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We propose the notions of tamper-evident stabilization and flexible tamper-evident 
stabilization – that combine stabilization with the concept of tamper evidence – for 
computing systems. On the first glance, these notions are contradictory; stabilization 
requires that eventually the system functionality is fully restored whereas tamper evidence 
requires that the system functionality is permanently degraded in the event of tampering. 
Tamper-evident stabilization and flexible tamper-evident stabilization capture the intuition 
that the system will tolerate perturbations upto a limit. In the event that it is perturbed 
beyond that limit, it will exhibit permanent evidence of tampering, where it may provide 
reduced (possibly none) functionality. We compare tamper-evident stabilization with 
(conventional) stabilization and with active stabilization and propose two approaches 
to verify tamper-evident and flexible tamper-evident stabilizing programs in polynomial 
time in the size of state space. We demonstrate tamper-evident stabilization with two 
examples and point out some of its potential applications. We also demonstrate how 
approaches for designing stabilization can be used to design tamper-evident and flexible 
tamper-evident stabilizations. Finally, we study issues of composition in tamper-evident 
and flexible tamper-evident stabilizations and discuss how tamper-evident stabilization 
can effectively be used to provide tradeoff between fault-prevention and fault tolerance.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

A stabilizing system [15] ensures that it will recover to a set of legitimate states (S in Fig. 1(a), a.k.a invariant) even if 
it starts executing from an arbitrary state. For this reason, stabilization is often utilized as a type of fault-tolerance that 
requires recovery from unexpected transient faults. In other words, if the faults perturb the system to an arbitrary state, 
the goal of stabilizing systems is to ensure that the system will recover to the legitimate states with the assumption that 
no additional faults will occur. Nevertheless, stabilizing systems may not recover to legitimate states in the presence of 
tampering. Tamper-resistant systems are mostly utilized for secure chip designs (e.g. [37]). While tamper-resistant systems 
can prevent tampering to some degree, if tampering cannot be prevented, the system reaches a set of states where in the 
system is less functional/inoperable (S2 in Fig. 1(b)).

The notion of tamper resistance is contradictory to the notion of stabilization in that the notion of stabilization requires 
that in spite of any possible tampering the system inherently acquires its usefulness eventually. Therefore, in this paper, 
we combine these two seemingly conflicting concepts to benefit from the advantages of both. Specifically, we introduce the 
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Fig. 1. Stabilization vs. tamper-resistance.

notions of tamper-evident stabilizing and flexible tamper-evident stabilizing systems, and identify their properties in terms 
of composition, verification, and synthesis. The notions of tamper-evident and flexible tamper-evident stabilizing systems 
are motivated by the need for tamper-resistant systems that also stabilize. A tamper-resistant system ensures that an effort 
to tamper with the system makes the system less useful/inoperable (e.g., by zeroing out sensitive data in a chip or voiding 
the warranty).

Intuitively, the notions of tamper-evident and flexible tamper-evident stabilizations are based on the observation that all 
tamper-resistant systems tolerate some level of tampering without making the system less useful/inoperable. For example, 
a tamper-resistant chip may have a circuitry that does some rudimentary checks on the input and discards the input if the 
check fails. A communication protocol may use CRC to ensure that most random bit-flips in the message are tolerated with-
out affecting the system. However, if the tampering is beyond some acceptable level then they become less useful/inoperable 
(see Fig. 1(b)). Based on this intuition, we observe that tamper-evident and flexible tamper-evident stabilizing systems will 
recover to their legitimate states if their perturbation is within an acceptable limit. However, if they are perturbed outside 
this boundary, they will make themselves inoperable. Moreover, when the systems enter the mode of making themselves 
inoperable, it is necessary that it cannot be prevented.

Thus, if a tamper-evident stabilizing system is outside its normal legitimate states, it is in one of two modes: recovery 
mode, where it is trying to restore itself to a legitimate state (the T area in Fig. 1(c)), or tamper-evident mode, where it is 
trying to make itself inoperable (the ¬T area in Fig. 1(c)). The recovery mode is similar to the typical stabilizing systems 
in that the recovery should be guaranteed after external perturbations stop. However, in the tamper-evident mode, it is 
essential that the system makes itself inoperable even if outside perturbations continue.

To realize the last requirement, we need to make certain assumptions about what external perturbations can be per-
formed during tamper-evident mode. For example, if these perturbations could restore the system to a legitimate state 
then designing tamper-evident stabilizing systems would be impossible. Hence, we view the system execution to consist 
of (1) program executions (in the absence of fault and adversary); (2) program executions in the presence of faults; and 
(3) program execution in the presence of adversary.

Faults are random events that perturb the system randomly and rarely. By contrast, the adversary is actively preventing 
the system from making itself inoperable. However, unlike faults, the adversary may not be able to perturb the system to 
an arbitrary state. Also, unlike faults, adversary may continue to execute forever. Even if the adversary executes forever, it 
is necessary that system actions have some fairness during execution. Hence, we assume that the system can make some 
number of steps between two steps of the adversary (in our formal definitions, we have this number of steps as strictly 
greater than 1).

Moreover, the notion of flexible tamper-evident stabilization is a more general definition of tamper-evident stabilization. 
Specifically, if a flexible tamper-evident stabilizing system is outside its legitimate states, it is in one of the recovery, tamper-
evident, or boundary modes. The first two modes are similar to those in tamper-evident stabilizing systems. In the boundary 
mode, while the system can recover to either the set of legitimate states or tamper-evident states, an authorized operator 
decides to which set of states recovery should be achieved (depending on other environmental knowledge unavailable to 
the system).

The contributions of this paper are as follows. We

• formally define the notions of tamper-evident stabilization and flexible tamper-evident stabilization;
• compare the notion of tamper-evident stabilization with (conventional) stabilization and active stabilization, where a 

system stabilizes in spite of the interference of an adversary [12];
• present algorithms for the verification of tamper-evident stabilization and flexible tamper-evident stabilization;
• identify potential applications of tamper-evident stabilization and illustrate it with three examples;
• present some theorems about composing tamper-evident stabilizing and flexible tamper-evident stabilizing systems, and
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• identify how methods for designing stabilizing programs can be used in designing tamper-evident stabilizing systems. 
We also identify potential obstacles in using those methods.

Organization. The rest of the paper is organized as follows: Section 2 presents the preliminary concepts on stabi-
lization. Section 3 introduces the notion of tamper-evident stabilization and illustrates it with an example. Section 3.2
provides another tamper-evident stabilizing program that demonstrates why tamper-evident stabilization is desirable over 
(conventional) stabilization. Section 4 compares tamper-evident stabilization with (conventional) stabilization and active 
stabilization. Section 5 represents an algorithm for verification of tamper-evident stabilizing programs. Section 6 explains 
several potential applications for tamper-evident stabilization. Section 7 introduces the notion of flexible tamper-evident 
stabilization, describes its relation with tamper-evident stabilization, and proposes an approach for verification of flexible 
tamper-evident stabilizing programs. Section 8 evaluates the composition of tamper-evident and flexible tamper-evident 
stabilizing systems. Section 9 describes a design methodology for tamper-evident stabilizing programs. The relationship be-
tween tamper-evident stabilization and other stabilizing techniques is discussed in Section 10. Finally, Section 11 concludes 
our paper.

2. Preliminaries

Our program modeling utilizes standard approach for defining interleaving programs, stabilization [16,5,17], and active 
stabilization [12]. A program includes (1) a finite set of variables with (finite or any finite abstraction of an infinite state 
system) domain, and (2) a set of guarded commands (a.k.a. actions) [16] that update those program variables atomically. 
Since these internal variables are not needed in the definitions involved in this section, we describe a program, say p, in 
terms of its state space S p , and its transitions δp ⊆ S p × S p , where S p is obtained by assigning each variable in program p
a value from its domain.

Definition 1 (Program). A program p is of the form 〈S p, δp〉 where S p is the state space of program p and δp ⊆ S p × S p .

Assumption 1. Given a program p, if some state, say s, in S p has no outgoing transition then we add transition (s, s). The 
rest of the definitions in this paper are with respect to a program that is modified in this fashion. The purpose of this 
change is only to simplify subsequent definitions by obviating the need to consider terminating behaviors explicitly. It does 
not restrict programs.

Definition 2 (State predicate). A state predicate of a program p is any subset of S p .

Definition 3 (Computation). Let p be a program with state space S p and transitions δp . We say that a sequence 〈s0, s1, s2, ...〉
is a computation iff

• ∀ j ≥ 0 :: (s j, s j+1) ∈ δp

Definition 4 (Closure). A state predicate S of a program p = 〈S p, δp〉 is closed in p iff ∀s0, s1 ∈ S p :: (s0 ∈ S ∧ (s0, s1) ∈ δp) ⇒
(s1 ∈ S).

Definition 5 (Invariant). A state predicate S is an invariant of a program p iff S is closed in p.

Remark 1. Normally, the definition of invariant (legitimate states) also includes a requirement that computations of p
that start from an invariant state are correct with respect to its specification. The theory of tamper-evident stabilization is 
independent of program behaviors inside legitimate states. Instead, it only focuses on the behavior of p outside its legitimate 
states. We have defined the invariant in terms of the closure property alone since it is the only relevant property in the 
definitions/theorems/examples in this paper.

Definition 6 (Convergence). Let p be a program with state space S p and transitions δp . Let S and T be state predicates of p. 
We say that T converges to S in p iff

• S ⊆ T ,
• S is closed in p,
• T is closed in p, and
• For any computation σ = 〈s0, s1, s2, ...〉 of p if s0 ∈ T then there exists l such that sl ∈ S .

Definition 7 (Stabilization). Let p be a program with state space S p and transitions δp . We say that program p is stabilizing
for invariant S iff S p converges to S in p.
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Definition 8 (Faults). Faults for program p = 〈S p, δp〉 is a subset of S p × S p ; i.e., the faults can perturb the program to any 
arbitrary state.

The adversary, say adv , for the program p is defined in terms of its transitions. This allows us to model the limited set 
of actions the adversary may be allowed to execute. A typical stabilizing program in the literature considers the case where 
faults perturb the system to an arbitrary state. Subsequently, the goal of the program is to ensure that the system will 
recover to a legitimate state with the assumption that no additional faults will occur. However, unlike faults, the adversary 
actions may never stop. In particular, it would be unreasonable to assume that the adversary actions stop for a long enough 
time for the system to stabilize. Using the approach in [12,26], we define the adversary as follows and define the notion of 
tamper-evident stabilization with respect to the capabilities of the given adversary.

Definition 9 (Adversary). We define an adversary for program p = 〈S p, δp〉 to be a subset of S p × S p .

Next, we define a computation of the program, say p, in the presence of the adversary, say adv .

Definition 10 (〈p, adv, k〉-computation). Let p be a program with state space S p and transitions δp . Let adv be an adversary 
for program p and k be an integer greater than 1. We say that a sequence 〈s0, s1, s2, ...〉 is a 〈p, adv, k〉-computation iff

• ∀ j ≥ 0 :: s j ∈ S p ,
• ∀ j ≥ 0 :: (s j, s j+1) ∈ δp ∪ adv , and
• ∀ j ≥ 0 :: ((s j, s j+1) /∈ δp) ⇒ (∀l | j < l < j + k :: (sl, sl+1) ∈ δp).

Observe that a 〈p, adv, k〉-computation guarantees that there are at least k − 1 program transitions/actions between any 
two adversary actions for k > 1. Moreover, the adversary is not required to execute in a 〈p, adv, k〉-computation.

Remark 2 (Fairness among program transitions). The above definition and Definition 3 only consider fairness between pro-
gram actions and adversary actions. If a program requires fairness among its actions to ensure stabilization, they can be 
strengthened accordingly. This issue is outside the scope of this paper.

Definition 11 (〈p, adv, k〉-convergence). Let p be a program with state space S p and transitions δp . Let S and T be state 
predicates of p. Let adv be an adversary for p and let k be an integer greater than 1. We say that T 〈adv, k〉-converges to S
in p in the presence of adversary adv (i.e. T 〈p, adv, k〉-converges to S) iff

• S ⊆ T ,
• S is closed in p ∪ adv ,
• T is closed in p ∪ adv , and
• For any 〈p, adv, k〉-computation σ (=〈s0, s1, s2, ...〉 ) if s0 ∈ T then there exists l such that sl ∈ S .

Observe that, in Definition 7, the program converges to its legitimate states in the presence of faults. However, if a 
self-stabilizing program is perturbed by an adversary continuously, it may not converge to its legitimate states. Active 
stabilizing systems consider the adversary actions too and converge to legitimate states even if they are perturbed by the 
adversary continuously. Hence, utilizing Definition 11, we define active stabilization as follows [12].

Definition 12 (Active stabilization). Let p be a program with state space S p and transitions δp . Let adv be an adversary for 
program p and k be an integer greater than 1. We say that program p is strong k-active stabilizing with adversary adv for 
invariant S iff S p 〈p, adv, k〉-converges to S in p.

3. Tamper-evident stabilization

In this section, we formally define tamper-evident stabilization utilizing the aforementioned definitions in Section 2 and 
illustrate it in the context of the well-known token ring program [15]. Specifically, we define a program that converges 
(1) to its legitimate states in the presence of faults, and (2) to a set of states, called tamper-evident states, if it is perturbed 
by an adversary continuously. We call the set of legitimate states S1 and the set of tamper-evident states S2. Additionally, 
we define a boundary T upto which the program will recover to its legitimate states S1. If the program goes outside 
this boundary, it will converge to the tamper-evident states S2 (See Fig. 1(c)). Hence, we define tamper-evident stabilizing 
programs as follows.

Definition 13 (Tamper-evident stabilization). Let p be a program with state space S p and transitions δp . Let adv be an 
adversary for program p. And, let k be an integer greater than 1. We say that program p is k-tamper-evident stabilizing with 
adversary adv for invariants 〈S1, S2〉 iff there exists T
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• T converges to S1 in p
• ¬T 〈adv, k〉-converges to S2 in p.

From the above definition (especially closure of T and ¬T ), it follows that S1 and S2 must be disjoint (See Fig. 1(c)). In 
addition, tamper-evident stabilization provides no guarantees about program behaviors if the adversary executes in T .

Remark 3. Observe that in the above definition, k must be greater than 1, as k = 1 allows the adversary to prevent the 
program from executing entirely. In terms of permitted values of k, k = 2 provides the maximum power to the adversary. 
Hence, in most cases, in this paper we will consider k = 2. In this case, we will omit the value of k. In other words, 
tamper-evident stabilizing is the same as 2-tamper-evident stabilizing.

Definition 13 defines tamper-evident stabilization. Next, in Definitions 14 and 15, we argue how it relates to (pure) 
tamper evidence and (pure) stabilization. The intuition behind a (pure) tamper-evident system is that if the system is 
perturbed beyond its legitimate states then any such perturbation must always be preserved. Such a systems treat any 
perturbations outside legitimate states as tampering and requires that its evidence should never be erased. If we use S1 to 
denote the legitimate states of the program then (pure) tamper evidence requires that if the system is perturbed beyond S1
then this would be preserved, say by eventually satisfying a predicate S2 (that is disjoint from S1) at all times. Moreover, 
this should occur even in the presence of adversary actions. Hence, we define a pure tamper-evident system as follows:

Definition 14 (Pure tamper evidence). Let program p = 〈S p, δp〉 be k-tamper-evident stabilizing with adversary adv for invari-
ants 〈S1, S2〉. We say that program p is pure tamper-evident with adversary adv for invariants 〈S1, S2〉 iff

• ¬S1 〈adv, k〉-converges to S2 in p.

Observe that, in Definition 13, if we require T = S1 then this corresponds to the definition of (pure) tamper-evident 
system.

Additionally, the definition of (pure) stabilization [15] is that starting from an arbitrary state, the program recovers to 
legitimate states. Therefore, we define it as follows:

Definition 15 (Pure stabilization). Let program p = 〈S p, δp〉 be k-tamper-evident stabilizing with adversary adv for invariants
〈S1, S2〉. We say that program p is pure stabilizing with adversary adv for invariants 〈S1, S2〉 iff

• S p converges to S1.

Observe that in Definition 13, if we require T = S p and ¬T = S2 = φ then this corresponds to the definition of (pure) 
stabilizing system. Therefore, based on Definitions 14 and 15, tamper-evident stabilization captures a range of systems from 
the ones that are pure tamper-evident to the ones that are pure stabilizing.

The notion of tamper-evident stabilization prescribes the behavior of the program from all possible states. In this respect, 
it is similar to the notion of stabilizing fault tolerance. In [5], authors introduce the notion of nonmasking fault tolerance; 
it only prescribes behaviors in a subset of states. We can extend the notion of tamper-evident stabilization in a similar 
manner. We do so by simply overloading the definition of tamper-evident stabilization.

Definition 16 (Tamper-evident stabilization in environment U ). Let p be a program with state space S p and transitions δp . Let 
adv be an adversary for program p, and U be a state predicate. Moreover, let k be an integer greater than 1. We say that 
program p is k-tamper-evident stabilizing with adversary adv for invariants 〈S1, S2〉 in environment U iff there exists a state 
predicate T such that

• S1, S2, and T are subsets of U ,
• U is closed in p ∪ adv ,
• U ∧ T converges to S1 in p, and
• U ∧ ¬T 〈adv, k〉-converges to S2 in p.

Observe that if U equals true then the above definition is identical to that of Definition 13.

3.1. Token ring

In this section, we illustrate the definition of tamper-evident stabilization in the context of the well-known token ring 
program [15]. In a token ring program, a token is passed among a set of processes arranged in a ring, where the token 
acts as a permit for entry into the critical sections. We assume that, the program is subject to two types of perturbations: 
transient faults and tampering/adversary actions. If transient faults occur, the variables of the program will get corrupted 
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arbitrarily and, consequently, the program will recover to its set of legitimate states S1. Nevertheless, the adversary can 
cause the system to fail by tampering a process. In this situation, we need the program to recover to the tamper-evident 
states S2 where there is no token in the system. Next, we describe the token ring program and represent that this program 
is tamper-evident stabilizing.

Description of the program. The program consists of N processes arranged in a ring. Each process j, 0 ≤ j ≤ N −1, has a 
variable x. j with the domain {0, 1, · · · , N−1}. To model the impact of adversary actions on a process j, we add an auxiliary 
variable up. j, where process j has failed iff up. j is false. We say, a process j, 1 ≤ j ≤ N −1, has the token iff processes j
and j −1 have not failed and x. j 
= x.( j−1). If process j, 1 ≤ j ≤ N −1, has a token then it copies the value of x.( j −1). 
The process 0 has the token iff processes 0 and N −1 have not failed and x.(N−1) = x.0. If process 0 has the token then 
it increments its value in modulo N arithmetic (we show modulo N arithmetic by notation +N ). Thus, the actions of the 
program are as follows:

T R0 :: up.0 ∧ up.(N−1) ∧ x.0 = x.(N−1) −→ x.0 := (x.(N−1) +N 1)

T R j :: up. j ∧ up.( j−1) ∧ x. j 
= x.( j−1) −→ x. j := x.( j−1);

Adversary action. The adversary can cause any process to fail. Hence, the adversary action can be represented as

T Radv :: up. j −→ up. j := f alse

Tamper-evident stabilization of the program. To show that the token ring program T R is tamper-evident stabilizing in the 
presence of the adversary T Radv , we define the predicate Ttr and invariants S1tr and S2tr as follows:

Ttr = ∀ j :: up. j
S1tr = Ttr ∧ (∀ j : 1 ≤ j ≤ N − 1 : (x. j = x.( j − 1)) ∨ (x.( j − 1) = x. j +N 1))

∧ ((x.0 = x.(N − 1)) ∨ (x.0 = x.(N − 1) +N 1))

S2tr = ¬Ttr∧ (∀ j : 1 ≤ j ≤ N − 1 : (up. j ∧ up.( j − 1)) ⇒ x. j = x.( j − 1))

∧ ((up.0 ∧ up.(N − 1)) ⇒ (x.0 
= x.(N − 1)))

Theorem 1. The token ring program T R is tamper-evident stabilizing with adversary T Radv for invariants 〈S1tr, S2tr〉.

Proof 1. If Ttr is true then the program is essentially the same as the token ring program from [16] and, hence, it stabi-
lizes to S1tr . If Ttr is violated then the token cannot go past failed process(es). Hence, S2tr would eventually be satisfied. 
Note that for the second constraint, adversary actions (that may fail a process) cannot prevent the program from reach-
ing S2tr . �
3.2. Traffic controller

This section describes another tamper-evident stabilizing program that illustrates a traffic light program that (1) recovers 
to normal operation from perturbations that do not cause the system to reach an unsafe state, and (2) permanently preserves 
the evidence of tampering if perturbations cause the system to reach an unsafe state. This example also illustrates why 
tamper-evident stabilization is desirable over (conventional) stabilization in some circumstances. Moreover, it can be used 
as a part of multiphase recovery [11] where a quick recovery is provided to safe states and complete recovery to legitimate 
states can be obtained later (or with human intervention).

3.2.1. Description of the program
In this program, we have an intersection with two one-way roads [10]. Each road is associated with a signal that can be 

either green (G), yellow (Y ), red (R), or flashing (F ). As expected, in any normal state, at least one of the signals should be 
red to ensure that traffic accidents do not occur.

If such a system is perturbed by an adversary where an adversary can somehow affect the signal operation causing 
safety violations then it is crucial that such an occurrence is noted for potential investigation. (These adversary actions 
can be triggered with simple transient faults that reset clock variables. For simplicity, we omit the cause of such adversary 
actions and only consider their effects.) In this example, we consider the requirement that if both signals are simultaneously 
yellow or green then the system must reach a state where both signals are flashing to indicate a signal malfunction due to 
adversary.

This program consists of two variables sig0 and sig1. The program consists of five actions: The first two actions are 
responsible for normal operation where a signal changes from G to Y to R and back to G . The third action considers the 
case where the system is perturbed outside legitimate states (e.g., by transient faults) and it is desirable that the system 
recovers from that state. The fourth action considers the case where the adversary actions perturb the system beyond an 
acceptable level and, hence, it is necessary that the system enters the tamper-evident state. Thus, the program actions are 
as follows: (In this program, j is instantiated to be either 0 or 1, and k is instantiated to be 1 − j.)

T C1 j :: (sig j = G) ∧ (sigk = R) −→ sig j = Y
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Fig. 2. Tamper-evident stabilizing traffic controller program.

T C2 j :: (sig j = Y ) ∧ (sigk = R) −→ (sig j = R) ∧ (sigk = G)

T C3 j :: (sig j = R) ∧ (sigk = R) −→ (sig j = G)

T C4 j :: ((sig j 
= R) ∧ (sigk 
= R)) ∨ (sigk = F ) −→ (sig j = F )

T C5 j :: (sig j = F ) ∧ (sigk = F ) −→ {notify the user that the system is in S2}

Adversary actions. The adversary T Cadv can cause a red signal to become either yellow or green. Hence, the adversary 
actions can be represented as ( j = 0, 1):

T Cadv1 :: sig j = R −→ sig j = Y
T Cadv2 :: sig j = R −→ sig j = G

Tamper-evident stabilization of the program. To show that the program T C is tamper-evident stabilizing in the presence 
of adversary T Cadv , we define the predicate Ttc and invariants S1tc and S2tc as follows:

Ttc = 〈((G, R), (Y , R), (R, G), (R, Y )), (R, R)〉
S1tc = 〈(G, R), (Y , R), (R, G), (R, Y )〉
S2tc = 〈(F , F )〉

Theorem 2. The traffic controller program T C is tamper-evident stabilizing with adversary T Cadv for invariants 〈S1tc, S2tc〉.

Proof 2. If Ttc is true then the program is essentially the same as the traffic control program from [10] and, hence, it 
stabilizes to S1tc . If the adversary T Cadv violates Ttc , the action T C4 j can execute and one of the signals will be flashing. 
As a result, the other signal would eventually become flashing and S2tr would be satisfied (see Fig. 2). �
4. Stabilization, tamper-evident stabilization, and active stabilization

In this section, we compare the notion of (conventional) stabilization, active stabilization and tamper-evident stabiliza-
tion. Specifically, Theorem 3 considers the case where p is stabilizing and evaluates whether it is tamper-evident stabilizing, 
and Theorem 4 considers the reverse direction. Relation with active stabilization follows trivially from these theorems.

Theorem 3. If a program p is stabilizing for invariant S, then p is k-tamper-evident stabilizing with adversary adv for invariants 
〈S, ∅〉, for any adversary adv and k ≥ 2.

Proof 3. To prove tamper-evident stabilization, we need to identify a value of T . We set T = true, representing the state 
space of p. Now, we need to show that S p converges to S in p and ¬true 〈adv, k〉-converges to ∅ in p. Of these, the former 
is satisfied since p is stabilizing for invariant S , and the latter is trivially satisfied since ¬true corresponds to the empty 
set. �
Corollary 1. If program p is k-active stabilizing with adversary adv and k ≥ 2 for invariant S, then p is k-tamper-evident stabilizing 
with adversary adv for invariants 〈S, φ〉.

Note that, if there exist k and adv such that program p is k-active stabilizing with adversary adv for invariant S , then p
is stabilizing for invariant S .

Theorem 4. If program p = 〈S p, δp〉 is k-tamper-evident stabilizing with adversary adv for invariants 〈S1, S2〉, then p is stabilizing 
for invariant (S1 ∨ S2).
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Proof 4. Since program p is tamper-evident stabilizing, the two constraints in the definition of tamper-evident stabilizing 
are true. If the program p starts from T , it converges to S1. If p starts from ¬T , in the presence or absence of adversary 
adv , it converges to S2. This completes the proof. �

However, a similar result relating tamper-evident stabilization and active stabilization is not valid. In other words, it is 
possible to have a program p that is k-tamper-evident stabilizing with adversary adv for invariants 〈S1, S2〉 but it is not 
k-active stabilizing with adversary adv for invariant (S1 ∨ S2). This is due to the fact that if the program begins in T then in 
the presence of the adversary, there is no guarantee that it would recover to S1.

5. Verification of tamper-evident stabilization

In this section, we show how to verify whether a given program p is tamper-evident stabilizing. This verification, which 
is represented in Algorithm 1, has three steps as follows.

1. Finding predicate T . First, we need to determine the predicate T (from Definition 13). Based on Definition 13, from 
every state in ¬T , we must eventually reach a state in S2. Hence, from ¬T , we cannot reach a state in S1. Also, from 
every state in T , we must reach a state in S1. Thus, the only possible choice for T is the states from where the program 
can reach S1. Therefore, the algorithm starts with the construction of T which is initialized by the invariant S1 (Lines 
1–5). In each step of this construction, the algorithm adds a new state to T from which there is a transition to a state 
already in T . When there is no other state to add, the acceptability of T will be checked utilizing the following steps.

2. Verifying whether T converges to S1. To check the convergence to S1, based on Definition 6, first the algorithm checks 
the closure property of predicate T and invariant S1, and returns false if either of them is not closed (Lines 6–8 and 
17–23). Then, it verifies if the program p has any cycle in T − S1 using the function CheckCycle() (Lines 9–11 and 
24–30). The details of this function are as follows: it begins with the state space Y = T − S1 and transitions δY =
{(s0, s1) | s0 ∈ T − S1 ∨ s1 ∈ T − S1}. Since we have removed transitions that reach S1, Y may contain a deadlock state. 
If so, we remove that state from Y and the corresponding transitions that enter and exit that state. Upon termination, 
if any state in T − S1 is not removed, it implies that some of them form a cycle. If such a cycle exists then p is not 
tamper-evident stabilizing and the algorithm returns false.

3. Verifying if ¬T converges to S2. Based on Definition 11, the algorithm needs to check the closure property of predicate 
¬T = S p − T and invariant S2 in the presence of adversary adv (Lines 6–8 and 17–23). Moreover, it needs to check 
the cyclic-computations in ¬T that do not include any state in S2 (Lines 13–15 and 24–30). For this purpose, utilizing 
the ideas in [12], we map the problem of verifying the convergence of ¬T to the problem of verifying stabilization. 
Hence, first, we construct program p1 from ¬T (Line 12). Intuitively, program p1 executes k − 1 or more transitions 
of program p and then (optionally) one transition of the adversary. In other words, starting from an arbitrary state, 
program p continues its execution until the adversary executes. If adversary does not execute, p is guaranteed to 
converge; if there were a cycle involving a state, say s1, then p1 would involve a self-loop at s1 preventing us from 
verifying convergence. Now, p is still in some state. To construct p − 1, we need to partition subsequent execution by 
focusing on when/if adversary executes again. The resulting sequence is a transition of p1. In constructing program p1, 
reach(s0, s1, l) denotes that s1 can be reached from s0 by execution of exactly l transitions of p. If such cycles of p1 do 
not exist then p is tamper-evident stabilizing.

Theorem 5. The following problem can be solved in polynomial time in |S p|.

Given a program p, adversary adv, and state predicates S1 and S2, is p tamper-evident stabilizing with adversary adv for invariants 
〈S1, S2〉?

Proof 5. First, we show that there is at most one choice of T to demonstrate tamper-evident stabilization and this choice is 
computed in the loop on Lines 2–5. Let X denote the predicate constructed at the end of this loop. From every state in X , 
there is a path to S1. Given that S1 and S2 are disjoint this implies that from any state in X , there exists a computation of p
that does not reach S2. Hence, if T is a choice to demonstrate tamper-evident stabilization then ¬T and X must be disjoint. 
Also, by construction, there is no path from any state in ¬X to a state in S1. It follows that there exists a computation of 
p that starts from ¬X and does not reach S1. Therefore, ¬X and T must be disjoint. Consequently, the only choice for T is 
predicate X constructed at the end of the loop on Lines 2–5.

The proofs of closure properties and construction of state predicate T can be trivially verified by considering each tran-
sition in δp . The CheckCycle() function can also be verified in polynomial-time in |S p | using the algorithm explained in 
Algorithm 1 (Lines 24–30). For constructing program p1, we use the ideas from [12], which verifies a program in the pres-
ence of an adversary adv in polynomial-time in |S p |. Hence, given a program p, state predicates S1 and S2, tamper-evident 
stabilization of program p for invariants 〈S1, S2〉 can be solved in polynomial time in |S p |. �
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Algorithm 1 Verification of tamper-evident stabilization.
Input: program p = 〈S p , δp〉, invariants S1 and S2, adversary adv .
Output: true or false.

1: T = S1;
2: repeat
3: T 1 = T ;
4: T = T 1 ∪ {s0 | (s0, s1) ∈ p ∧ s1 ∈ T };
5: until (T 1 == T )

6: if ¬(CheckClosure(T , p) ∧ CheckClosure(¬T , p ∪ adv) ∧ CheckClosure(S1, p) ∧
CheckClosure(S2, p ∪ adv)) then

7: return false;
8: end if

9: if CheckCycle(T − S1, p) 
= ∅ then
10: return false;
11: end if

12: p1 = {(s0, s1) | (∃l : l ≥ k − 1 : reach(s0, s1, l)) ∨ (∃s2 : reach(s0, s2, l) ∧ (s2, s1) ∈ adv)};

13: if CheckCycle(¬T − S2, p1) 
= ∅ then
14: return false;
15: end if

16: return true;

17: function CheckClosure(X, p)
18: if ∀s0, s1 ∈ S p : (s0 ∈ X ∧ (s0, s1) ∈ δp) ⇒ (s1 ∈ X) then
19: return true;
20: else
21: return false;
22: end if
23: end function

24: function CheckCycle(Y , p)
25: repeat
26: Y1 = Y ;
27: Y = Y1 − {s0 | ∀s1 ∈ Y : (s0, s1) /∈ δp};
28: until (Y1 == Y )
29: return Y ;
30: end function

6. Applications of tamper-evident stabilization

Tamper-evident stabilization has several potential applications. In this section, we briefly explain some of them.

6.1. Power grids

Our first application of tamper-evident stabilization is in the area of power grids. Power grids consist of several gener-
ating stations, transmission lines and consumption centers. From the perspective of the utility, we can view the power grid 
as a hierarchical system. Each level in the hierarchy has a certain level of consumption requirements, production capacity 
and ability to obtain electricity from other parts of the grid. Currently, in the power grids, you just expect electricity to 
flow when you plug a device in. However, with an emerging market for smart loads where the load will negotiate with the 
grid about energy consumption, electricity rates, etc, we envision a system where 50% of the load will be smart load in the 
future. In such systems, called smart grids, each subgrid will be associated with the available production capacity, smart load 
consumption requirements/production availability, ordinary load usage, etc.

With these conditions, intuitively, to apply tamper-evident stabilization in power grids, S1 (Fig. 1(c)) would correspond 
to configurations where at each level in the hierarchy, the production capacity and consumption requirements are matched 
evenly. It would also provide sufficient flexibility in the subgrid for cases where the ordinary load increases/decreases 
upto a certain threshold. Predicate T would correspond to states where the grid is subject to faults or other environmental 
condition where ideal requirements cannot be satisfied. This may include reduced flexibility for increased load. Inside T , the 
subgrid is expected to resolve the situation automatically (with minimal operator intervention) by either adding increased 
supply, reducing the load or by obtaining electricity from other subgrids. Predicate ¬T would correspond to the case where 
the grid has suffered a security attack where restoring it to full capacity (S1) is not feasible. In this case, the system might 
terminate some of the smart load, cut off parts of the subgrid, etc. Predicate S2 would correspond to the situation where 
the grid has restored itself to lower functionality based on the security attack. This restoration would be achieved with 
minimal/no operator intervention.

As an illustration of this idea with a simple example, consider an abstract version of the smart grid example described in 
[32]. In this example, a generator G serves two loads denoted by Z1 and Z2 (see Fig. 3). The system has three sensors: SG , 
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Fig. 3. Tamper-evident single generator smart grid system.

Sen1, and Sen2. Sensor SG shows the power generated by the generator, and sensors Sen1 and Sen2 represent the demand 
of loads Z1 and Z2, respectively. The objective is to ensure that proper load shedding is utilized if the load is too high 
(respectively, generating capacity is too low). The system control center, represented by a hexagon in Fig. 3, communicates 
control signals to each of the two switches. These signals control the switches such that the following conditions are 
satisfied:

• Both switches are turned on if the overall sensed value does not exceed generation;
• If the sensed overall load demand exceeds generation, the system controller sheds one or both loads;
• If it appears that only one can be served, then the smaller load is shed assuming the larger load can be served by G; 

otherwise, the smaller load is served, and
• If neither load can individually be served by G then both loads are shed.

To model this system, we define the following variables:

• V j, ( j = G, 1, 2): The value of sensors V G , V 1 and V 2 respectively, and
• switch j, ( j = 1, 2): The status of switch j . If the switch is open, we show it by of f and if it is close, we show it by on.

Based on the constraints explained and the variables described, we define the smart grid system by the following actions:

SG1 :: (V 1 + V 2 ≤ V G) −→ switch1 = on ∧ switch2 = on
SG2 :: (V 1 ≤ V G) ∧ (V 2 > V G) −→ switch1 = on ∧ switch2 = of f
SG3 :: (V 1 > V G) ∧ (V 2 ≤ V G) −→ switch1 = of f ∧ switch2 = on
SG4 :: (V 1 > V G) ∧ (V 2 > V G) −→ switch1 = of f ∧ switch2 = of f
SG5 :: ((V 1 + V 2 > V G) ∧ (V 1 ≤ V G) ∧ (V 2 ≤ V G) ∧ (V 1 ≤ V 2)) −→ switch1 = of f ∧ switch2 = on
SG6 :: ((V 1 + V 2 > V G) ∧ (V 1 ≤ V G) ∧ (V 2 ≤ V G) ∧ (V 1 > V 2)) −→ switch1 = on ∧ switch2 = of f

Adversary actions. As a typical cyber attack, the adversary SGadv can tamper with the sensor information, so the load 
management involves incorrect decision-making. We assume that the adversary can only change the sensor values Sen1
and Sen2 to greater values. Hence, the adversary actions can be represented as ( j = 1, 2):

SGadv1 :: V 1 ≤ V G −→ V 1 = X , where X > V G

SGadv2 :: V 2 ≤ V G −→ V 2 = Y , where Y > V G

Tamper-evident stabilization of the program. To show that the program SG is tamper-evident stabilizing in the presence of 
adversary SGadv , we define the predicate Tsg and invariants S1sg and S2sg as follows:

Tsg = V 1 + V 2 ≤ V G

S1sg = (V 1 + V 2 ≤ V G) ∧ (switch1 = on ∧ switch2 = on)

S2sg = (V 1 + V 2 > V G) ∧ (switch1 = of f ∨ switch2 = of f )

6.2. Secure chip design

Another important application for tamper-evident stabilization is in the area of secure chip design. While chip designers 
utilize formal methods to verify that the chip does what it is supposed to do, they do not typically address what else does 
the chip do?. In particular, can the chip be used to do some unexpected things by providing invalid inputs or undesired 
environment. Designing a chip to be stabilizing may be desirable but likely to be impossible. By contrast, designing a chip 
to be tamper-evident stabilizing is easier since it allows the designer to identify a subset of the state space as unrecoverable 
and thereby allows it to simplify the recovery process (from recoverable states) and reaching tamper-evident states (from 
unrecoverable states).
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Fig. 4. Structure of a flexible tamper-evident stabilizing system.

6.3. Intrusion detection

Tamper-evident stabilization is also beneficial in intrusion detection and recovery. Typical intrusion detection systems 
prevent certain levels of intrusions outright, detect (but may be unable to prevent) a slightly higher level of intrusions, and 
potentially shut down the system in the event where tolerating intrusions is impossible. Tamper-evident stabilization can 
assist in the design of such systems to ensure that the system either recovers from intrusions or it reaches a tamper evident 
state.

This example also helps identify the question of what happens if the program ever reaches a tamper-evident state. 
Specifically, consider a system that is tamper-evident stabilizing with adversary adv for 〈S1, S2〉. Now, consider the question 
of what happens after the system reaches a state in S2. The purpose of S2 is to demonstrate evidence of tampering. In the 
context of above example, it is expected that if the system ever reaches a state in S2 then it will eventually be restored 
(e.g., with backup data, better firewall, improved intrusion detection system, etc.) to S1. However, actions that are required 
to perform this are not part of the original program. These actions are performed with a different program (humans?) under 
a different setting (controlled setting with assumptions about having no faults, adversaries etc.).

This analysis also helps in the use of tamper-evident stabilization in providing a tradeoff between fault-prevention tech-
niques and fault-tolerant techniques. In broad terms, fault-prevention techniques utilize extra work (via space redundancy, 
time redundancy) to ensure that faults never happen or are not visible beyond a level of abstraction. By contrast, fault-
tolerant techniques do not prevent occurrence of faults but utilize a lower level of redundancy. Instead, they focus on 
recovery when faults do happen. Tamper-evident stabilization potentially provides a tradeoff between these approaches. 
Specifically, we could use fault-tolerant mechanism to ensure that in any environment, the system will recover to either 
S1 or S2. If it recovers to S2 then fault-prevention techniques could be deployed, at increased cost, to restore the system 
to S1. Such tradeoff between fault-prevention and fault tolerance would be especially useful in reconfigurable systems (e.g., 
FPGAs) where certain components can be reconfigured to perform different activities at different times.

7. Flexible tamper-evident stabilization

As stated in Definition 13, the state space in tamper-evident stabilizing programs is divided into two parts T and ¬T , 
and the boundary between T and ¬T is fixed. In some cases, this boundary is not enough and some states outside T
and ¬T may be reached, where we may not be able to distinguish how they are reached and how to proceed. Therefore, 
instead of having only T and ¬T , we need to divide the state space into three parts: T1, T2, and ¬(T1 ∨ T2) (see Fig. 4). 
The operations of the system in T1 and T2 would remain the same as those in T and ¬T respectively. However, if the 
system reaches a state in ¬(T1 ∨ T2), which is a boundary in between, a human intervention is necessary to decide if the 
system needs to converge to S1 or S2. Based on this intuition, in this section, we define the notion of flexible tamper-evident 
stabilization (Section 7.1), compare them to tamper-evident stabilizing systems (Section 7.2), and propose an algorithm that 
verifies if a given program is flexible tamper-evident stabilizing (Section 7.3).

7.1. Definition of flexible tamper-evident stabilization

To define the notion of flexible tamper-evident stabilization, we utilize two predicates T1 and T2. If the program is in T1, 
it will converge to legitimate states S1. If the program is in T2, it will converge to tamper-evident states S2. Nevertheless, if 
it is in ¬(T1 ∨ T2), it has both options of converging to S1 and converging to S2. In this situation, an operator will choose 
which invariant the program needs to converge to.

The intuition behind flexible tamper-evident stabilization is that it is often impossible to distinguish the cause of reaching 
a given state from inside the system. And, it is possible to have the same state reached by the occurrence of an adversary 
action as well as by (random) faults. As an illustration, consider the power grid example in Section 6. Suppose that in this 
application, the voltage value can be perturbed by normal behavior as well as by adversary behavior. Suppose that in 99% 
of behaviors the fluctuation can only be 5%. However, under some rare cases (say 1%), the perturbation could be upto 10%. 
Furthermore, the adversary could also attempt to perturb it. Now, if the perturbation is more than 10%, it is certain that it 
was caused by an adversary. If it was less than 5%, we could treat it as normal perturbation and attempt to provide recovery. 
However, in the middle region, the operator will be provided a choice of both options.
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Another example for flexible tamper-evident stabilization arises when assumptions made about system behavior are 
violated. For instance, multiple nodes in a distributed system may simultaneously fail due to adversary actions or by rare 
events (e.g., natural disasters that cause massive failures). In this case, external knowledge (e.g., existence of natural disasters 
in the area) could be used by the operator to identify whether the system should recover to its normal behavior. Hence, the 
definition of flexible tamper-evident stabilizing program is as follows.

Definition 17 (Flexible tamper-evident stabilization). Let p be a program with state space S p and transitions δp . Let adv be 
an adversary for program p. And, let k be an integer greater than 1. We say that program p is flexible k-tamper-evident 
stabilizing with adversary adv for invariants 〈S1, S2〉 iff there exist state predicates T1 and T2 such that:

• T1 converges to S1 in p,
• T2 〈adv, k〉-converges to S2 in p, and
• for every state in ¬(T1 ∨ T2):

– there exists a computation of p that reaches a state in T1, and
– there exists a computation of p that reaches a state in T2.

From the above definition, it follows that if ¬(T1 ∨ T2) is empty, flexible tamper-evident stabilization would be similar 
to tamper-evident stabilization. In addition, if ¬(T1 ∨ T2) contains a state then there exists a computation that starts from 
that state and reaches T1 and there also exists a computation that starts from that state and reaches T2 .

We extend the notion of flexible tamper-evident stabilization by simply overloading its definition with an environment.

Definition 18 (Flexible tamper-evident stabilization in environment U ). Let p be a program with state space S p and transi-
tions δp . Let adv be an adversary for program p, and U be a state predicate. Moreover, let k be an integer greater than 1. 
We say that program p is flexible k-tamper-evident stabilizing with adversary adv for invariants 〈S1, S2〉 in environment U iff 
there exist state predicates T1 and T2 such that:

• S1, S2, T1, and T2 are subsets of U ,
• U is closed in p ∪ adv ,
• U ∧ T1 converges to S1 in p,
• U ∧ T2 〈adv, k〉-converges to S2 in p, and
• U ∧ ¬(T1 ∨ T2): for every state in ¬(T1 ∨ T2):

– there exists a computation that reaches a behavior in T1, and
– there exists a computation that reaches a behavior in T2.

Observe that if U equals true then the above definition is identical to that of Definition 17.

7.2. Flexible tamper-evident stabilization and tamper-evident stabilization

In this section, we compare the notion of flexible tamper-evident stabilization and tamper-evident stabilization. As 
mentioned in Section 7.1, if ¬(T1 ∨ T2) is empty, flexible tamper-evident stabilization would be equal to tamper-evident 
stabilization. Hence, every tamper-evident stabilizing program is also flexible tamper-evident stabilizing but not vice versa, 
which shows that tamper-evident stabilization is strictly weaker. We represent this claim by the following theorem.

Theorem 6. If program p = 〈S p, δp〉 is k-tamper-evident stabilizing with adversary adv for invariants 〈S1, S2〉, then p is flexible 
k-tamper-evident stabilizing with adversary adv for invariants 〈S1, S2〉.

Proof 6. To prove flexible tamper-evident stabilization, we need to identify values of T1 and T2. We set T1 = T and T2 = ¬T . 
Therefore, T1 converges to S1 in p and T2 〈adv, k〉-converges to S2 in p. Also, ¬(T1 ∨ T2) is empty since T ∨ ¬T = true. 
This completes the proof. �

Nevertheless, if a program p is flexible k-tamper-evident stabilizing with adversary adv for invariants 〈S1, S2〉, we cannot 
guarantee that this program is k-tamper-evident stabilizing with adversary adv for invariant 〈S1, S2〉. This is due to the fact 
that if ¬(T1 ∨ T2) is not empty, there exists a state that has transitions to both T1 and T2, thereby violating the conditions 
of the program p to be k-tamper-evident stabilizing.

As an illustration, consider program p = 〈S p, δp〉 in Fig. 5, where S p = {st1, st2, st3} and δp = {(st3, st1), (st3, st2)}. This 
program is a flexible tamper-evident stabilizing program since T1 = S1 = st1, T2 = S2 = st2, and ¬(T1 ∨ T2) = st3. Nonethe-
less, it is not a tamper-evident stabilizing program since st3 cannot be in either T or ¬T . It cannot be in T since every path 
in T reaches S1 while st3 has paths to both S1 and S2. Similarly, st3 is not in ¬T since it has a path to S1. Therefore, we 
have a state that is not in either T or ¬T .
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Fig. 5. An illustrative example for flexible tamper-evident stabilizing systems.

Algorithm 2 Verification of flexible tamper-evident stabilization.
Input: program p = 〈S p , δp〉, invariants S1 and S2, adversary adv .
Output: true or false.

1: X1 = S1;
2: X2 = S2;
3: repeat
4: temp1 = X1;
5: temp2 = X2;
6: X1 = temp1 ∪ {s0 | (s0, s1) ∈ p ∧ s1 ∈ X1};
7: X2 = temp2 ∪ {s0 | (s0, s1) ∈ p ∧ s1 ∈ X2};
8: until (X1 == temp1 ∧ X2 == temp2)

9: FlexibleZone = X1 ∩ X2;
10: T1 = X1 − F lexible Zone;
11: T2 = X2 − F lexible Zone;

12: if X1 ∪ X2 
= S p then
13: return false;
14: end if

15: if ¬(CheckClosure(T1, p) ∧ CheckClosure(T2, p ∪ adv) ∧ CheckClosure(S1, p) ∧
CheckClosure(S2, p ∪ adv)) then

16: return false;
17: end if

18: if CheckCycle(T1 − S1, p) 
= ∅ then
19: return false;
20: end if

21: p1 = {(s0, s1) | (∃l : l ≥ k − 1 : reach(s0, s1, l)) ∨ (∃s2 : reach(s0, s2, l) ∧ (s2, s1) ∈ adv)}
22: if CheckCycle(T2 − S2, p1) 
= ∅ then
23: return false;
24: end if

25: return true;

26: function CheckClosure(X, p)
27: if ∀s0, s1 ∈ S p : (s0 ∈ X ∧ (s0, s1) ∈ δp) ⇒ (s1 ∈ X) then
28: return true;
29: else
30: return false;
31: end if
32: end function

33: function CheckCycle(Y , p)
34: repeat
35: Y1 = Y ;
36: Y = Y1 − {s0 | ∀s1 ∈ Y : (s0, s1) /∈ δp};
37: until (Y1 == Y )
38: return Y ;
39: end function

7.3. Verification of flexible tamper-evident stabilization

Proving that a given program p is flexible tamper-evident stabilization is shown in Algorithm 2, and contains four steps 
as follows.

1. Finding predicates T1 and T2 , and ¬(T1 ∨ T2). Based on Definition 17, from every state in T2, we must eventually reach 
a state in S2. Hence, from T2, we cannot reach a state in S1 or ¬(T1 ∨ T2). Also, from every state in T1, we must 
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reach a state in S1. Thus, the only possible choice for T1 is the states from where the program can reach S1. Therefore, 
we start from S1 and S2 to construct T1 and T2 respectively (Lines 1–11). When there is no other state to add to X1
and X2, we need to find the intersection of X1 and X2 since there might be some states in program p that have paths 
to both S1 and S2 (Line 9). To construct T1 and T2, we remove these states from X1 and X2 and add them to the 
FlexibleZone (Lines 10–11).

2. Verifying if T1 converges to S1. To verify the convergence of T1 to S1, first we check the closure property of T1 and S1
(Lines 15–17 and 26–32). Then we verify if T1 − S1 contains any cycle (Lines 18–20 and 33–39) and returns false if it 
does.

3. Verifying whether T2 converges to S2. Similar to that in Algorithm 1, to verify the convergence of T2 to S2, first we 
check the closure property of T2 and S2 (Lines 15–17 and 26–32), and then we construct program p1 (Line 21) and 
verify if T2 − S2 contains any cycle in p1 (Lines 22–24). The algorithm returns false if any cycle is found.

4. Verifying if ¬(T1 ∨ T2) can reach both S1 and S2. From Lines 12–14, if we return true then X1 ∨ X2 is true. Hence, along 
with the definitions of T1 and T2, ¬(T1 ∨ T2) is the same as FlexibleZone on Line 9. By construction, there is a path 
from every state in FlexibleZone to a state in S1 and to a state in S2.

Theorem 7. The following problem can be solved in polynomial time in |S p|

Given a program p, adversary adv, and state predicates S1 and S2, is p flexible tamper-evident stabilizing with adversary adv for 
invariants 〈S1, S2〉?

Proof 7. The choice of T1 and T2 (Lines 10 and 11), is the only possible choice to provide flexible tamper-evident stabiliza-
tion. Based on the properties of flexible tamper-evident stabilization, from any state in T1 there must be a path to S1 and 
there must not be a path to S2. By construction of X1 and X2 (Lines 1–8), X1 is the set of states from where there is a 
path to S1 and X2 is the set of states from where there is a path to S2. Hence, T1 must be a subset of X1 − (X1 ∩ X2). 
Furthermore, let s be a state in X1 − (X1 ∩ X2). By construction, there is no path from s to S2. Therefore, s cannot be 
in T2. Likewise, it cannot be in ¬(T1 ∨ T2). It follows that, to verify flexible tamper-evident stabilization of program p, the 
choice of T1 must be that in Line 10. Similarly, the choice of T2 must be that in Line 11. This also shows that there is at 
most one choice of ¬(T1 ∨ T2). Additionally, following Theorem 5, CheckClosure and CheckCycle functions can be verified 
in polynomial-time in |S p |. Hence, given a program p, state predicates S1 and S2, flexible tamper-evident stabilization of 
program p for invariants 〈S1, S2〉 can be solved in polynomial time in |S p |. �
8. Composition of tamper-evident stabilization and flexible tamper-evident stabilization

In this section, we evaluate the composition of tamper-evident stabilizing (Section 8.1) and flexible tamper-evident sta-
bilizing (Section 8.2) systems by investigating different types of compositions considered for stabilizing systems.

8.1. Composing tamper-evident stabilization

This section evaluates the synchronous parallel compositions, asynchronous parallel composition, and transitivity of 
tamper-evident stabilizing systems.

8.1.1. Synchronous parallel composition
A synchronous parallel composition of two programs considers the case where two independent programs are run in 

parallel so that each program executes its actions in each transition. Therefore, in synchronous parallel composition, if we 
have two programs p and q that do not share any variables such that p is stabilizing for S and q is stabilizing for R then 
parallel composition of p and q is stabilizing for S ∧ R .

Now, we consider the case where we have two programs p and q that are tamper-evident stabilizing for 〈S1, S2〉 and 
〈S1′, S2′〉, and p and q do not share any variables. Is the synchronous parallel composition of p and q (denoted by p []s q) 
also tamper-evident stabilizing?

Theorem 8 (Synchronous parallel composition 1). Given programs p and q that do not share variables.

p is tamper-evident stabilizing with adversary adv for 〈S1, S2〉 ∧
q is tamper-evident stabilizing with adversary adv for 〈S1′, S2′〉
⇒
p []s q is tamper-evident stabilizing with adversary adv for 〈S1 ∧ S1′, S2 ∨ S2′〉.

Proof 8. Let T and T ′ be the state predicates utilized to demonstrate tamper-evident stabilization of p and q respectively. 
Then, the predicate used to demonstrate tamper-evident stabilization of p []s q is T ∧ T ′ . If p []s q begins in a state in T ∧ T ′
then by tamper-evident stabilization property of p and q, each is guaranteed to recover to S1 ∧ S1′ . And, if p []s q begins 



R. Hajisheykhi et al. / Science of Computer Programming 160 (2018) 93–114 107
in a state where T ∧ T ′ is false then by the tamper-evident stabilization property of p and q, either p will reach a state in 
S2 or q will reach a state in S2′ . �
Theorem 9 (Synchronous parallel composition 2). Given programs p and q that do not share variables.

p is tamper-evident stabilizing with adversary adv for 〈S1, S2〉 ∧
q is tamper-evident stabilizing with adversary adv for 〈S1′, S2′〉
⇒
p []s q is tamper-evident stabilizing with adversary adv for 〈S1 ∨ S1′, S2 ∧ S2′〉.

Proof 9. Let T and T ′ be the state predicates utilized to demonstrate tamper-evident stabilization of p and q respectively. 
Also, assume the predicate used to demonstrate tamper-evident stabilization of (p []s q) is (T ∨ T ′). If (p []s q) begins in a 
state in T ∨ T ′ then by tamper-evident stabilization property of p and q, it is guaranteed that either p will reach a state in 
S1 or q will reach a state in S1′ . And, if p []s q begins in a state where T ∨ T ′ is false (or ¬T ∧ ¬T ′ is true) then by the 
tamper-evident stabilization property of p and q, both p and q will reach a state in S2 ∧ S2′ . �

Observe that in Theorem 8, predicate T is instantiated to be T ∧ T ′ . In other words, in this case, both programs are 
perturbed to an acceptable level. This theorem would be especially useful when combining two programs that collaborate 
with each other. Hence, it is expected that as long as neither is perturbed beyond an acceptable level, both would recover 
to their legitimate states. By contrast, in Theorem 9, predicate T is instantiated to be T ∨ T ′ . In other words, at least one of 
the programs is not perturbed beyond an acceptable level. This theorem would be especially useful when the components 
are used for the purpose of redundancy. Hence, as long as one of the components is not perturbed beyond an acceptable 
level, it would recover to a legitimate state.

8.1.2. Asynchronous parallel composition
In an asynchronous parallel composition of two independent programs, the programs are run in parallel on a weakly 

fair scheduler. A weakly fair scheduler in our context has the following properties. If composing programs p and q, in every 
step, the scheduler allows either p or q to execute. Furthermore, if program p (respectively q) is in a state where some 
transition of it can be executed then p (respectively q) is allowed to execute in some step. In other words, a weakly fair 
scheduler does not allow only one program to execute forever even when the other program could execute. To discuss 
tamper-evident stabilization of asynchronous parallel composition of two tamper-evident stabilizing programs, let us first 
define atomic tamper-evident stabilizing programs as follows:

Atomic tamper-evident stabilization. A program p is atomic tamper-evident stabilizing iff:

• It is tamper-evident stabilizing, and
• ∀(s0, s1) ∈ p : (s0 ∈ ¬T ) ⇒ (s1 ∈ S2), where T is the predicate defined in Definition 13.

Now, consider two programs p and q that are atomic tamper-evident stabilizing for 〈S1, S2〉 and 〈S1′, S2′〉 respectively, 
and do not share any variables. Next, we explain if the asynchronous parallel composition of p and q (denoted by p []a q) 
is also tamper-evident stabilizing.

Theorem 10 (Asynchronous parallel composition). Given programs p and q that do not share variables.

p is atomic tamper-evident stabilizing with adversary adv for 〈S1, S2〉 ∧
q is atomic tamper-evident stabilizing with adversary adv for 〈S1′, S2′〉
⇒
p []a q is tamper-evident stabilizing with adversary adv for
〈S1 ∧ S1′, S2 ∨ S2′〉.

Proof 10. Let T and T ′ be the state predicates utilized to demonstrate atomic tamper-evident stabilization of p and q
respectively. Then, the predicate used to demonstrate atomic tamper-evident stabilization of p []a q is T ∧T ′ . If p []a q begins 
in a state in T ∧ T ′ then by tamper-evident stabilization property of p and q, each is guaranteed to recover to S1 ∧ S1′ . 
Moreover, if p []a q begins in a state where T ∧ T ′ is false then either ¬T or ¬T ′ is true. In an arbitrary interleaving, one 
of the programs executes the first action. Let p be the one that executes first. Since p is atomic tamper-evident stabilizing, 
p reaches a state in S2 in an atomic step. Subsequently, ¬T ′ 〈adv, k〉-converges to S2′ in q. �
Observation 1. Consider that if programs p and q are not atomic tamper-evident stabilizing, their asynchronous paral-
lel composition cannot be guaranteed. Since p and q are tamper-evident stabilizing, p 〈adv, k〉-converges to S2 and q
〈adv, k〉-converges to S2′ . However, the asynchronous composition of p and q in the presence of adv may create com-
putations where the actions of p and q are interleaved and p (respectively, q) is not given the chance of taking at least 
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k − 1 actions between any two adversary actions. As such, there are no guarantees that p (respectively, q) will recover to 
S2 (respectively, S2′).

Observation 2. If we can ensure that the adversary stops for a long enough amount of time so that at least one of the 
programs p or q can recover to S2 or S2′ , the atomicity of p and q is not necessary in Theorem 10. In other words, the 
number of steps p or q needs to recover to S2 or S2′ has to be smaller than k in Definition 13.

Observation 3. In asynchronous parallel composition of two tamper-evident stabilizing programs, the first predicate is com-
bined by conjunction whereas the second one is combined by disjunction. However, we could make p []a q tamper-evident 
stabilizing for 〈S1 ∧ S1′, S2 ∧ S2′〉 provided we add actions to p (respectively q) so that it checks if q (respectively, p) is in 
a state in S2′ (respectively, S2). Accordingly, p can change its own state to be in S2 (respectively, S2′).

8.1.3. Transitivity
Tamper-evident stabilization preserves transitivity in a manner similar to stabilizing programs. Specifically,

Theorem 11 (Transitivity 1). Given program p.

p is tamper-evident stabilizing with adversary adv for 〈S1, S2〉 in U ∧
p is tamper-evident stabilizing with adversary adv for 〈S1′, S2′〉 in S1
⇒
p is tamper-evident stabilizing with adversary adv for 〈S1′ ∨ S2′, S2〉 in U .

Proof 11. Let T and T ′ be predicates used to demonstrate tamper-evident stabilization of p in the first and second an-
tecedents respectively. The predicate used to demonstrate tamper-evident stabilization of p in U is T . If we begin in a state 
in U ∧ T then p is guaranteed to recover to S1 (by first antecedent) and recover to (S1′ ∨ S2′) (by second antecedent). 
And, if it begins in a state in U ∧ ¬T then it is guaranteed to reach S2 even if it is perturbed by the adversary (by first 
antecedent). Hence, the proof follows. �

We can also infer transitivity property by the following theorem.

Theorem 12 (Transitivity 2). Given program p.

p is tamper-evident stabilizing with adversary adv for 〈S1, S2〉 ∧
S1 converges to S1′ in p ∧
S2 〈adv,k〉-converges to S2′ in p
⇒
p is tamper-evident stabilizing with adversary adv for 〈S1′, S2′〉.

Proof 12. The proof is similar to that of Theorem 11. �
8.2. Composing flexible tamper-evident stabilization

This section evaluates whether the theorems presented in Sections 8.1 are also true for flexible tamper-evident stabilizing 
systems.

8.2.1. Synchronous parallel composition
Assume that the definition of synchronous parallel composition of two programs p and q is the same as that in Sec-

tion 8.1. Hence, the synchronous parallel composition of two flexible tamper-evident stabilizing programs is as follows.

Theorem 13 (Synchronous parallel composition 1). Given programs p and q that do not share variables.

p is flexible tamper-evident stabilizing with adversary adv for 〈S1, S2〉 ∧
q is flexible tamper-evident stabilizing with adversary adv for 〈S1′, S2′〉
⇒
p []s q is flexible tamper-evident stabilizing with adversary adv for 〈S1, S2〉.

Proof 13. Let {T1, T2} be the state predicates utilized to demonstrate flexible tamper-evident stabilization of p. Also, the 
predicates used to demonstrate flexible tamper-evident stabilization of p []s q are T ′′

1 = T1 and T ′′
2 = T2. If p []s q begins 

in a state in T ′′
1 then by flexible tamper-evident stabilization property of p, it is guaranteed to recover to S1. Similarly, if 

p []s q begins in a state in T ′′
2 then the composition is guaranteed to reach a state in S2. Moreover, if it begins in a state in 

¬(T ′′
1 ∨ T ′′

2 ), we have both computations to reach a state in either S1 and S2. This completes the proof. �
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Corollary 2. The same theorem holds for 〈S1′, S2′〉.

Theorem 14 (Synchronous parallel composition 2). Given programs p and q that do not share variables.

p is flexible tamper-evident stabilizing with adversary adv for 〈S1, S2〉 ∧
q is flexible tamper-evident stabilizing with adversary adv for 〈S1′, S2′〉
⇒
p []s q is flexible tamper-evident stabilizing with adversary adv for
〈S1 ∨ S1′, S2 ∨ S2′〉

Proof 14. Let {T1, T2} and {T ′
1, T ′

2} be the state predicates utilized to demonstrate flexible tamper-evident stabilization of p
and q respectively. Then, the predicates used to demonstrate flexible tamper-evident stabilization of p []s q are T ′′

1 = T1 ∧ T ′
1

and T ′′
2 = T2 ∧ T ′

2. If p []s q begins in a state in T ′′
1 then by flexible tamper-evident stabilization property of p and q, each 

is guaranteed to recover to S1 ∧ S1′ . Similarly, if p []s q begins in a state in T ′′
2 then the composition is guaranteed to 

reach a state in S2 ∧ S2′ . Moreover, if it begins in a state in ¬(T ′′
1 ∨ T ′′

2 ), we have: ¬(T ′′
1 ∨ T ′′

2 ) = ¬(T1 ∧ T ′
1) ∧ ¬(T2 ∧ T ′

2) =
(¬T1 ∨ ¬T ′

1) ∧ (¬T2 ∨ ¬T ′
2). The first part, (¬T1 ∨ ¬T ′

1), illustrates that there exist computations that reach S2 ∨ S2′ , and 
the second part, (¬T2 ∨ ¬T ′

2), shows that there exist computations that reach states in S1 ∨ S1′ . Therefore, there exist
computations that reach states in S1 ∨ S1′ and S2 ∨ S2′ . �
8.2.2. Asynchronous parallel composition

In order to discuss flexible tamper-evident stabilization of asynchronous parallel composition of two flexible tamper-
evident stabilizing programs, let us first define atomic flexible tamper-evident stabilizing programs as follows:

Atomic flexible tamper-evident stabilization. A program p is atomic flexible tamper-evident stabilizing iff:

• It is flexible tamper-evident stabilizing,
• ∀(s0, s1) ∈ p : (s0 ∈ T2) ⇒ (s1 ∈ S2), where T2 is the predicate defined in Definition 17, and
• ∀(s0, s1) ∈ p : (s0 ∈ ¬(T1 ∨ T2)) ⇒ (s1 ∈ (S1 ∨ S2)), where T1 and T2 are the predicates defined in Definition 17.

Now, consider two programs p and q that are atomic flexible tamper-evident stabilizing for 〈S1, S2〉 and 〈S1′, S2′〉
respectively, and do not share any variables. Next, we explain if the asynchronous parallel composition of p and q (denoted 
by p []a q) is also tamper-evident stabilizing.

Theorem 15 (Asynchronous parallel composition). Given programs p and q that do not share variables.

p is atomic flexible tamper-evident stabilizing with adversary adv for 〈S1, S2〉 ∧
q is atomic flexible tamper-evident stabilizing with adversary adv for 〈S1′, S2′〉
⇒
p []a q is flexible tamper-evident stabilizing with adversary adv for
〈S1 ∨ S1′, S2 ∨ S2′〉 under weak fairness.

Proof 15. The proof is similar to that of Theorem 13. �
Observation 4. Similar to Observation 1, if the programs p and q are not atomic flexible tamper-evident stabilizing, the 
asynchronous parallel composition of p and q cannot be guaranteed to be flexible tamper-evident stabilizing.

Remark 4. Theorem 15 cannot be true for 〈S1 ∧ S1′, S2 ∨ S2′〉 since if one program is perturbed to the boundary area then 
〈S1 ∧ S1′〉 cannot be guaranteed.

8.2.3. Transitivity
In this section, we discuss if flexible tamper-evident stabilization preserves transitivity in a manner similar to stabilizing 

programs.

Theorem 16 (Transitivity 1). Given program p.

p is flexible tamper-evident stabilizing with adversary adv for 〈S1, S2〉 in U ∧
p is tamper-evident stabilizing with adversary adv for 〈S1′, S2′〉 in S1
⇒
p is flexible tamper-evident stabilizing with adversary adv for 〈S1′ ∨ S2′, S2〉 in U .
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Proof 16. Let {T1, T2} be the predicates used to demonstrate flexible tamper-evident stabilization of p in the first antecedent 
and {T ′} be the predicate used to demonstrate tamper-evident stabilization of p in the second antecedent. The predicates 
used to demonstrate flexible tamper-evident stabilization of p in U are T1 and T2. If we begin in a state in U ∧ T1 then p
is guaranteed to recover to S1 (by first antecedent) and recover to (S1′ ∨ S2′) (by second antecedent). Also, if it begins in a 
state in U ∧ T2 then it is guaranteed to reach S2 even if it is perturbed by the adversary (by first antecedent). Furthermore, 
if we begin in a state in ¬(T1 ∨ T2), it will reach a state in either S1 or S2. �
Theorem 17 (Transitivity 2). Given program p.

p is flexible tamper-evident stabilizing with adversary adv for 〈S1, S2〉 ∧
S1 converges to S1′ in p ∧
S2 〈adv,k〉-converges to S2′ in p
⇒
p is flexible tamper-evident stabilizing with adversary adv for 〈S1′, S2′〉.

Proof 17. The proof is similar to that of Theorem 16. �
9. Methodology for designing tamper-evident stabilization

In this section, we identify some possible approaches for designing tamper-evident stabilization. Tamper-evident stabi-
lization contains two main requirements: (1) recovery to legitimate states in the presence of normal perturbations that the 
system is expected to tolerate, and (2) reaching tamper-evident states even if perturbed by an adversary. We evaluate the 
use of some of the existing approaches for designing stabilization in designing tamper-evident stabilization.

9.1. Local detection and global correction

One approach for designing stabilization is via local detection and global correction [7,38]. In this work, the program 
consists of a set of processes arranged in some connected topology. Specifically, each process is associated with a set of 
neighbors that it can communicate with. It reads the state of its neighbors and updates its own state. Furthermore, the 
invariant S of the system is of the form ∀ j : S. j, where S. j is a local predicate that can be checked by process j. Each 
process j is responsible for checking its own predicate. If the system is outside the legitimate state then the local predicate 
of at least one process is violated. Hence, this process is responsible for initiating a global correction (such as distributed 
reset [30]) to restore the system to a legitimate state.

A similar approach is also applicable for tamper-evident stabilization. Specifically, to achieve this, we view the program 
to consist of a set of processes/components such that the predicates involved in defining tamper-evident stabilization are 
S1 = ∀ j :: S1. j, S2 = ∀ j :: S2. j and T = ∀ j :: T . j. Based on the problem of tamper-evident stabilization, we suppose ∀ j ::
(S1. j ⇒ T . j) ∧ (S2. j ⇒ ¬T . j) ∧ ¬(S1. j ∧ S2. j). We also require that if T . j is false then adversary actions cannot make it 
true. This captures that adversary cannot cause a process to forget that it was outside permissible states. Likewise, S2. j is 
also closed in the adversary actions, i.e., once the process has reached a state that identifies that it has been tampered with, 
it cannot be undone.

In this case, the outline of the program for process j to obtain tamper-evident stabilization is as follows: Process j checks 
the values of S1. j, S2. j and T . j and takes actions as described by the following table.

S1.j S2.j T.j Action

False False False Satisfy S2. j
False False True Initiate global correction to restore S1
False True False No action
False True True Impossible since S2. j ⇒ ¬T . j
True False False Impossible since S1. j ⇒ T . j
True False True No action (appears legitimate)
True True * Impossible since ¬(S1. j ∧ S2. j)

To utilize such an approach to design tamper-evident stabilization, we need to make some changes to global correction 
and put some reasonable constraints on what an adversary can do. Following the approach in [7,38], the global correction 
to restore S1 involves changes to all processes. For tamper-evident stabilization, however, process j will execute its part in 
global correction only if T . j is true. This is due to the fact that convergence to S1 is required only from states in T (which 
is equal to ∀ j :: T . j. Also, if T .k is false at some process, we want to restore the system to a state in S2 (which is equal to 
∀ j :: S2. j.) This is achieved with the idea that if T . j is false at some process then all processes (one by one) set S2. j to be 
true. Since a process can only observe the state of its neighbors, if process j observes that T .k is false for some neighbor 
k then j will satisfy S2. j. Since S2. j ⇒ ¬T . j, it follows that neighbors of j will set S2. j to be true. Given the connected 
topology, this will guarantee that if T . j is false for some process then the program will eventually reach a state in S2.
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Effect of the structure of predicate T . In the above example, T was a conjunctive predicate whereas ¬T was a disjunctive 
predicate. From T the system was required to converge to S1 (another conjunctive predicate). And, from ¬T the program 
was required to converge to S2 (another conjunctive predicate). Thus, the natural question is could we do the same thing if 
¬T was a conjunctive predicate and T was a disjunctive predicate. Next, we argue that in this case, design of tamper-evident 
stabilization is expected to be more complicated.

To validate this claim, we consider a simple approach for designing tamper-evident stabilization for systems where T is 
a disjunctive predicate, i.e., T = ∃ j :: T . j. In this system, if process j observes that T . j is false, it cannot unilaterally decide 
to satisfy S2. j. This is because T may still be true even if T . j is false. However, if j detects that S1. j is false then it can 
initiate a global correction to restore S1. Now, consider the case where some process k observes that a global correction is 
being performed when T .k is false. In this case, k cannot simply ignore that operation because the system may be in a state 
where T is still true. Moreover, it cannot participate since there is a possibility that T is false and, hence, the system should 
be restored to S2.

Intuitively, in this approach, we need a mechanism to count the number of processes that violate their T predicate. 
Under the assumption that an adversary cannot move the system from a state where T . j is false to a state where T . j is 
true, this could be achieved by maintaining some type of simple structure (tree, ring, etc) to count the number of processes 
that violate the T predicate. However, such an approach would suffer from faults that affect that structure and so on. By 
contrast, if T is a conjunctive predicate then any node can unilaterally detect if T is violated. We note that due to this 
reason, we chose T to be a conjunctive predicate in the above analysis.

9.2. Local detection and local correction

Another approach for stabilization is to utilize local detection and local correction. Intuitively, in this approach, the 
invariant S is of the form ∀ j :: S. j. Moreover, the S predicates of different processes are arranged in a partial order. Actions 
that correct S. j must preserve all predicates that come earlier in the order. However, they may violate predicates that come 
later in the order. In such a system, each process j is responsible for checking if S. j is false. If it is then it is required to 
restore the system to a state where S. j is true. This, in turn, may violate constraints that come later in the order. However, 
given that we have a partial order, eventually we reach a state where S. j is true in all states.

We can use the same approach for designing tamper-evident stabilization. This approach is similar to that described 
above except that instead of initiating a global operation, each node simply corrects its own S1 predicate as needed. How-
ever, if T . j is false for some node j then j does not perform its local correction. Instead, the node j changes its state to 
satisfy S2. j and, thereby, cause the system to reach a state in S2.

9.3. Model repair and synthesis

An alternative method for the design of tamper-evident stabilization is based on exploiting previous work on using 
model repair or model synthesis of fault-tolerant programs [31,3,9,20] and self-stabilization in particular [1,2,21,22,28,29]. 
In such methods, one starts with a fault-intolerant (respectively, non-stabilizing) program and systematically explores the 
state space of the program towards designing convergence actions while preserving behavior in the legitimate states. The 
core of such a repair/synthesis method relies on designing convergence from T to S1 and convergence from ¬T to S2. The 
definition of tamper-evident stabilization allows us to divide the problem of designing tamper-evident stabilization into two 
independent sub-problems since T and ¬T are disjoint. This independence facilitates the use of parallel machines [18] in 
automated design of convergence of T to S1 and 〈adv, k〉-convergence of ¬T to S2.

Methods for the design of convergence can be classified into two families: top-down and bottom-up. In the top-down 
method [20], the synthesis algorithms start with the weakest possible program that includes any transition that p can 
have in T . If after including all such transitions some deadlock states remain in T then convergence to S1 cannot be 
designed. Otherwise, the synthesis algorithms resolve non-progress cycles in T − S1 while preserving deadlock-freedom in 
T − S1. To resolve cycles, synthesis algorithms eliminate some convergence actions and check if an alternative combination 
of convergence actions would resolve the cycles without creating deadlocks.

In the bottom-up methods [21,18], synthesis algorithms start with a program that is cycle-free in T −S1 and incremen-
tally include one convergence action at a time towards resolving deadlocks. If the included action resolves deadlocks but 
creates cycles with existing actions then the algorithms rollback and try a different convergence action. To perform this pro-
cess more efficiently, some methods first design a ranking function that assigns a positive integer to every state in T − S1. 
This way T −S1 is partitioned to several layers. Such layers guide the synthesis algorithm to design convergence actions in 
a more systematic way. An example ranking function [21] is based on the length of the shortest computation from each 
state s ∈ T −S1 to some state in S1. As such, the first layer around S1 captures the states from where S1 can be reached in 
a single step, the second layer includes states from where S1 can be reached in two steps, and so forth.

While the design of convergence from T to S1 can directly benefit from existing work on algorithmic design, design-
ing 〈adv, k〉-convergence from ¬T to S2 introduces new challenges due to the requirement of 〈adv, k〉-convergence. One 
approach to tackle this problem is to ensure that, from every state s ∈ ¬T − S2, the program makes progress towards S2
between any two consecutive adversary actions. We can achieve this by ensuring that if we have a sequence of three states 
(s0, s1, s2) such that (s0, s1) is a program transition and (s1, s2) is an adversary transition then rank of s2 is not greater 
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than the rank of s0 (and s1). This ensures that adversary might slow down the convergence to S2 but it cannot prevent it. 
A detailed algorithm for designing such recovery is beyond the scope of this paper. However, we note that such an algo-
rithm can be designed based on the principles of convergence stair [25] and min–max computation. Finally, model repair 
and synthesis can also help in automating the previous two design methods mentioned in this section.

10. The relationship between tamper-evident stabilization and other stabilization techniques

Starting with Dijkstra’s seminal work [15] on stabilizing algorithms for token circulation, several variations of stabilizing 
algorithms have been proposed during the past decades. These algorithms can be classified into two categories: stronger
stabilizing and weaker stabilizing algorithms.

The algorithms in the first category not only guarantee stabilization but also satisfy some additional properties. Examples 
of this category include fault-containment stabilization, Byzantine stabilization, Fault-Tolerant Self Stabilization (FTSS), mul-
titolerance, and active stabilization. Fault-containment stabilization (e.g., [23,39]) refers to stabilizing programs that ensure 
that if one (respectively small number of) fault occurs then quick recovery is provided to the invariant. Byzantine stabilizing 
(e.g., [35,34]) programs tolerate the scenarios where a subset of processes is Byzantine. FTSS (e.g., [8]) covers stabilizing 
programs that tolerate permanent crash faults. Multitolerant stabilizing (e.g., [30,19]) systems ensure that, in addition to 
stabilization, the program masks a certain class of faults. Finally, active stabilization [12] requires that the program should 
recover to the invariant even if it is constantly perturbed by an adversary.

By contrast, a stabilizing program satisfies the constraints of weaker versions of stabilization. However, a program that 
provides a weaker version of stabilization may not be stabilizing. Examples of this include weak stabilization, probabilistic 
stabilization, and pseudo stabilization. Weak stabilization (e.g., [24,14]) requires that starting from any initial configuration, 
there exists an execution that eventually reaches a point from which its behavior is correct. However, the program may 
execute on a path where such a legitimate state is never reached. Probabilistic stabilization [27] refers to problems that 
ensure that starting from any initial configuration, the program converges to its legitimate states with probability 1. Non-
masking fault tolerance (e.g., [4,6]) targets the programs where the program recovers from states reached in the presence 
of a limited class of faults. However, this limited set of states may not cover the set of all states. Pseudo stabilization [13]
relaxes the notion of points in the execution from which the behavior is correct. In other words, every execution has a suffix 
that exhibits correct behavior, yet time before reaching this suffix is unbounded.

The aforementioned stabilizing algorithms consider several problems including mutual exclusion, leader election, consen-
sus, graph coloring, clustering, routing, and overlay construction. However, none of them considers problem of tampering 
(e.g., [33,36,37]). In part, this is due to the fact that stabilization and tamper evidence are potentially conflicting require-
ments.

Tamper-evident stabilization is in some sense a weaker version of stabilization in that from Theorem 3 every stabilizing 
program is also tamper-evident stabilizing. In particular, a stabilizing program guarantees that from all states program 
would eventually recover to legitimate states. By contrast, tamper-evident stabilization gives the option of recovering to 
tamper-evident states. (Although Theorem 4 suggests that every tamper-evident stabilizing program can be thought of as a 
stabilizing program, the invariant of such a stabilizing program is of the form 〈S1, S2〉, where S2 includes states that the 
system has no/reduced functionality.)

Tamper-evident stabilization is stronger than the notion of nonmasking fault tolerance. In particular, nonmasking fault-
tolerance also has the notion of fault-span (similar to T in Definition 13) from where recovery to the invariant is provided. 
In tamper-evident stabilization, if the program reaches a state in ¬T , it is required that it stays in ¬T . By contrast, in 
nonmasking fault-tolerance, the program may recover from ¬T to T .

Tamper-evident stabilization can be considered as a special case of nonmasking-failsafe multitolerance, where a program 
that is subject to two types of faults F f and Fn provides (i) failsafe fault tolerance when F f occurs, (ii) nonmasking tolerance 
in the presence of Fn , and (iii) no guarantees if both F f and Fn occur in the same computation. We have previously 
identified [19] sufficient conditions for efficient stepwise design of failsafe-nonmasking multitolerant systems, where F f and 
Fn do not occur simultaneously and their scopes of perturbation outside the invariant are disjoint. Based on the role of T
in Definition 13, we can ensure that these conditions are satisfied (Due to reasons of space, this proof is beyond the scope 
of the paper) for tamper-evident stabilization. This suggests that efficient algorithms can be designed for tamper-evident 
stabilization based on the approach in [19].

11. Conclusion and future work

The goal of this paper is to combine the notion of stabilization with tamper evidence. Intuitively, the notion of tamper 
evidence requires that any tampering of the system is preserved forever so that the user is aware of the tampering. By 
contrast, stabilization requires that the system recovers to legitimate states from arbitrary perturbation. In other words, it 
requires that any perturbation is eventually forgotten (when the system reaches a legitimate state). Although these two 
concepts appear contradictory, we showed that they can be effectively combined to define the concept of tamper-evident 
stabilization. Tamper-evident stabilization captures the intuition that if the system is mildly perturbed then it is guaranteed to 
recover but if it is tampered that causes severe perturbation then the effect of that tampering is always preserved.
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We extended the notion of tamper-evident stabilization to flexible tamper-evident stabilization. The intuition of flexible 
tamper-evident stabilization was based on the observation that the cause of reaching a given state cannot always be iden-
tified inside the system. In other words, the same state could be reached by tampering or by some rare fault. In this case, 
it is desirable that the system provides an alternative to recover to a normal behavior as well as an alternative to recover 
to tamper-evident behavior. This allows the system operator to use external factors to guide the system into an appropriate 
state.

We formally defined tamper-evident and flexible tamper-evident stabilization and investigated how they relate to sta-
bilization and active stabilization. We argued that tamper-evident stabilization is weaker than stabilization in that every 
stabilizing system is indeed tamper-evident stabilizing. Also, tamper-evident stabilization captures a spectrum of systems 
from pure tamper-evident systems to pure stabilizing systems. Moreover, flexible tamper-evident stabilizing systems are a more 
general form of tamper-evident stabilizing systems.

We also demonstrated two examples where we design tamper-evident stabilizing token passing and traffic control pro-
tocols. We identified how methods for designing stabilizing programs can be leveraged to design tamper-evident stabilizing 
programs. We showed that the problem of verifying whether a given program is tamper-evident stabilizing (or flexible 
tamper-evident stabilizing) is polynomial in the state space of the given program. We note that the problem of adding 
tamper-evident stabilization to a given high atomicity program can be solved in polynomial time. However, the problem 
is NP-hard for distributed program. Moreover, we find that parallel composition of tamper-evident or flexible tamper-
evident stabilizing systems works in a manner similar to that of stabilizing systems. Nevertheless, transitivity requirements 
of tamper-evident stabilization and flexible tamper-evident stabilization are somewhat different than that for stabilizing 
systems.

Tamper-evident stabilization has important applications in chip design, dependable and secure protocols, and design of 
winning strategies in multi-player games. In particular, when it is impossible to recover from some states, tamper-evident 
stabilization provides an alternative to preserve evidence of tampering. Thus, it provides the designer an increased design 
space to design programs that are fault-tolerant and secure. We also presented power grid systems as another potential 
application for tamper-evident stabilizing systems.

We are currently investigating the design and analysis of tamper-evident stabilizing System-on-Chip (SoC) systems in 
the context of the IEEE SystemC language. Our objective here is to design systems that facilitate reasoning about what they 
do and what they do not do in the event of tampering. Second, we will leverage our existing work on model repair and 
synthesis of stabilization in automated design of tamper-evident stabilization. Third, we plan to study the application of 
tamper-evident stabilization in game theory (and vice versa).
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