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Newtonian fluids:

Non-Newtonian fluids:

¢ Linear
Instantaneous

- 1(0) = ()

Rhedlogical Behavior of Fluids —non-Newtonian
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Key to deformation and flow is the momentum balance:

—Vp-V-z+pg

¢ Non-linear
¢ Non-instantaneous

- z(t) =?

(missing piece)
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Linear

=shear rate is variable
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Key to deformation and flow is the momentum balance:

v
PlogsteVe)=-Vp-V-2+pg

Non-linear
Non-instantaneous
=
(missing piece)
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Key to deformation and flow is the momentum balance:

v
Plogste-Ve)=-Vp-V-2+pg

nstantaneous
) = —uy(t)

Non-linear

Non-instantaneous

=
(missing piece)
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Key to deformation and flow is the momentum balance:

v
PlogsteVe)=-Vp-V-2+pg

Non-linear
¢ Non-instantaneous

o z(t) =?
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Chapter 2: Mathematics Review

1. Scalar — a mathematical entity that has magnitude only

e.g.. temperature T
speed v
time t
density r

— scalars may be constant or may be variable

Laws of Algebra for
Scalars:

yes commutative ab =ba
yes associative  a(bc) = (ab)c

yes distributive  a(b+c) = ab+ac

7
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2. Vector — a mathematical entity that has magnitude and direction

e.g.: force on a surface f
velocity v

— vectors may be constant or may be variable

Definitions

magnitude of a vector — a scalar associated with a vector

|Y| =V ‘J_[ ‘ =f This notation
unit vector — a vector of unit length (v, 7, f) is called
v 5 Gibbs notation.

Ly

a unit vector in the
direction of v

i
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Mathematics Review

Polymer Rheology

Laws of Algebra for
Vectors:

1. Addition

[ey

9
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Laws of Algebra for Vectors (continued):

3. Multiplication by scalar ¢ v

yes commutative ay=va

yes associative a( ,B‘_’) = (aﬂ)y =affy

yes distributive 0{(\_1 n "_V) =av+aw

4. Multiplication of vector by vector
4a. scalar (dot) (inner) product

v-w=vwcosf v

Note: we can find
magnitude with dot
product

I=

v-v=vycos0 =1’

yv=

Vi

10
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Laws of Algebra for Vectors (continued):

4a. scalar (dot) (inner) product (con’t)

yes commutative VW=W-y

NO associative M no such operation

yes distributive g-(\_/+v_v)=g-\_/+g-v_v

4b. vector (cross) (outer) product

vxw=vwsiné e

I<
N

e is a unit vector
perpendicular to
both v and w
following the
right-hand rule

I=

1"
© Faith A. Morrison, Michigan
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Laws of Algebra for Vectors (continued):

4b. vector (cross) (outer) product (con’t)
NO commutative VXWH#WXY
NO associative XXKXZ¢(ZXLV)XZ¢XX(V_VXZ)

yes distributive (v+w)=(zxv)+(zxw)

12
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Mathematics Review Polymer Rheology

Coordinate Systems

*Allow us to make actual calculations with vectors

Rule: any three vectors that are non-zero and linearly
independent (non-coplanar) may form a coordinate basis

Three vectors are linearly dependent if a, b, and g can
be found such that:

aa+fBb+yc=0
for o,B,y#0

If a, B, and y are found to be zero, the vectors are
linearly independent.

13
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How can we do actual calculations with vectors?

Rule: any vector may be expressed as the linear combination
of three, non-zero, non-coplanar basis vectors

coefficient of a in the ¢

direction Y
a
any vector x
\ ae +ae tae =|a,
a This notation
7 xyz is called
— o > > matrix
=a,e +a,e, +a,e,

notation.

3
= Z ae;
=1

14
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Mathematics Review Polymer Rheology

Trial calculation: dot product of two vectors

b= (alél +a,e, + a3é3)- (blél +b,e, + b3é3)

AN

a,é,- (b, +be, +bé,)+
4,6, (b, +b,6, +be, )+
a,e, '(b1é1 +b,e, + b3é3)
=ae, -be +ae -be,+ae -be,+
a,e,-beé, +a,e, -b.e, +a,e,-be, +
a,e,-be +ae,-b,e, +a,e, -be,

If we choose the basis to be orthonormal - mutually perpendicular
and of unit length - then we can simplify.

15
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If we choose the basis to be orthonormal - mutually perpendicular
and of unit length, then we can simplify.

él.%:O

él'é:}:()

a-b=a@ bé+ae be +ae - be+
@8, - bé + ayé; - by + aye, - biey +
@8; - b + azey - be, + azey - by

= ah + ayb, + ashy
We can generalize this operation with a technique called Einstein notation.

16
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Mathematics Review Polymer Rheology

Einstein Notation

a system of notation for vectors and tensors that allows for the
calculation of results in Cartesian coordinate systems.

a= a8 +a@+ a8
3
=) age; /\ This notation
Jj=1 called Einstein
= ajéj notation.

«the initial choice of subscript letter is arbitrary

the presence of a pair of like subscripts implies a
missing summation sign

17
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Einstein Notation (con’t)

The result of the dot products of basis vectors can be
summarized by the Kronecker delta function

él'élzl o 1 l.:p
6-6=0 e,.-ep=5l~p={0 i#p
él'éj:()

Y

Kronecker delta

18
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Mathematics Review Polymer Rheology

Einstein Notation (con’t)

To carry out a dot product of two arbitrary vectors . . .

Detailed Notation

a-b=(ag +ae,+a;)- (be + b, + ;) :

= @l -he +ad by + a8 - bié; + |
8 - b + 4, - by, + a8, - by + ! =a,0;,b,

a3y - Bl + axy - Dy + azls - by !

= aib + ah, + azbs !

19
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Mathematics Review Polymer Rheology

3. Tensor — the indeterminate vector product of two (or more) vectors

e.g.. stress T
velocity gradient

— tensors may be constant or may be variable

Definitions

dyad or dyadic product — a tensor written explicitly as the
indeterminate vector product of two vectors

ad  dyad
A general representation
= of a tensor

This notation =
(ad,A)is also part

of Gibbs notation.
20
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Mathematics Review

Polymer Rheology
Laws of Algebra for Indeterminate
Product of Vectors:
NO commutative av+yva
yes associative (Q 1_/) — (b Q)‘_, —hav
yes distributive a (\_} i v_v) —gv+taw

21
© Faith A. Morrison, Michigan Tech U.
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How can we represent tensors with respect to a chosen

coordinate system?
Just follow the rules of tensor algebra

am= (alel ta,e, +a,e )(mlel +m,e, + m3e3)
= a,e,me, + a,e,;m,e, +a,em,e, +
a,e,m,e, + a,e,m,e, + a,e,m,e, +

asesme, + asesm,e, + a,e;ni;e,

33
=22 aém8,
k=1 w=1
3.3 Any tensor may be written as the
= Z Z a.m. e.e sum of 9 dyadic products of basis
5w Ykt w
s p— vectors

22
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What about 4? Same.

Einstein notation for tensors: drop the summation sign; every
double index implies a summation sign has been dropped.

é = Aij eiej = Apk épek
Reminder: the initial choice of subscript
letters is arbitrary
23
© Faith A. Morrison, Michigan Tech U.
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How can we use Einstein Notation to calculate dot products
between vectors and tensors?

It's the same as between vectors.

SR IR
I RIS
<
Il

24
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Mathematics Review Polymer Rheology

Summary of Einstein Notation

1. Express vectors, tensors, (later, vector operators) in a Cartesian
coordinate system as the sums of coefficients multiplying basis
vectors - each separate summation has a different index

2. Drop the summation signs

3. Dot products between basis vectors result in the Kronecker delta
function because the Cartesian system is orthonormal.

Note:

«In Einstein notation, the presence of repeated indices implies
a missing summation sign

*The choice of initial index (i, m, p, etc.) is arbitrary - it merely
indicates which indices change together

25
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3. Tensor — (continued)
Definitions

Scalar product of two tensors

A:M=4.ee,:M,ee,

ipTip
! ) carry out the dot

= AipMkm Al. Ap . ékém products indicated
= Al.pMkm (ep ‘e, Xel. -em)
= AipMkm 5pk5im “p” becomes “k”

“I” becomes “m”
=AM,

26
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Mathematics Review Polymer Rheology

But, what is a tensor really?

Atensor is a handy representation of a Linear Vector Function

scalar function:  y = f(x)= x> +2x+3

a mapping of values of x onto values of y

vector function: w= f (\_7)

a mapping of vectors of v into vectors w

How do we express a
vector function?

27
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What is a linear function?

Linear, in this usage, has a precise, mathematical definition.

Linear functions (scalar and vector) have the
following two properties:

J(Ax) = Af (x)
Jx+w) = fx)+ f(w)

Multiplying vectors and tensors is a
convenient way of representing the
actions of a linear vector function
(as we will now show).

28
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Tensors are Linear Vector Functions

Let f(a) = b be a linear vector function.

L We can write a in Cartesian coordinates.

a=ae +a,e, +ae,
fla)=f(aé +ae,+ae;)=b

Using the linear properties of f, we can distribute the function action:

f@=afe)+a,f(e)+af(e)=>b
—— —— ——

These results are just vectors, we will

name them v, w, and m.
29
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Tensors are Linear Vector Functions (continued)

f@=af(e)+a,f(e,)+af(e)=0b
—— —— ——
v w m

f(g):aﬂ_""azﬂ}"‘%mzé

Now we note that the coefficients a; may be written as,

SR .
The

Substituting, /\ indeterminate

A ~ vector product
f(g)=c_l-€1 vta-e, wt+a Q has appeared!

30
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Using the distributive law, we can factor out the dot product with a:

f@=a-(@u+é,w+eé;m)=b
N J
Y

This is just a tensor

(the sum of dyadic (él v+é, w+é m)
products of vectors)

i
IS

fl@=a-M=b

7

CONCLUSION:  Tensor operations
are convenient to
use to express linear
vector functions.

31
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3. Tensor — (continued)

More Definitions

Identity Tensor

1=¢8¢=28¢+8¢+e8

1 00
=0 1 0
00 1),
A-L=4,82,-8¢
Alpéié‘pkék
= A8,

32
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Mathematics Review
3. Tensor — (continued)

Zero Tensor

u

Magnitude of a Tensor

= - Aip Ai P : Akmékém

Polymer Rheology

More Definitions

S O O
S O O
S O O

123

Note that the book has a
A4 é (=1 typo on this equation: the
“2” is under the square root.

- A’PAkm (ép ) ékxéi ' é’") products
=44, across the
diagonal

33
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Mathematics Review

3. Tensor — (continued)

CAUTION:

4-cy

Polymer Rheology

More Definitions

Tensor Transpose

M= ( keek)T M8

Exchange the
coefficients across
the diagonal

= (f(‘#kéiék ijépé/y = (A,.kaj éiéj5kpy
=\4,C

= A'p 1 €%
It is not equal to: (é . Q)T = (Aipcpj éiéjy

| recommend you always

interchange the indices

on the basis vectors

+ 2P rather than on the
coefficients.

34
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3. Tensor — (continued) More Definitions
Symmetric Tensor e.g.
T
M=M 123
A7 1 5
M., =M,.
ik ki
3 56),,
Antisymmetric Tensor eg.
T
M=-M 023
o -5
M., =—M,.
ik ki
35 0),
35
© Faith A. Morrison, Michigan Tech U.
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3. Tensor — (continued) More Definitions

Tensor order

Scalars, vectors, and tensors may all be considered to
be tensors (entities that exist independent of coordinate
system). They are tensors of different orders, however.

order = degree of complexity

scalars Oth-order tensors 30
""""""""""""""""""""""""""""""" Number of
vectors 1st -order tensors 3! o
coefficients
tensors 2nd _order tensors - 32 needed to
7777777777777777777777777777777777777777777777 ) express the
higher- 3 -order tensors 33 tensor in 3D
order space
tensors

36
© Faith A. Morrison, Michigan Tech U.
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3. Tensor — (continued) More Definitions

Tensor Invariants

Scalars that are associated with tensors; these are
numbers that are independent of coordinate system.

vectors: M =V The magnitude of a vector is a
scalar associated with the
vector

It is independent of coordinate
system, i.e. it is an invariant.

tensors: A There are three invariants
- associated with a second-order
tensor.

37
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Tensor Invariants

I,=traced=1trd4

For the tensor written in Cartesian coordinates:
traced = App =4+ 4, + A4

I, =tracdd-A)=A: A=A, 4

pk*kp

I, =trace{d-A-A)= A

o

Note: the definitions of invariants written in terms of
coefficients are only valid when the tensor is written in
Cartesian coordinates.

/38
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4. Differential Operations with Vectors, Tensors

Scalars, vectors, and tensors are differentiated to determine
rates of change (with respect to time, position)

To carryout the differentiation with respect to a single variable,
differentiate each coefficient individually.

*There is no change in order (vectors remain vectors, scalars
remain scalars, etc.

m 9B, 0By 0By
Ot ot Ot ot
oa ow _| Ow, OB _| 0B, 0B, 0By
ot ot Ot Ot ot Ot ot
owy 0B;, 0By, OBy
Ot ot Ot ot

123 123

39
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Mathematics Review

Polymer Rheology
4. Differential Operations with Vectors, Tensors (continued)
+To carryout the differentiation with respect to 3D
spatial variation, use the del (nabla) operator. Del Operator
*This is a vector operator
*Del may be applied in three different ways
*Del may operate on scalars, vectors, or tensors
ox,
0 0 0 0
This is written in VEélf-i-ézf—i-%—: [
Cartesian ox, ox, Ox, | Ox,
coordinates 0
Oxs

0 9 _, 0
1 Pox,  Pox,

Einstein notation for del

Il
Mw

S
Il

40
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Mathematics Review

4. Differential Operations with Vectors, Tensors (continued)

A. Scalars - gradient

9B
Gibbs axl
notation o F) 0 oB
e—pB+e,—pB+e,— B =|—
! ox Pré Ox, pré Ox; P 0ox,
op
ox
Gradientofa =g % .
scalar field P ox, The gradient of

a scalar field is a
vector

gradient operation increases the order of the
entity operated upon

© Faith A. Morrison, Michigan Tech U.

Polymer Rheology

This is written in
Cartesian
coordinates

The gradient operation
captures the total spatial
variation of a scalar, vector,
or tensor field.

41

Mathematics Review

4. Differential Operations with Vectors, Tensors (continued)

B. Vectors - gradient

0 0
szél—w+é2—w+é36—w

Polymer Rheology

This is all written in

X X, X3 Cartesian
coordinates (basis
The basis vectors - é®é +W,8, +W,ye;) vectors are
can move out of ! X, B 22 33 constant)
the derivatives B
because they are
constant (do not +é Ox (Wlél W, + W3é3)
change with 2
position) 0
+,——(we, +wye, +wye,)
Ox;
ow, ow, ow, ow,
=88 —+ee,—~+ée,—+eé,e,—+
X, X, 0x, 0x,
ow, ow, ow, ow, ow,
e, —=+eée,—+ée —+éeé,—+éeé,—
ox, ox, 0ox, 3 0x;
42
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Mathematics Review
4. Differential Operations with Vectors, Tensors (continued)

B. Vectors - gradient (continued)

Gradient of a

Polymer Rheology

constants may appear
on either side of the
differential operator

_ow '

The gradient of
a vector field is a
tensor

vector field
3.3 ow, ow,
k _ k
Gibbs @ 2284 o Y% T
notation J=lk=1 J J J

20

LY_J

Einstein notation
for gradient of a
vector

43
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4. Differential Operations with Vectors, Tensors (continued)

C. Vectors - divergence

Divergence of a

vector field
Gibbs
notation — 6‘Wl + aWZ + 6WS
oxy, Ox, Ox
_y oW _ow
ia 0% Ox;

—~

vector

j WG + Wyl + Wil
X3

0 0 0
g— +6,— +é6—
(18)(1 élaxz @36

Einstein notation
for divergence of a

Polymer Rheology

The Divergence
of a vector field
is a scalar

44
© Faith A. Morrison, Michigan Tech U.
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Mathematics Review
4. Differential Operations with Vectors, Tensors (continued)

C. Vectors - divergence (continued)
constants may appear
on either side of the

differential operator
Using Einstein

entity operated upon

Polymer Rheology

This is all written in
Cartesian
coordinates (basis
vectors are
constant)

notation /\
_ 6. 8wj 0 8wj

- .= i
ax J ax y

«divergence operation decreases the order of the

45
© Faith A. Morrison, Michigan Tech U.

Mathematics Review

4. Differential Operations with Vectors, Tensors (continued)

D. Vectors - Laplacian

Using 0 0
s oo, 2,
Gibbs _ 9 90 w, (5mp) e,
notation 8xm 8xp
0 0O

J
X, 6xp

0%w;  0%*w; 9%wy
2 2 2
0xj 0x5 0x3
0%w, 0%°w, 0%w,
2 2 2
0xj 0x5 0x3

62W3 62W3 62W3

2 2 2
0x;j 0x;5 0x35

Polymer Rheology

VoVws, g = o, 0.,

ox,, Ox, /

The Laplacian of

=~ w. éj <@ | a vector field is a | Einstein

vector notation

sLaplacian operation does
not change the order of the
Column  entity operated upon

vector
notation
46
123 © Faith A. Morrison, Michigan Tech U.
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Mathematics Review Polymer Rheology

4. Differential Operations with Vectors, Tensors (continued)

. ) (impossible; cannot
E. Scalar - divergence ><a decrease order of a scalar)

F. Scalar - Laplacian V- -Va

G. Tensor - gradient

v4
H. Tensor - divergence
g V . é
I. Tensor - Laplacian
V-V4
47
© Faith A. Morrison, Michigan Tech U.
Mathematics Review Polymer Rheology
5. Curvilinear Coordinates
Note: my
7 Spherical
Cylindrical Z Spherical 6 comes
from the
Z-axis.
X
x
7,0,z é.,e,e. r,0,0 é.éye,
48
© Faith A. Morrison, Michigan Tech U.
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Mathematics Review: Curvilinear Coordinates

Cylindrical Coordinat

Polymer Rheology

System Coordinates Basis vectors

Cylindrical r=Jx2+y? e, =cosfe,+sinbe,

Cylindrical 0 = tan-1 (Z) 2y = (—sin)e, +cosOe,
X

Cylindrical z=z e, =@,

Cylindrical x=rcos6 e, =cos0@,+ (—sinB)e,

Cylindrical y=rsinf 2, =sinfe, +cosfe,

Cylindrical z=z e, =@,

Spherical Coordinates

System Coordinates Basis vectors
Spherical x =rsinfcos$ &, = (sinf cosP)e, + (cos B cos p)éy + (—sing ) &,
Spherical y =rsinf@sin¢ &, = (sin@sin )&, + (cossinP)éy + cosPp &,
Spherical z=rcosf 8, =cos0 &, + (—sinB)e,
Spherical r=Jx*+y?+22 &, = (sinf cos Pp)e, + (sinOsin )&, + cos 6,
Spherical JZry? 2y = (cos 0 cos p)e, + (cos Osin p)é, + (—sinO)e,
6 =tan! T)
Spherical ¢ = tan! (Z) &, = (—sing)e, +cospe,
Note: my x
spherical 6
comes from
the z-axis.
49
© Faith A. Morrison, Michigan Tech U.
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5. Curvilinear Coordinates
Cylindrical 7,0,z e.,e,,e. See text
figures
. A A A 211 and
Spherical r, 9,¢ €.,€y,, 512

These coordinate systems are ortho-normal, but they are not
constant (they vary with position).

This causes some non-intuitive effects when derivatives are taken.

50
© Faith A. Morrison, Michigan Tech U.
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Mathematics Review
5. Curvilinear Coordinates (continued)
V= vrer + V5,69 + vzez
V.oy= V-(vrer +vye, +v
0 .

ox *. oy’
N

ZeZ)

0 . 0 . A A A
=|—eé +—e +—e, -(vrer+v9e9+vzez)

Polymer Rheology

=cosf e, +sm9é

solve for
Cartesian
basis
vectors and
substitute
above

e,

e,
é,=—sinf e +cos6’é
e,

\/‘J
~

First, we need to write this
cylindrical coordinates.

substitute above
using chain rule
(see next slide for
details)
51
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é =cosf e —sinbé, .
é,=sin@é, +cosbé, “/ y=rsing &=tan" .
zZ=2Zz
oy, Ov, o /
e [—x ) J V4
0 \‘/8 ;77(;76 0 0 in @
dy _dyer\ oy 90 vy & l//cosg+l//(_5m j
ox Or\ox) 00 ox oz o or 06 r
W:W%av’a@ﬁw@z:@wsmmw(cowj
0y Ordy 060 dy 0z oy Or oo\ r
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ﬂcos@ r=qx*+y’
g

52

© Faith A. Morrison, Michigan Tech U.

1/29/2020



Chapter 2: Vectors and Tensors

Mathematics Review

5. Curvilinear Coordinates (continued)

notation

A

Result: v:(ﬁé +aéA+aé)
ox " oy’ oz °
9

é. —-(vrer +V,€,+V,
0z

Polymer Rheology

vV
.0 .10 .
=6 —+é,———+é,
or r oo oz
Now, proceed:
v (A8+A15+A5(A+A+A)
v=|1e —rte,——_te —|\ve v,e v.e
z 4 o~ 6
" Or rog ‘oz T o
(We cannot use
Einstein notation . 0 . . .
because these are =e. (vrer T V€ + VZ€Z)+
not Cartesian 67’
coordinates) 1 a
Curvilinear € ; -(Vrer R VZeZ)+
coordinate

)
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5. Curvilinear Coordinates (continued)

1o . . 1ove
€y ——_—_ve =¢, —
ro r 06
.~ 1( oe . Ov,
=€,—| V. + e,
r 00 06
o6,
00
Curvilinear
coordinate
notation

Polymer Rheology

. 0 (. . .
ez 672 : (vrer + Vgeg + Vzez)

06

=-sinfe +cosbe,

(cos e +sinf ey)

:ee
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5. Curvilinear Coordinates (continued)
.10 . . love,
€y———Vve =€ —
r 06 r 060
. 1( 0de . oOv,
=€ |V, +e,
r 00 o6
. 1 . . 0v
=€ v.e,te —-
1
=V, This term is not intuitive,
and appears because the
basis vectors in the
curvilinear coordinate
Curvilinear systems vary with position.
coordinate
notation 55
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Curvilinear
coordinate
notation

5. Curvilinear Coordinates (continued)

Final result for divergence of a vector

Polymer Rheology

in cylindrical coordinates:

Vo=e 2

or

: (vrer tVvye, +v.e, )+
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5. Curvilinear Coordinates (continued)

Curvilinear Coordinates (summary)

*The basis vectors are ortho-normal
*The basis vectors are non-constant (vary with position)

*These systems are convenient when the flow system
mimics the coordinate surfaces in curvilinear coordinate
systems.

*We cannot use Einstein notation — must use Tables in
Appendix C2 (pp464-468). -
Curvilinear
coordinate
notation
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6. Vector and Tensor Theorems and [n Chapter 3 we review Newtonian fluid
definitions mechanics using the vector/tensor

vocabulary we have learned thus far. We
just need a few more theorems to prepare
us for those studies. These are presented
without proof.

Gauss Divergence Theorem outwardly

directed unit

Gibbs I}[IVQde.[:[ﬁl—) dsS normal

notation

This theorem establishes the utility of the
divergence operation. The integral of the
divergence of a vector field over a volume is
equal to the net outward flow of that property
through the bounding surface.
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6. Vector and Tensor Theorems (continued)
Leibnitz Rule for differentiating integrals \
/\ g
constant limits I = J-f(xa t) dx
\_/v a one

== [ f(x.0) dx

constant
limits

dimension,
df >

60

© Faith A. Morrison, Michigan Tech U.

1/29/2020

30



Chapter 2: Vectors and Tensors 1/29/2020

Mathematics Review Polymer Rheology
6. Vector and Tensor Theorems (continued)
Leibnitz Rule for differentiating integrals \
B()
— J f( X, t) dx variable limits
a(t)v\_/
5(6) one
dJ d dimension,
If (x,1) dx variable
dt dt o
a(t) limits
B
L) gy BB i
P f (p.1)— f (a,
al(t) t
61
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6. Vector and Tensor Theorems (continued)
Leibnitz Rule for differentiating integrals \
J=ﬂjf(x,y,z,r) av
V(1)
three

dt dt J‘” fx,p,2,0)dV >dim_ensio_ns_,

variable limits
V()

LR gy sl

V(1) S(t)

velocity of the surface element dS

J

© Faith A. Morrison, Michigan Tech U.

31



Chapter 2: Vectors and Tensors

Mathematics Review

6. Vector and Tensor Theorems (continued)

Substantial Derivative

dt \ox/ _ dt

Oy

Consider a function

Polymer Rheology

J(x,y,2,0)

true for an
pat dfz(gj dx+(%) d +(afj dz +(1j d
ox/ ., oy Oz ot/ .

spoclpon  df (afj dx (81’ j

o @ 42

xyt xyz
time rate of [ \[\j
change of f X-component When the chosen path is
along a chosen of velocity the path of a fluid particle,
path along that path then these are the

components of the
particle velocities.

63
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6. Vector and Tensor Theorems (continued)

When the chosen
path is the path of

a fluid particle,

then the space f dx
derivatives are the _—= —+
components of the dt 8 dt

particle velocities. l

7f) dong (B_Q Vet

Polymer Rheology

Substantial Derivative

Q{ﬂ) %{Q)
dt \oz) , di \aot)

(D) ().

ap é)tt’llrtzcle yzt xzt xyt/
Y
v-Vf
Substantial Derivative
d Df 0
(l ] = _f — l +v- Vf
along -
dt a particle Dt 8t
path
Gibt?s o
notation
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Notation Summary:

Gibbs—no reference to coordinate system (a,4,Vp,V - a)
Einstein—references to Cartesian coordinate system
(ortho-normal, constant) (a;é;, Apré,é)
Matrix—uses column or row vectors for vectors and 3 x 3
matrix of coefficients for tensors 4, Ay Ay A
< >123‘< )123

az Azr Az Az
as Az Az Asz

Curvilinear coordinate—references to curvilinear
coordinate system (ortho-normal, vary with
position) /a, A Avg Ary

(‘19) | Aor Age  Asz
az roz Azr A29 Azz roz
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Done with Math
background.

Let’s use it with
Newtonian fluids

Chapter 3: Newtonian Fluids

CM4650
Polymer Rheology
Michigan Tech

ety

Navier-Stokes Equation TR

P(%+E'VE) =—Vp+uViv+pg
B g
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