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How can we investigate non-Newtonian behavior?

Newtonian fluids: non-Newtonian fluids: 
vs
.

𝜏ഭ ൌ െ𝜇𝛾ሶഭ 𝜏ഭ ് െ𝜇𝛾ሶഭ

Chapter 4:  Standard Flows for Rheology

© Faith A. Morrison, Michigan Tech U.
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On to . . . Polymer Rheology . . .

© Faith A. Morrison, Michigan Tech U.

We now know how to model Newtonian fluid motion,                             :
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Rheological Behavior of Fluids – Non-Newtonian

How do we model the motion of Non-Newtonian fluid fluids?
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Rheological Behavior of Fluids – Non-Newtonian
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This is the 
missing piece

How do we model the motion of Non-Newtonian fluid fluids?

Chapter 4:  Standard Flows for Rheology

© Faith A. Morrison, Michigan Tech U.
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Chapter 4:  Standard flows
Chapter 5:  Material Functions
Chapter 6:  Experimental Data

Chapter 7:  GNF
Chapter 8:  GLVE
Chapter 9:  Advanced

New Constitutive Equations

To get to constitutive 
equations, we must 
first quantify how 

non-Newtonian fluids 
behave

𝜏ഭ ൌ 𝑓 𝑥പ , 𝑡
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1.  Strain response to 
imposed shear stress 
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2.  Pressure-driven flow in 
a tube (Poiseuille flow)

•shear rate is constant
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3.  Stress tensor in shear 
flow
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•viscosity is constant •only two components are 
nonzero
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Rheological Behavior of Fluids – Newtonian

What do we observe?

© Faith A. Morrison, Michigan Tech U.

1.  Strain response to imposed shear 
stress

•shear rate is variable

3.  Stress tensor in shear flow
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•viscosity is variable •all 9 components are nonzero
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Rheological Behavior of Fluids – Non-Newtonian

What do we observe?
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Non-Newtonian Constitutive Equations

© Faith A. Morrison, Michigan Tech U.
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• We have observations that some materials 
are not like Newtonian fluids.

• How can we be systematic about developing 
new, unknown models for these materials?

Need measurements

For Newtonian fluids, measurements 
were easy:  
• independent of flow (use shear flow) 
• one stress, 𝜏ଶଵ
• one material constant, 𝜇 (viscosity)

x1

x2

x3

H

W V

v1(x2)

𝜏ഭ ൌ െ𝜇 𝛻𝑣പ ൅ 𝛻𝑣പ ்

Non-Newtonian Constitutive Equations

© Faith A. Morrison, Michigan Tech U.
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Need measurements

For non-Newtonian fluids, 
measurements are not easy: 

• Depends on the flow (shear flow is not the only choice) 
• Four non-zero stresses even in shear, 𝜏ଶଵ, 𝜏ଵଵ, 𝜏ଶଶ, 𝜏ଷଷ
• Unknown number of material constants in 𝜏ഭሺ𝑣പሻ
• Unknown number of material functions in 𝜏ഭሺ𝑣പሻ

x1

x2

x3

H

W V

v1(x2)

𝜏ഭ ൌ? ? ?
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Non-Newtonian Constitutive Equations

© Faith A. Morrison, Michigan Tech U.
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Need measurements

For non-Newtonian fluids, 
measurements are not easy: 

• Depends on the flow (shear flow is not the only choice) 
• Four non-zero stresses even in shear, 𝜏ଶଵ, 𝜏ଵଵ, 𝜏ଶଶ, 𝜏ଷଷ
• Unknown number of material constants in 𝜏ഭሺ𝑣പሻ
• Unknown number of material functions in 𝜏ഭሺ𝑣പሻ

x1

x2

x3

H

W V

v1(x2)

𝜏ഭ ൌ? ? ?

We know we 
need to make 

measurements to 
know more,

Non-Newtonian Constitutive Equations

© Faith A. Morrison, Michigan Tech U.
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Need measurements

For non-Newtonian fluids, 
measurements are not easy: 

• Depends on the flow (shear flow is not the only choice) 
• Four non-zero stresses even in shear, 𝜏ଶଵ, 𝜏ଵଵ, 𝜏ଶଶ, 𝜏ଷଷ
• Unknown number of material constants in 𝜏ഭሺ𝑣പሻ
• Unknown number of material functions in 𝜏ഭሺ𝑣പሻ

x1

x2

x3

H

W V

v1(x2)

𝜏ഭ ൌ? ? ?

We know we 
need to make 

measurements to 
know more,

But, because we do not 
know the functional form of 
𝜏ഭሺ𝑣പሻ, we don’t know what we 

need to measure to know 
more!
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Non-Newtonian Constitutive Equations

© Faith A. Morrison, Michigan Tech U.
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What should we do?

Non-Newtonian Constitutive Equations

© Faith A. Morrison, Michigan Tech U.
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What should we do?

1. Pick a small number of simple flows
• Standardize the flows
• Make them easy to calculate with
• Make them easy to produce in the lab

Chapter 4:  Standard flows
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Non-Newtonian Constitutive Equations

© Faith A. Morrison, Michigan Tech U.
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What should we do?

1. Pick a small number of simple flows

2. Make calculations
3. Make measurements

• Standardize the flows
• Make them easy to calculate with
• Make them easy to produce in the lab

Chapter 5:  Material Functions
Chapter 6:  Experimental Data

Chapter 4:  Standard flows

Non-Newtonian Constitutive Equations

© Faith A. Morrison, Michigan Tech U.
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What should we do?

1. Pick a small number of simple flows

2. Make calculations
3. Make measurements
4. Try to deduce 𝜏ഭሺ𝑣പሻ

• Standardize the flows
• Make them easy to calculate with
• Make them easy to produce in the lab

Chapter 5:  Material Functions
Chapter 6:  Experimental Data

Chapter 4:  Standard flows

Chapter 7:  GNF
Chapter 8:  GLVE
Chapter 9:  Advanced
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Tactic:  Divide the 
Problem in half
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Modeling Calculations Experiments

Standard Flows

Dream up models

Calculate material 
functions from 
model stresses

Determine 
material functions 

from measured 
stresses

Compare

Calculate model 
predictions for 

stresses in 
standard flows

Build experimental 
apparatuses that 

allow measurements 
in standard flows 

Pass judgment 
on models

Collect models and their report 
cards for future use

© Faith A. Morrison, Michigan Tech U.
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Standard flows – choose a velocity field (not an apparatus or a 
procedure)

•For model predictions, calculations are straightforward
•For experiments, design can be optimized for accuracy and 
fluid variety

Material functions – choose a common vocabulary of stress and 
kinematics to report results

•Make it easier to compare model/experiment
•Record an “inventory” of fluid behavior (expertise)
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How can we investigate non-Newtonian behavior?

Newtonian fluids: non-Newtonian fluids: 
vs
.

© Faith A. Morrison, Michigan Tech U.
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Near solid surfaces, the 
flow is shear flow.

© Faith A. Morrison, Michigan Tech U.
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Experimental Shear Geometries

© Faith A. Morrison, Michigan Tech U.
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x3

neutral 
direction

x1

x2

flow direction

gradient 
direction

Standard Nomenclature for Shear Flow

© Faith A. Morrison, Michigan Tech U.
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 x1

 x2

Why is shear a standard flow?

•simple velocity field
•represents all sliding flows
•simple stress tensor

© Faith A. Morrison, Michigan Tech U.
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How do 
particles move 
apart in shear 
flow?

Consider two 
particles in the 
same x1-x2 plane, 
initially along the 
x2 axis.

© Faith A. Morrison, Michigan Tech U.
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𝑃ଶ 0, 𝑙ଶ, 0

𝑃ଵ 0, 𝑙ଵ, 0

𝑃ଶ 𝛾ሶ଴𝑙ଶ𝑡, 𝑙ଶ, 0

𝑃ଵ 𝛾ሶ଴𝑙ଵ𝑡, 𝑙ଵ, 0

𝑥ଵ ൌ 𝑥ଵ,଴ ൅ 𝑣ଵ𝑡
𝑣ଵ ൌ 𝛾ሶ଴𝑥ଶ

𝑙 ൎ 𝑙଴𝛾ሶ𝑡 at long times

𝑃ଶ 𝑡 :   𝑥ଵ ൌ 𝛾ሶ଴𝑙ଶ𝑡

𝑃ଵ 𝑡 :   𝑥ଵ ൌ 𝛾ሶ଴𝑙ଵ𝑡

How do particles 
move apart in 
shear flow?

Consider two 
particles in the 
same x1-x2 plane, 
initially along the x2

axis (x1=0).

© Faith A. Morrison, Michigan Tech U.
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𝑣ଵ ൌ 𝛾ሶ଴𝑥ଶ
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𝑣ଵ ൌ 𝛾ሶ଴𝑥ଶ
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What is the separation of the 
particles after time t?

© Faith A. Morrison, Michigan Tech U.
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Uniaxial Elongational Flow
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© Faith A. Morrison, Michigan Tech U.
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Uniaxial Elongational Flow
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Elongational flow occurs when there is 
stretching - die exit, flow through contractions

fluid

© Faith A. Morrison, Michigan Tech U.
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air-bed to support sample
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 h(t) R(t)

 R(to)

 h(to)
 x1

 x3

thin, lubricating
layer on each
plate

Experimental Elongational Geometries

© Faith A. Morrison, Michigan Tech U.
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www.xpansioninstruments.com

Sentmanat Extension Rheometer (2005) 

•Originally developed for rubbers, 
good for melts
•Measures elongational viscosity, 
startup, other material functions
•Two counter-rotating drums
•Easy to load; reproducible

32

© Faith A. Morrison, Michigan Tech U.

http://www.xpansioninstruments.com/rheo-optics.htm 
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Why is elongation a standard flow?

•simple velocity field
•represents all stretching flows
•simple stress tensor

© Faith A. Morrison, Michigan Tech U.
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How do particles 
move apart in 
elongational flow?

Consider two 
particles in the 
same x1-x3 plane, 
initially along the 
x3 axis.
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© Faith A. Morrison, Michigan Tech U.

34



CM4650 Lectures 1-3:  Intro, Mathematical 
Review

2/3/2020

18

How do particles move apart in elongational flow?

Consider two particles in the same x1-x3 plane, initially along the x3 axis.
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Particles move apart exponentially fast.

air under
pressure

P

A second type of shear-free flow: Biaxial Stretching
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fluid

a

2a

a

a

How do uniaxial and biaxial deformations differ?

Consider a uniaxial
flow in which a 
particle is doubled in 
length in the flow 
direction.

2

a

2

a

© Faith A. Morrison, Michigan Tech U.
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Consider a biaxial
flow in which a 
particle is doubled in 
length in the flow 
direction.

a

2a

a

a

2a

 a/4

How do uniaxial and biaxial deformations differ?

© Faith A. Morrison, Michigan Tech U.
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A third type of shear-free flow:  
Planar Elongational Flow

© Faith A. Morrison, Michigan Tech U.
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All three shear-free flows can be written together as:
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Elongational flow:  b=0, 

Biaxial stretching:  b=0,

Planar elongation: b=1,
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Why have we chosen these flows?

© Faith A. Morrison, Michigan Tech U.

ANSWER: Because these simple flows have 
symmetry.

And symmetry allows us to draw 
conclusions about the stress tensor 
that is associated with these flows 
for any fluid subjected to that flow.

41

123333231

232221

131211
























In general:

© Faith A. Morrison, Michigan Tech U.

But the stress tensor is symmetric – leaving 6 independent 
stress components.

Can we choose a flow to use in which there are fewer than 6 
independent stress components?

Yes we can – symmetric flows

42



CM4650 Lectures 1-3:  Intro, Mathematical 
Review

2/3/2020

22

How does the stress tensor simplify for 
shear (and later, elongational) flow?

 1230,1,3P

1̂e

2ê

2e

1e

  3210,1,3P

© Faith A. Morrison, Michigan Tech U.
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What would the velocity function be for a 
Newtonian fluid in this coordinate system?

© Faith A. Morrison, Michigan Tech U.
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What would the velocity function be for a 
Newtonian fluid in this coordinate system?

© Faith A. Morrison, Michigan Tech U.
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Vectors are independent of coordinate system, but in general the 
coefficients will be different when the same vector is written in two 
different coordinate systems:

© Faith A. Morrison, Michigan Tech U.

321
3

2

1

1233

2

1



































v

v

v

v

v

v

v

For shear flow and the two particular coordinate systems we have 
just examined, however:
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© Faith A. Morrison, Michigan Tech U.
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If we plug in the same number in for 𝑥2 and 𝑥̅2, we will NOT be 
asking about the same point in space, but we WILL get the same 
exact velocity vector.  

Since stress is calculated from the velocity field, we will get the same 
exact stress components when we calculate them from either 
vector representation.

x1

x2

1x

2x

This is an unusual 
circumstance only true for 
the particular coordinate 
systems chosen.

47

𝑣௡ ൌ 𝑣̅௡
𝜏௣௞ ൌ 𝜏̅௣௞

© Faith A. Morrison, Michigan Tech U.

What do we learn if we formally transform v from 
one coordinate system to the other?
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© Faith A. Morrison, Michigan Tech U.

What do we learn if we formally transform 𝜏ഭ
from one coordinate system to the other?

49

𝑒̂ଵ ൌ െ𝑒̅ଵ
𝑒̂ଶ ൌ െ𝑒̅ଶ
𝑒̂ଷ ൌ 𝑒̅ଷ

© Faith A. Morrison, Michigan Tech U.

What do we learn if we formally transform v from 
one coordinate system to the other?

50

𝜏ഭ ൌ 𝜏௠௦𝑒̂௠𝑒̂௦ ൌ 𝜏̅௠௦𝑒̅௠𝑒̅௦

(now, substitute from previous 
slide and simplify)

You try.
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Because of symmetry, there are only 5 nonzero components of the 
extra stress tensor in shear flow.

SHEAR:

This greatly simplifies the experimentalists tasks as only four stress 
components must be measured instead of 6 ሺrecall 𝜏ଶଵൌ 𝜏ଵଶሻ.                  

© Faith A. Morrison, Michigan Tech U.
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Conclusion:

Summary:

© Faith A. Morrison, Michigan Tech U.

We have found a coordinate system (the shear 
coordinate system) in which there are only 5 
non-zero coefficients of the stress tensor.  In 
addition, 𝜏ଶଵ ൌ 𝜏ଵଶ.

This leaves only four stress components to be 
measured for this flow, expressed in this 
coordinate system.
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1x

2x

21, xx

3x

How does the stress tensor simplify for 
elongational flow?

There is 180o of symmetry around all three 
coordinate axes.

© Faith A. Morrison, Michigan Tech U.
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Because of symmetry, there are only 3 nonzero components of the 
extra stress tensor in elongational flows.

ELONGATION:

This greatly simplifies the experimentalists tasks as only three 
stress components must be measured instead of 6.                       

© Faith A. Morrison, Michigan Tech U.
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© Faith A. Morrison, Michigan Tech U.

Standard Flows Summary
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Choose velocity field: Symmetry alone implies:
(no constitutive equation needed yet)

By choosing these symmetric flows, we have reduced the number of stress 
components that we need to measure.
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Tactic:  Divide the 
Problem in half

56

Modeling Calculations Experiments

Standard Flows

Dream up models

Calculate material 
functions from 
model stresses

Determine 
material functions 

from measured 
stresses

Compare

Calculate model 
predictions for 

stresses in 
standard flows

Build experimental 
apparatuses that 

allow measurements 
in standard flows 

Pass judgment 
on models

Collect models and their report 
cards for future use
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© Faith A. Morrison, Michigan Tech U.

123

3

2

1

)(

)1)((
2

1

)1)((
2

1





























xt

xbt

xbt

v













12333

22

11

00

00

00
























12333

2221

1211

00

0

0























123

2

0

0

)(


















xt

v



Choose velocity field:
Symmetry alone implies:
(no constitutive equation needed yet)

Next, build and assume this

Measure and 
predict this

One final comment on measuring stresses. . . 

123333231
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p

p

p

What is measured is the total stress, :

For the normal stresses we are faced with the 
difficulty of separating p from tii.

Incompressible fluids:Compressible fluids:

V

nRT
p 

Get p from 
measurements of 
T and V. ?

© Faith A. Morrison, Michigan Tech U.
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3/ cmg



gas density

P
RT

M


polymer density

incompressible fluid

Density does not vary (much) with pressure for polymeric fluids.

© Faith A. Morrison, Michigan Tech U.
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For incompressible fluids it is not possible to  separate p from tii.

Luckily, this is not a problem since we

only need  p

gP

gvv
t

v











Equation of motion
We do not 
need tii directly 
to solve for 
velocities

Solution?  Normal stress differences

© Faith A. Morrison, Michigan Tech U.
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Normal Stress Differences

332233222

221122111






N

N
First normal stress 
difference

Second normal stress 
difference

2121 ,, NN
In shear flow, three stress 

quantities are measured

In elongational flow, two stress 
quantities are measured 11221133 ,  

© Faith A. Morrison, Michigan Tech U.
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Normal Stress Differences

332233222

221122111






N

N
First normal stress 
difference

Second normal stress 
difference

2121 ,, NN
In shear flow, three stress 

quantities are measured

In elongational flow, two stress 
quantities are measured 11221133 ,  

© Faith A. Morrison, Michigan Tech U.
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Are shear 
normal 
stress 

differences 
real?
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First normal stress effects: rod climbing

Bird, et al., Dynamics of Polymeric Fluids, vol. 1, 
Wiley, 1987, Figure 2.3-1 page 63. (DPL)

Newtonian - glycerin Viscoelastic - solution of 
polyacrylamide in glycerin

02211 
Extra tension in the 1-direction pulls 

azimuthally and upward (see DPL p65).

© Faith A. Morrison, Michigan Tech U.
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Second normal stress effects: inclined open-
channel flow

R. I. Tanner, Engineering Rheology, 
Oxford 1985, Figure 3.6 page 104

Newtonian - glycerin Viscoelastic - 1% soln of 
polyethylene oxide in water

03322 
Extra tension in the 2-direction pulls down the free 
surface where dv1 /dx2 is greatest (see DPL p65).

N2 ~ -N1 /10

© Faith A. Morrison, Michigan Tech U.
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Example:  Can the equation of motion predict rod 
climbing for typical values of N1, N2?

 z

A


fluid

R
 r

 

 R

cross-section A:

zr

vv





















0

0

Bird et al. p64

?isWhat
dr

d zz

© Faith A. Morrison, Michigan Tech U.© Faith A. Morrison, Michigan Tech U.
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www.chem.mtu.edu/~fmorriso/cm4650/rod_climb.pdf
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What’s next?
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Elongational flow:  b=0,

Biaxial stretching:  b=0,

Planar elongation: b=1,

0)( t
0)( t
0)( t

Shear

Shear-free 
(elongational, 
extensional)

Even with just these 2 (or 4) 
standard flows, we can still generate 
an infinite number of flows by 
varying ).(and)( tt  

© Faith A. Morrison, Michigan Tech U.
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We seek to quantify 
the behavior of non-
Newtonian fluids

6a. Compare measured 
material functions with 
predictions of these material 
functions (from proposed 
constitutive equations).

7a. Choose the most 
appropriate constitutive 
equation for use in numerical 
modeling.

6b. Compare measured 
material functions with 
those measured on other 
materials.

7a. Draw conclusions on 
the likely properties of the 
unknown material based on 
the comparison.

Procedure:

1. Choose a flow type (shear or a type of elongation).

2. Specify                     as appropriate.

3. Impose the flow on a fluid of interest.

4. Measure stresses.

5. Report stresses in terms of material functions.

)(or)( tt  

2121 ,, NN
11221133 ,  

shear

elongation

© Faith A. Morrison, 
Michigan Tech U.
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Done with 
Standard Flows.

Let’s move on to 
Material 
Functions
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Chapter 5:  Material Functions

© Faith A. Morrison, Michigan Tech U.
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CM4650 
Polymer Rheology 

Michigan TechSteady Shear Flow Material Functions

constant)( 0    t

Kinematics:

123

2

0

0

)(


















xt

v



Material Functions:
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Viscosity

First normal-stress 
coefficient

Second normal-
stress coefficient

© Faith A. Morrison, Michigan Tech U.


