

second moment of , not 
on details of 
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Elastic Dumbbell Model for Dilute 
Polymer Solutions

 0
pp

 ss


126

see Larson, Constitutive 
Equations for Polymer Melts, 
Butterworths, 1988

Polymer contribution

Solvent contribution

Dumbbell Model 
(Oldroyd B)

sp
 

See problem 9.49
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Rouse Model

R

127

•Multimodal bead-spring model
•Springs represent different sub-molecules
•Drag localized on beads (Stokes)
•No hydrodynamic interaction N+1beads

N springs
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Rouse Model

128

•Rouse wrote the Langevin equation for each spring.  Each spring’s equation is 
coupled to its neighbor springs which produces a matrix of equations to solve.

Langevin Equation

  ARkTvRu
dt

ud
m 






 24 

see Larson, Constitutive Equations for Polymer Melts, 
Butterworths, 1988

•Rouse found a way to diagonalize the matrix of the averaged Langevin equations; this 
allowed him to find a Smoluchowski equation for each transformed “mode”      of the 
Rouse chain
•Each Smoluchowski equation gives a UCM for each of the modes

IG
ii

N

i
i













1

iR
~

iR
~

))1(2(sin16 22 




NikT

kTG

i 



Rouse Model for 
polymer solutions
(multi-mode UCM)
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Zimm Model

R

129

•Multimodal bead-spring model
•Springs represent different sub-molecules
•Drag localized on beads (Stokes)
•Dominant hydrodynamic interaction N+1beads

N springs
Rouse:  solvent velocity near one bead is 
unaffected by motion of other beads (no 
hydrodynamic interaction)

see Larson, Constitutive Equations for Polymer Melts, 
Butterworths, 1988

Zimm:  dominant 
hydrodynamic 
interaction)
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What about suspensions?

130

…
uniform flow

Stokes flow

Increasing 
complexity; 
solve NS

…

Dilute solution
Einstein relation

Concentrated 
suspensions
Stokesian dynamics

  5.21 m

(Mewis and Wagner, Colloidal Suspension 
Rheology, Cambridge 2012)
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Stokesian Dynamics

131

Langevin Equation for Dumbbells

  ARkTvRu
dt

ud
m 






 24 

Inertia =         drag          +   spring   + random (Brownian)

Another Langevin Equation
Stokesian Dynamics for Concentrated Suspensions

Brownianparticleichydrodynam FFF
dt

Ud
M 

Hydrodynamic = everything the suspending fluid is doing (including drag) 

Particle = interparticle forces, gravity (including spring forces)

Brownian = random thermal events

Brady and Bossis, Ann. Rev. Fluid Mech, 20 111 1988
Wagner and Brady, Phys. Today 2009, p27
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Brady and Bossis, Ann. Rev. Fluid 
Mech, 20 111 1988

Stokesian Dynamics

Spanning clusters 
increase viscosity
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Summary

•Rubber-elasticity theory = Finite-strain Hooke’s law model

•Green-Tobolsky temporary network theory = Lodge equation (UCM)

•Reptation theory = K-BKZ type equation

•Elastic dumbbell model for polymer solutions = Oldroyd B equation

Molecular models may lead to familiar constitutive equations

Model parameters have greater meaning when connected to a 
molecular model

•G = kT

•Gi, i specified by model

Molecular models are essential to narrowing down 
the choices available in the continuum-based 
models (e.g. K-BKZ, Rivlin-Sawyers, etc.)

As always, the 
proof is in the 
prediction.

see 
Larson, 
esp. Ch 7
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Modeling may lead directly to information sought 
(without ever calculating the stress tensor)
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Summary

•Rubber-elasticity theory = Finite-strain Hooke’s law model

•Green-Tobolsky temporary network theory = Lodge equation (UCM)

•Reptation theory = K-BKZ type equation

•Elastic dumbbell model for polymer solutions = Oldroyd B equation (UCM)

Molecular models may lead to familiar constitutive equations

Caution: correct stress predictions do not 
imply that the molecular model is correct

Stress is proportional to the second moment of (R), but 
different functions may have the same second moments.

134Advanced Const Modeling 2014



Rheometry CM4650 2014 4/18/2014

68

© Faith A. Morrison, Michigan Tech U.

Summary

•Elastic solids

•Linear polymer melts with affine motion (temporary network)

•Linear polymer melts with anisotropic drag

•Linear polymer melts with various types of non-affine motion

•Chain slip

•Reptation

•Branched melts (pom-pom)

•Polymer solutions

•Suspensions

Materials Discussed
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Resources

R. G. Larson, Constitutive Equations for Polymer Melts

R. G. Larson, The Structure and Rheology of Complex Fljuids

J. Mewis and N. Wagner, Colloidal Suspension Rheology
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