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We focus on the problem of adding multitolerance to an existing fault-intolerant program. A multitolerant
program tolerates multiple classes of faults and provides a potentially different level of fault tolerance to
each of them. We consider three levels of fault tolerance, namely failsafe (i.e., satisfy safety in the presence
of faults), nonmasking (i.e., recover to legitimate states after the occurrence of faults), and masking (both).
For the case where the program is subject to two classes of faults, we consider six categories of multitolerant
programs—FF, FN, FM, MM, MN, and NN, where F, N, and M represent failsafe, nonmasking, and masking
levels of tolerance provided to each class of fault. We show that the problem of adding FF, NN, and MN
multitolerance can be solved in polynomial time (in the state space of the program). However, the problem is
NP-complete for adding FN, MM, and FM multitolerance. We note that the hardness of adding MM and FM
multitolerance is especially atypical given that MM and FM multitolerance can be added efficiently under
more restricted scenarios where multiple faults occur simultaneously in the same computation. We also
present heuristics for managing the complexity of MM multitolerance. Finally, we present real-world multi-
tolerant programs and discuss the trade-off involved in design decisions while developing such programs.
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1. INTRODUCTION

One of the crucial issues in designing software systems is fault tolerance. Specifically,
there are two main requirements in providing fault tolerance. The first requirement
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is that the program should preserve its safety properties in the presence of faults. The
second requirement is that the program recovers from faults so that its subsequent
computation is correct—that is, meets its safety and liveness properties. Intuitively,
safety states that nothing bad ever happens in program computations, and liveness
stipulates that something good will eventually occur (in every program computation).
When both of these requirements are met in the presence of faults, we denote the
corresponding program as masking fault tolerant. Although masking fault tolerance
is ideal, due to feasibility and/or cost, one may choose to provide a weaker level of
tolerance.

One weaker level of fault tolerance is nonmasking. In this level, the program pro-
vides recovery but may violate safety during recovery. Nonmasking fault tolerance is
desirable when the design of masking fault tolerance is either expensive or impossi-
ble. For example, Chen et al. [2009] provide nonmasking fault tolerance to memory
safety bugs in Neutron, a version of the TinyOS operating system [Levis et al. 2005].
In such a case, although one could technically design a masking fault-tolerant sys-
tem, it is very expensive in terms of human effort. Other examples include algorithms
for clock synchronization [Li and Rus 2006; Ramanathan et al. 1990], where faults
such as failure and repair of nodes, random restarts, and initial lack of synchroniza-
tion corrupt clock values. In these examples, guaranteeing the safety property (e.g.,
clock drift is always limited) is expensive or impossible. Hence, nonmasking fault
tolerance is preferred so that the program will eventually recover to states where
clocks remain synchronized. Other examples of nonmasking fault tolerance include
Claesson et al. [2009], Ezhilchelvan et al. [2004], Song and Chien [2005], and Sommer
and Wattenhofer [2009].

Another weaker level of fault tolerance (compared with masking fault tolerance) is
failsafe. In this level, the program always satisfies its safety properties even in the
presence of faults, but it may not resume satisfying its liveness properties when faults
stop occurring. Failsafe fault tolerance is applied in situations where safety is much
more important than liveness (e.g., safety-critical systems). Note that if liveness is
satisfied, then the fault-tolerance level will be masking. Since liveness is not ensured,
implementation costs of failsafe are typically lower than masking fault tolerance. Fail-
safe fault tolerance is also utilized in systems at component level. For example, one
may choose to ensure that in case of faults, a component guarantees its own safety
constraints although it may not satisfy its liveness constraints. Upon noticing this,
other components could ensure that safety and liveness are satisfied for the overall
system. Examples of such approach include Temple [1998], where a mechanism is pre-
sented to prevent a single faulty node from monopolizing the communication bus in a
distributed hard real-time system. In such a case, failsafe fault tolerance is imposed
to enforce fail-silent behavior of the node. Other examples of failsafe systems include
Lubaszewski and Courtois [1998], Schiöberg et al. [2009], Heinzmann and Zelinsky
[1999], and James et al. [2009].

Since a system is often subject to multiple faults, system designers need to consider
scenarios where multiple faults may occur simultaneously. That is, a fault from one
class occurs before the system has recovered from a fault from another class. In such
cases, system designers need to identify the desired level of tolerance when faults occur.
The notion of multitolerance is motivated by this observation. Consider a system that
is subject to three types of faults: f1, f2, and f3. There are eight possible cases: namely,
the case where no faults occur, where f1 (respectively, f2 and f3) occurs, where { f1, f2}
(respectively, { f2, f3} and { f1, f3}) occur, and where { f1, f2, f3} occur. In practice, the
designer need not consider all of these cases explicitly. For example, if masking fault
tolerance is provided to { f1, f2} (i.e., masking fault tolerance is provided when f1 and
f2 occur simultaneously), then masking fault tolerance is implied when f1 (or f2) occur
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Table I. Complexity of Different Types of Multitolerance
The asterisk (*) denotes that the complexity differs from the restricted
version considered in Ebnenasir and Kulkarni [2011].

f1‖ f2 Failsafe Nonmasking Masking

Failsafe P NP-complete NP-complete*

Nonmasking NP-complete P P

Masking NP-complete* P NP-complete*

alone. In addition, if the designer concludes that the probability of f1 and f2 occurring
simultaneously is negligible, then the designer can decide to provide no fault tolerance
in such a situation.

Ebnenasir and Kulkarni [2011] have considered a restricted version of such multitol-
erant systems, where they require that if a system provides some tolerance individually
to f1 and individually to f2, then it must provide the minimum of these tolerances when
f1 and f2 occur simultaneously. For example, if masking fault tolerance is provided to
f1 and nonmasking fault tolerance is provided to f2, then in Ebnenasir and Kulkarni
[2011] it is required that nonmasking fault tolerance must be provided when both f1
and f2 occur simultaneously. This restriction prevents one from considering systems
where the probability of simultaneous occurrence of f1 and f2 is negligible and hence
ignored by the designer. It also does not permit modeling of scenarios where the de-
signer intends to mask individual occurrence of f1 and f2 but only provide failsafe
fault tolerance when both occur simultaneously. (A simple example of such a system
is a triple modulo redundant (TMR) system that individually provides masking fault
tolerance to a single Byzantine fault and to a single failstop fault, but it only provides
a failsafe fault tolerance if both faults occur simultaneously.)

In this article, we investigate the problem of adding multitolerance to concurrent
programs in a more general setting than Ebnenasir and Kulkarni [2011], where the
desired behavior when multiple faults occur is given by the designer. More specifically,
instead of hard coding a specific definition for what a multitolerant system should do
(e.g., providing the minimum level of tolerance) when different types of faults occur
simultaneously, we leave it up to the designers to determine what they expect from the
multitolerant system when several faults occur. To this end, we present the following
contributions:

(1) We investigate the complexity issues in automated addition of multitolerance. We
consider the case where multitolerance is added to two classes of faults: f1 and f2.
(These results can also be easily extended for the cases where three or more classes
of faults are considered.) Thus, we investigate six possible combinations MM, FM,
FF, FN, MN, and NN, where in each combination the first letter denotes the level of
fault tolerance for f1 and the second letter represents the level of fault tolerance to
f2. Table I summarizes the complexity of different combinations of multitolerance.

(2) We show that the problem of automated addition of MM (FM) multitolerance is NP-
complete. This result (marked with an asterisk in Table I) is especially surprising
given that the corresponding problems can be solved in polynomial time for the
restricted version of multitolerance considered in Ebnenasir and Kulkarni [2011].

(3) We present a sound and complete algorithm for automated addition of FF multitol-
erance and MN multitolerance. Moreover, we present a polynomial-time heuristic
for adding MM multitolerance.

(4) We investigate the relation between the restricted version of multitolerance from
Ebnenasir and Kulkarni [2011] and generalized definition of multitolerance consid-
ered in this article. We also identify circumstances where the restriction from these
authors improves the complexity of adding multitolerance. Specifically, we show
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that for high atomicity programs, (i.e., programs in which a process can read/write
all variables in an atomic step), the restriction from Ebnenasir and Kulkarni [2011]
does not affect the complexity of adding MN, NN, and FN multitolerance. However,
the same result does not apply for MM, FM, or FF multitolerance.

Organization of the article. Section 2 presents the formal definition of programs, spec-
ifications, faults, and fault tolerance. Section 3 formally states the problem of adding
multitolerance. Section 4 presents three examples where multitolerance is used. This
section also identifies examples where the restrictions of Ebnenasir and Kulkarni
[2011] prevent one from designing a multitolerant program. Section 5 investigates the
automated addition of FF multitolerance and then presents a sound and complete algo-
rithm. Sections 6 and 7 present an NP-completeness proof for cases where MM and FM
multitolerance are added to fault-intolerant programs. Sections 8 and 9 present sound
and complete algorithms for the addition of MN and NN multitolerance. Section 10
compares the limitations and effectiveness of the restricted notion of multitolerance
(presented in Ebnenasir and Kulkarni [2011]) with the more general definition of mul-
titolerance presented in this article. We discuss the related work in Section 11. Section
12 provides a discussion on the practical significance and the limitations of the pro-
posed approach in this work. Finally, we make concluding remarks and discuss future
work in Section 13.

2. PRELIMINARIES

In this section, we give formal definitions of programs, problem specifications, faults,
and fault tolerance. The programs are specified in terms of their state space and their
transitions. The definition of specification is adapted from Alpern and Schneider [1985].
The definitions of faults and fault tolerance are adapted from Arora and Gouda [1993]
and Kulkarni [1999].

2.1. Program

Definition 2.1 (Program). A program P is a tuple 〈SP , ψP〉, where SP is the state
space (i.e., the set of all possible states), and ψP is a set of transitions, where ψP is a
subset of SP × SP .

Definition 2.2 (State Predicate). A state predicate S is any subset of SP .

Definition 2.3 (Closure). A state predicate S is closed in program P = 〈SP , ψP〉 (or
briefly ψP ) if and only if (iff) (∀(s0, s1) ∈ ψP : ((s0 ∈ S) ⇒ (s1 ∈ S))).

Definition 2.4 (Computation). A computation of P = 〈SP , ψP〉 (or briefly ψP ) is a
state sequence: s = 〈s0, s1, . . .〉 s.t. the following conditions are satisfied: (1) ∀ j : 0 < j <
lengthof (s) : (sj−1, sj) ∈ ψP , (2) if s is finite and terminates in sf then there does not
exist any state s such that (sf , s) ∈ ψP .

Definition 2.5 (Computation Prefix). A computation prefix of P = 〈SP , ψP〉 (or briefly
ψP ) is a finite state sequence: 〈s0, s1, . . . , sm〉 s.t. ∀ j : 0 < j ≤ m : (sj−1, sj) ∈ ψP .

Definition 2.6 (Projection). The projection of a set ψ of transitions on a state predicate
S (denoted as ψ |S) is the following set of transitions: ψ |S = {(s0, s1) : (s0, s1) ∈ ψ ∧ s0, s1 ∈
S}.
The projection of program P on state predicate S (denoted as P|S) is the program
〈SP , ψP |S〉.
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2.2. Specification

Definition 2.7 (Safety Specification). The safety specification is specified as a set of
bad transitions [Kulkarni 1999]—that is, for program P, its safety specification is a
subset of SP × SP .

We say that a transition (s0, s1) violates the safety specification sspec iff (s0, s1) ∈ sspec.
A sequence s = 〈s0, s1, . . .〉 satisfies sspec iff ∀ j : 0 < j < lengthof (s) : (sj−1, sj) /∈ sspec.

Definition 2.8 (Liveness Specification). A liveness specification is specified in terms
of a set of infinite sequences.

A sequence s = 〈s0, s1, . . .〉 satisfies a liveness specification lspec iff some suffix of s is
in the set of sequences specified by lspec. A specification spec for program P consists
of a safety specification, say sspec, and a liveness specification, say lspec [Alpern and
Schneider 1985]. In other words, a sequence satisfies the specification spec iff it satisfies
the corresponding safety and liveness specification.

Remark 2.1. In the problem of adding multitolerance in Section 3, we begin with an
initial program that satisfies its specification (including the liveness specification). We
will show that adding multitolerance preserves the liveness specification. Hence, the
liveness specification need not be specified explicitly.

We now define what it means for a program P to satisfy a specification.

Definition 2.9 (Satisfies). Let P = 〈SP , ψP〉 be a program, S be a state predicate, and
spec be a specification for P. We write P |=S spec and say that P satisfies spec from S
iff (1) S is closed in ψP and (2) every computation of P that starts from a state in S
satisfies spec.

Assumption 2.1. For simplicity of subsequent definitions, if P satisfies spec from S,
we assume that P includes at least one transition from every state in S. If P does not
include a transition from a states, we then add the transition (s, s) to P. Note that this
assumption is not restrictive in any way. It simplifies subsequent definitions, as one
does not have to model terminating computations explicitly.

Definition 2.10 (Invariant). Let P = 〈SP , ψP〉 be a program, S be a state predicate,
and spec be a specification for P. If P |=S spec and S 
= {}, we say that S is an invariant
of P for spec.

Whenever the specification is clear from the context, we shall omit it; thus, “S is an
invariant of P” abbreviates “S is an invariant of P for spec.” Note that Definition 2.9
introduces the notion of satisfaction with respect to computations. In case of computa-
tion prefixes that are not necessarily maximal, we characterize them by determining
whether they can be extended to a computation that satisfies the specification.

Definition 2.11 (Maintains). Program P maintains spec from S iff (1) S is closed in
ψP , and (2) for all computation prefixes α of P starting in S, there exists a computation
suffix β such that αβ ∈ spec. We say that P violates spec from S iff P does not maintain
spec from S.

We note that if P satisfies spec from S, then P maintains spec from S as well, but the
reverse is not necessarily true. We, in particular, introduce the notion of maintains for
computations that a (fault-intolerant) program cannot produce, but the computation
can be extended to one that is in spec by adding recovery (see Section 2.3 for details).
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2.3. Faults

Each class of fault f to which a program is subject is systematically represented by a
set of transitions. Formally, a fault class for program P = 〈SP , ψP〉 is a subset of SP×SP .
Based on the classification of faults from Laprie and Randell [2004], this representation
suffices for physical faults, process faults, message faults, and improper initialization
[Chen and Kulkarni 2011]. Thus, any class of faults that manifests itself by a set of
(nondeterministic) transitions in program state space can be modeled in our formal
setting. However, it is difficult to capture the effect of faults such as wing damage on
the flight control system of an aircraft using our fault model.

Definition 2.12 (Fault Span). A state predicate T is an f -span (read as fault span
for f ) of P = 〈SP , ψP〉 from S iff the following conditions are satisfied: (1) S ⊆ T , and
(2) T is closed in ψP ∪ f .

Observe that for all computations of P that start from states in S, T is a boundary
in the state space of P up to which (but not beyond which) the states of P may be
perturbed by the occurrence of the transitions in f . Subsequently, as we defined the
computations of P, one can define computations of programPin the presence of fault f
by simply substituting ψP with ψP ∪ f in Definition 2.4 except the constraint (2).

Since we consider the problem of multiple classes of faults, and we would like to eval-
uate the fault-tolerance property when multiple faults occur in the same computation,
we also extend the notion of computations in the presence of faults to computations of
program P in the presence of multiple faults. Intuitively, in computations where faults
from f1 and f2 occur simultaneously, every transition is either a transition of P or a
transition of f1 or a transition of f2. This can also be described as a computation of P
in the presence of f1 ∪ f2, where f1 ∪ f2 is another class of faults.

2.4. Fault Tolerance

We now define what it means for a program to be failsafe/nonmasking/masking f -
tolerant (read as fault tolerant to fault class f ).

Definition 2.13 (Masking f-Tolerant). A program P is masking f -tolerant from S for
spec iff the following conditions hold:

(1) P |=S spec; and
(2) There exists T such that

(a) T is an f -span of P from S,
(b) 〈SP , ψP ∪ f 〉 maintains spec from T , and
(c) Every computation of 〈SP , ψP〉 that starts from a state in T eventually reaches

a state of S.

Thus, if program P is masking f -tolerant from S for spec, then S is closed in ψP and
every computation of P that starts from a state in S satisfies spec in the absence of
faults. Additionally, in the presence of faults, there is a fault-span predicate T (S ⊆ T )
that is closed in ψP ∪ f .

Definition 2.14 (Failsafe f-Tolerant). A program P is failsafe f -tolerant from S for
spec iff conditions (1), (2a), and (2b) in Definition 2.13 hold.

Definition 2.15 (Nonmasking f-Tolerant). A program P is nonmasking f -tolerant
from S for spec iff conditions (1), (2a), and (2c) in Definition 2.13 hold.

Notation. Whenever the program P is clear from the context, we shall omit it; thus,
“S is an invariant” abbreviates “S is an invariant of P.” In addition, whenever the
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specification spec and the invariant S are clear from the context, we omit them; thus,
“ f -tolerant” abbreviates “ f -tolerant from S for spec.”

3. PROBLEM STATEMENT

In this section, we first present the definition of multitolerance. Intuitively, in a mul-
titolerant system, the designer considers different combinations of faults that could
occur simultaneously and identifies the desired level of tolerance for that combination.
For combinations that are not considered, the designer has either decided that they
are unlikely to occur or that the system cannot tolerate those combination of faults.
(By simultaneous, we mean that a fault from one class occurs before the system has
recovered from a fault from another class). For example, consider the scenario where
the system is subject to crash fault, Byzantine fault, and message loss. Furthermore,
consider the case where the designer assumes that if some process is Byzantine, then
the system cannot tolerate either crash or message loss. In this case, the classes of
faults considered for such a program would be {crash}, {Byzantine}, {message loss},
{crash, message loss}. For each class of faults, the designer identifies the desired level
of tolerance.

Based on this example, in defining a multitolerant program, we begin with fault
classes f1, f2, . . . fn and identify the level of fault tolerance provided to each class of
faults. The following definition identifies this requirement.

Definition 3.1 (Multitolerant). Let fδ = {〈 fi, li〉 | 0 < i ≤ n, li ∈ {failsafe,
nonmasking, masking}} where n ≥ 1. Program P is multitolerant to fault set fδ from
S for spec iff the following conditions hold:

(1) (In the absence of faults) P |=S spec, and
(2) For each i, 0 < i ≤ n, P is li fi-tolerant from S for spec, respectively.

Using the definition of multitolerant programs, we identify the requirements of the
problem of synthesizing a multitolerant program P ′ with invariant S′ from its fault-
intolerant version P with invariant S. We require that P ′ only adds multitolerance
and introduces no new behaviors in the absence of faults. This problem statement
is a natural extension of the problem statement in Kulkarni et al. [2007], where fault
tolerance is added to a single class of faults. More specifically, we stipulate the following
two conditions: (1) S′ ⊆ S—that is, the invariant S′ of the multitolerant program P ’—is
a subset of the invariant S of the given program P; (2) (s0, s1) ∈ P ′ ∧ s0 ∈ S′ ⇒ (s0, s1) ∈
P. Thus, the problem of adding multitolerance is as follows.

PROBLEM 3.1 (ADDING MULTITOLERANCE). Given P, S, spec, and fδ, identify P ′ and S′
such that

—(C1) S′ ⊆ S,
—(C2) (s0, s1) ∈ P ′ ∧ s0 ∈ S′ ⇒ (s0, s1) ∈ P, and
—(C3) P ′ is multitolerant to fδ from S′ for spec.

We state the corresponding decision problem as follows.

PROBLEM 3.2 (THE MULTITOLERANCE DECISION PROBLEM). Given P, S, spec, and fδ,
does there exist a program P ′ with its invariant S′ that satisfies the requirements of
Problem 3.1?

4. EXAMPLES

In this section, we present examples to illustrate different scenarios where distinct
levels of multitolerance are provided depending on the feasibility, cost, and user re-
quirements. The first example is a leader election protocol subject to node-leave faults
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and message losses. We demonstrate that providing masking fault tolerance to each
fault alone (i.e., MM multitolerance) is less costly than providing masking when both
faults occur simultaneously (defined in Ebnenasir and Kulkarni [2011] as a restricted
version of multitolerance). The second example is a vertex coloring protocol where
failsafe-nonmasking multitolerance is guaranteed. This example demonstrates that
in some cases, providing any level of tolerance is impossible when multiple classes of
faults occur. Finally, the third example provides masking-masking multitolerance and
illustrates a case where the restrictions from Ebnenasir and Kulkarni [2011] can be
satisfied if more resources are provided.

4.1. Masking-Masking Multitolerance

In this section, we present a leader election program that provides masking-masking
multitolerance to two types of faults: fm1 and fm2. The fault-type fm1 manifests itself as
if the leader leaves, called the leader leave fault, and fm2 denotes the message loss fault.
The program consists of n processes (p1, p2, . . . , pn) that are organized in a connected
network. Each process has a unique ID, numbered from 0, . . . , n − 1. One of these
processes is selected as the leader. When no faults occur, there are no actions that are
executed. However, when the current leader leaves, other processes can compete to be
the leader. When a process wants to be the leader, it starts a diffusing computation
[Dijkstra and Scholten 1980] and declares itself to be the leader when the diffusing
computation completes successfully. If multiple processes start diffusing computations,
then the process with higher ID wins.

Program. A process initiates a diffusing computation when it receives a 〈leave〉 mes-
sage from the current leader and if it is not already participating in a diffusing com-
putation. To initiate a diffusing computation, process j sends a message 〈 j〉 to all of its
neighbors. It also sets its own root value and its parent to be equal to j. The root value
keeps track of the initiator of a diffusing computation, and the parent value keeps
track of the node that sent this diffusing computation to j. When process j receives
a diffusing computation message of the form 〈ID〉 from k, it does the following. If j is
already participating in a diffusing computation such that the initiator of that diffusing
computation (stored in root. j) is higher than ID, then j ignores the new message. If the
value of root. j is equal to ID, then j is receiving the same diffusing computation twice.
Hence, it only replies to k. Otherwise, it forwards this diffusing computation to all of
its neighbors. To do so, it forwards the message 〈ID〉 and sets its own parent variable
to k and its own root variable to ID. Finally, when j receives a reply message from all
neighbors except the parent, j sends a reply to its parent. Moreover, if j is the initiator
(p. j == j), then it declares itself to be the leader. Thus, the actions in this program
are as follows:

upon receiving 〈leave〉 message from departing leader
−→ //node j sends diffusing computation message

if root. j == −1
send 〈 j〉 to nbrs. j,
p. j := j,
root. j := j;

else //ignore

upon receiving 〈ID〉 from k
−→if root == ID //duplicate

send reply to k with 〈ID〉;
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else if ID > root. j
p. j := k,
root. j := ID,
send 〈ID〉 to all neighbors except k;

else //ignore;

upon receiving reply from all neighbors except p. j with 〈root. j〉
−→root. j := −1;

if p. j 
= j
send reply to p. j with 〈root. j〉;

else
leader. j := true;

Invariant. The legitimate states of the program include those states where there is
a unique leader, there are no ongoing diffusing computations to elect a leader, and the
root value of every process is −1.

Fault Actions. The program is subject to two classes of faults, fm1 and fm2, where
fm1 denotes that the leader node leaves and notifies its neighbors, and fm2 represents
message loss faults. Variable channeli, j denotes the sequence of messages in the channel
between i and j. Hence, the two types of fault actions are as follows:

fm1 (Leader node leave):
leader. j == true

−→send 〈leave〉 to nbrs. j, leader. j := false;
fm2 (Message loss):

channeli, j 
= 〈 〉 // 〈 〉 denotes an empty channel
−→ channeli, j := tail(channeli, j);

Safety specification. The safety specification requires that in any state, there is at
most one leader. More precisely, the program should never reach a state where:

specmm = (∃ j, k : j 
= k : leader. j ∧ leader.k)

Masking-masking multitolerance to leader node leave and message loss. The MM
multitolerant program has the following properties:

(1) In the absence of faults, no action is executed, and there is a unique leader in the
network.

(2) When fault fm1 occurs (i.e., the current leader leaves), one or more of its neighbors
initiate a diffusing computation. Among the nodes that initiate the diffusing com-
putation, the one with the highest ID is elected as the leader. Hence, masking fault
tolerance is guaranteed when fm1 occurs.

(3) When fault fm2 causes messages to be lost, there is no effect on the number of lead-
ers. Thus, there is a unique leader in the network. Hence, masking fault tolerance
is guaranteed when fm2 occurs.

(4) If a message is lost during the diffusing computation, it is possible that the diffusing
computation never completes, and no leader is elected. Thus, if faults fm1 and fm2
occur simultaneously, no fault tolerance is guaranteed.

Discussion. A more careful analysis of this program shows that if faults fm1
and fm2 occur together, it causes the diffusing computation to be blocked, thereby
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resulting in states where there is no leader. In this case, failsafe fault tolerance is
provided. Thus, this is also an instance of FM multitolerance. Moreover, as one can
imagine, it is possible to design a fault-tolerant program that provides masking fault
tolerance to both fm1 and fm2 simultaneously. However, providing such tolerance is
expensive. For example, it requires mechanisms to detect message losses (or poten-
tially failure of a node). Additionally, it requires an overhead in terms of message
retransmission. Moreover, if such faults are considered during diffusing computa-
tion, there is a need for keeping track of multiple diffusing computations initiated
by the same node, such as with the use of sequence numbers. Thus, this example illus-
trates the case where providing multitolerance under the restrictions of Ebnenasir and
Kulkarni [2011] is costly (in terms of complexity of the code, performance, etc.), and a
less costly option can be provided by providing masking fault tolerance to each fault
alone.

4.2. Failsafe-Nonmasking Multitolerance

In this section, we present a vertex coloring protocol that provides failsafe-nonmasking
multitolerance to Byzantine fault and transient fault—that is, failsafe fault-tolerance
when Byzantine fault occurs, nonmasking fault-tolerance when transient fault occurs,
and no guarantees when both faults occur simultaneously.

The vertex coloring of the program is an assignment of colors to each process of the
system. The goal of the program is that every process is assigned a color, and no two
neighboring processes are assigned the same color. One assumption is that the degree
of each process is at most d, and d + 1 colors are to be used.

Invariant. The legitimate states of the program are those whose colors are assigned
appropriately.

Program. The program defines the following action for each node j:

color. j == color.k −→ color. j := available color( j);

In the preceding action, color. j denotes the color assigned to process j, and
available color( j) returns a color not used in the locality of process j. No action is
executed in the absence of faults.

Fault Actions. We consider two types of faults: Byzantine faults and transient faults.
Both of these faults result in changing the color of the affected process. However, the
main difference between these faults is that the former is a permanent fault—that
is, the affected process can change the color as often as it desires, whereas the latter
is a transient fault where there is a bound on the number of times the color of some
process is affected. Another difference is that the former only affects a subset of (chosen)
processes, whereas the latter can affect all processes at once. To model these faults,
we introduce a variable b. j that denotes whether j is Byzantine, variable count. j that
denotes the number of times color. j is affected by transient faults, and MAX that
denotes the number of permitted transient faults. (Note that all of these variables are
auxiliary variables, i.e., variables used in the proof but not explicitly by the program
itself.) Thus, the fault actions are as follows:

f f (Byzantine fault):
b. j == true

−→ colorj := random(0,d); // return a random value from 0 to d;
fn (transient fault):

count. j < MAX
−→ color. j := random(0,d);
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The preceding fault actions may corrupt the color of a process to be the same as that
of one of its neighbors.

Safety specification. The safety specification requires that any two neighboring nodes
that are non-Byzantine have different colors. Thus, the program should never reach a
state in the state predicate spec f n, where

spec f n = (∃ j, k :: (k ∈ nbrs. j) ∧ (b. j == false) ∧ (b.k == false) ∧ (color. j == color.k)).

Failsafe-nonmasking multitolerance to Byzantine fault and transient fault. The pro-
gram has the following properties:

(1) In the absence of faults, there is no action. Thus, the program keeps a correct color
assignment to all nodes.

(2) When f f corrupts color assignment of the Byzantine node, no non-Byzantine node is
affected; hence, the safety specification is not violated. Thus, failsafe fault-tolerance
is provided.

(3) When fn causes one node to change its color transiently, safety specification may
be violated at that time. Then, the recovery action will reassign its color to be the
correct one, and finally the program will recover to a correct assignment to all of
the nodes. Thus, nonmasking fault tolerance is provided.

(4) When both faults f f and fn occur simultaneously, safety specification may be vio-
lated due to the occurrence of transient fault. Thus, failsafe fault tolerance is not
guaranteed. In addition, the program may not recover to a correct assignment to
all nodes since the Byzantine node is corrupted permanently. Hence, nonmasking
fault tolerance is also not guaranteed.

Discussion. This example illustrates the need for multitolerance. In particular, with
Byzantine faults, the faults can prevent the program from recovering to a legitimate
state where the colors of all nodes are assigned properly—that is, no two neighbor-
ing nodes have the same color. In this example, providing masking or nonmasking
fault tolerance to Byzantine faults is impossible. Likewise, execution of the transient
fault itself can violate the safety specification. Thus, providing failsafe or masking fault
tolerance to transient faults is impossible. For this reason, the only possible solution
is to provide failsafe fault tolerance to Byzantine faults and nonmasking fault tolerance
to transient faults alone.

4.3. Masking-Masking Multitolerance

This section presents a scenario for MM multitolerance and also illustrates the differ-
ence between the notion of multitolerance considered in this article and the restricted
version of multitolerance considered in Ebnenasir and Kulkarni [2011]. As discussed
previously, in Ebnenasir and Kulkarni [2011] it is required that if fault tolerance is
individually provided to f1 and f2, then tolerance must be provided to the case where
both faults occur in the same computation. This example illustrates that this require-
ment makes it impossible to add the restricted version of multitolerance considered in
Ebnenasir and Kulkarni [2011]. By contrast, it is possible to realize a more relaxed set
of requirements considered in this work.

Problem description. The agreement program (AP) includes a general process and
three nongeneral processes. Initially, all nongenerals are undecided. The general casts
a decision, and each nongeneral copies the decision of the general and terminates (i.e.,
finalizes its decision).

Safety specification. The AP [Lamport et al. 1982] has to satisfy two safety properties,
namely agreement and validity. Agreement requires that if the general is faulty, then
all nonfaulty nongenerals that have finalized agree on the same decision. Validity
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stipulates that if the general is not faulty, then any nonfaulty nongeneral that has
finalized has the same decision as that of the general.

Fault classes. The AP is subject to two classes of faults: Byzantine and fail stop.
The Byzantine faults can perturb the state of at most one process and make it behave
arbitrarily. In other words, if a process is affected by Byzantine faults (i.e., a process is
Byzantine), then it can cast different decisions (i.e., lying about its decision to different
processes). The fail-stop faults could cause a process to crash in a detectable fashion.
A fail-stopped process does not execute any actions once it crashes. We assume that
fail-stop faults only affect the nongeneral processes.

The agreement program. The set of program variables is {dg, d0, f0, up0, d1, f1, up1, d2,
f2, up2}, where (1) dg denotes the decision of the general, which could be 0 or 1, and di
represents the decision of process i (0 ≤ i ≤ 2), where the domain of di is {0, 1,⊥}, and
⊥ means that process i is undecided; (2) fi is a Boolean variable representing whether
or not process i has finalized its decision after copying a decision from the general;
and (3) upi is also a Boolean variable that denotes whether process i has crashed in
a detectable fashion (i.e., has fail stopped). The actions of process i in the AP are as
follows (⊕ denotes addition in modulo 3):

Ai1 : di = ⊥ ∧ ¬ fi ∧ upi −→ di := dg
Ai2 : (di 
= ⊥ ∧ ¬ fi) ∧ (di⊕1 = ⊥ ∨ di = di⊕1) ∧

(di⊕2 = ⊥ ∨ di = di⊕2) ∧ (di⊕1 
= ⊥ ∨ di⊕2 
= ⊥) ∧ upi −→ fi := true
Ai3 : (di 
= ⊥ ∧ ¬ fi) ∧ (di⊕1 
= ⊥) ∧ (di⊕2 
= ⊥) ∧ upi −→ di := majority(d1, d2, d3))

fi := true

If process i is undecided and not crashed, then it can copy the decision of the general
(see action Ai1). Once decided, process i can finalize its decision if at least another
nongeneral has made the same decision (action Ai2). If all nongenerals have copied a
decision from the general, then process i can finalize by setting di to the majority of
decisions (action Ai3). That is, if di differs from the majority, then process i corrects di
by setting it to the majority of decisions and finalizing. Otherwise, di is equal to the
majority, and action Ai3 finalizes the decision of process i. Notice that a crashed process
can execute none of its actions because upi becomes false.

Invariant. An invariant of the AP includes states in which validity and agreement
are satisfied and at most one process is faulty.

Masking-masking multitolerance. The AP has the following properties:

(1) In the absence of Byzantine and fail-stop faults, the AP satisfies both validity and
agreement.

(2) In the presence of Byzantine faults, if the general is Byzantine, then validity vac-
uously holds and agreement is guaranteed by the majority of decisions. If a non-
general has become Byzantine, then validity holds for nonfaulty nongenerals, and
agreement is vacuously satisfied. Therefore, the AP is masking fault tolerant to
Byzantine faults.

(3) In the presence of fail-stop faults, one of the nongenerals stops executing (i.e., its
up variable becomes false). Thus, the other nongenerals satisfy validity. Agreement
is satisfied as well since a majority of nongenerals exists and the general is not
faulty. Therefore, the AP is masking fault tolerant to fail-stop faults.

(4) When both faults occur, the program may reach a state where a nongeneral has
crashed and another nongeneral has become Byzantine. If the fail-stop faults have
occurred before a process makes a decision, then the guard of action Ai3 in the
other two processes is false. Since another nongeneral has become Byzantine, its
decision may not be the same as the decision of the nonfaulty nongeneral. Thus,
the guard of action Ai2 of the nonfaulty nongeneral is also false. Therefore, the
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entire program deadlocks—that is, masking fault tolerance cannot be guaranteed
for Byzantine and fail-stop faults.

Discussion. This example demonstrates a case where it is impossible to design the
restricted version of multitolerance from Ebnenasir and Kulkarni [2011]. The reason
behind it is that the simultaneous occurrence of both faults may get the AP to a state
where no majority of decisions exists among the nonfaulty processes. One approach for
enabling recovery from such a state is to add redundancy by including an additional
nongeneral process in the AP, which may not be always practical. Thus, in this case,
the designer may adopt a more relaxed definition of multitolerance as considered in
this article.

Although illustrated in the context of a simple example, this analysis is also appli-
cable in several systems. For example, consider a distributed database that maintains
a certain level of replication. Such a system will tolerate some classes of faults (failure
of nodes, failure of links, message faults) by masking them so that the user always
observes the correct state of their files. However, if several of these faults occur at once,
it may compromise consistency for availability (or vice versa) by giving the user stale
data during recovery. Such a system would be masking-masking-nonmasking multi-
tolerant. If it chose consistency over availability, it is ensuring that any data given to
the user is always correct but the user may be unable to obtain the desired data in the
presence of simultaneous occurrence of several faults. This would be an example of a
masking-masking-failsafe multitolerance. None of such systems can be modeled under
the restricted version of multitolerance in Ebnenasir and Kulkarni [2011].

Another real-world example that demonstrates a case where the restricted notion
of multitolerance is unnecessary includes safety-critical embedded systems [Rushby
2001]. For instance, ROBUS [Miner et al. 2002] provides a reliable bus architecture
that is partitioned into fault containment regions that guarantee the independence of
physical faults. Thus, in such a system, the occurrence of one type of faults will not
cause the occurrence of another. This is clearly a case where only the weaker notion of
multitolerance is applicable.

5. COMPLEXITY ANALYSIS OF FF MULTITOLERANCE

In this section, we investigate the synthesis problem of programs that are multitolerant
to two classes of faults, f1 and f2, for which failsafe fault tolerance is required. That is,
fδ = {〈 f1, failsafe〉, 〈 f2, failsafe〉} in Definition 3.1. We show that such an FF (Failsafe-
Failsafe) multitolerant program can be synthesized in polynomial time in program
state space. To this end, we present a sound and complete algorithm. We note that this
algorithm can be easily generalized for the case where fδ includes three or more fault
classes for which failsafe fault tolerance is desired.

Given is a program P, with its invariant S and its specification spec. Let P ′ be the
synthesized program with invariant S′ that is multitolerant to f1 and f2. By definition,
P ′ must maintain spec from every reachable state in the computations of P ′ ∪ f1
(respectively, P ′ ∪ f2). To this end, in line 1 of Algorithm 1, we first identify ms1, a set
of states from where execution of one or more f1 transitions violates safety. Clearly, P ′
cannot reach a state in ms1 either in the absence of faults or in the presence of f1 alone.
Likewise, we compute ms2 in line 2. Next, we compute mt to be a set of transitions that
reach ms1 ∪ ms2 or those that violate spec. If there exist states in the invariant such
that the execution of one or more fault actions from those states violates spec, we recal-
culate the invariant by removing those states. In this recalculation, we ensure that all
computations of P − mt within the new invariant, S′, are infinite. By the constraints of
Definition 3.1 and the definition of ms1 and ms2, S′ must be a subset of S − ms1 − ms2.
Likewise, P ′ cannot include transitions that begin in S′ and are in mt. Hence, the only
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transitions P ′ can use inside S′ are a subset of P−mt. Removal of states in ms1 ∪ms2 or
transitions in mt may create some deadlock states in S−ms1−ms2—that is, whereP ′ has
no outgoing transitions. Since P ′ cannot deadlock in the absence of faults, we remove
such deadlock states recursively to construct S′ (lines 6 and 7 of Algorithm 1). As shown
in line 9, if the invariant becomes an empty set after reconstruction, we cannot find
an FF multitolerant program P ′. If the invariant is not empty, we remove transitions
that start in S′ and terminate outside S′ (i.e., violate the closure of S′). Notice that the
removal of such transitions does not introduce any deadlock states in S′ because each
remaining state in S′ has at least one outgoing transition to a nondeadlocked state
in S′.

ALGORITHM 1: Add FF Weakmulti
Input: P:transitions, f1, f2:faults of two classes that need failsafe f -tolerance, S: state

predicate, spec: safety specification
Output: If successful, a fault-tolerant P ′ with invariant S′ that is multitolerant to f1

and f2
1 ms1 := {s0 : ∃s1, s2, . . . sn : (∀ j : 0 ≤ j < n : (sj, sj+1) ∈ f1) ∧ (sn−1, sn) violates spec};
2 ms2 := {s0 : ∃s1, s2, . . . sn : (∀ j : 0 ≤ j < n : (sj, sj+1) ∈ f2) ∧ (sn−1, sn) violates spec};
3 mt := {(s0, s1) : ((s1 ∈ ms1 ∪ ms2) ∨ (s0, s1) violates spec)};
4 S′ := S − ms1 − ms2;
5 P1 := P − mt;
6 while ∃s0 : s0 ∈ S′ : (∀s1 : s1 ∈ S′ : (s0, s1) /∈ P1) do
7 S′ := S′ − {s0};
8 end
9 if (S′ = {}) declare no multitolerant program P ′ exists return ∅, ∅;

10 P ′ := {(s0, s1)|(s0, s1) ∈ P1, s0 ∈ S′, s1 ∈ S′};
// P ′ only specifies transitions inside invariant S′;
// P ′ can be modified to include any subset of {(s0, s1)|s0 /∈ S′ ∧ (s0, s1) /∈ mt};
/* T = Reachable (S′,P ∪ f1) ∪ Reachable (S′,P ∪ f2), i.e., T be states reached by

starting from S′ and using transitions of P ∪ f1 (respectively, P ∪ f2); */
// P ′ can include any subset of {(s0, s1)|s0 /∈ T };

11 return P ′, S′;

THEOREM 5.1. The algorithm Add_FF_Weakmulti is sound and complete.

PROOF. To show the soundness of our algorithm, we need to show that constraints
C1, C2, and C3 of Problem 3.1 are satisfied:

(1) S′ ⊆ S. By construction, S′ is obtained by removing zero or more states in S. Thus,
C1 is trivially satisfied.

(2) (s0, s1) ∈ P ′ ∧ s0 ∈ S′ ⇒ (s0, s1) ∈ P. By construction, P ′ does not have any new
transitions in the absence of faults. Therefore, C2 is trivially satisfied.

(3) P ′ is FF multitolerant to spec from S′. Consider a computation c of P ′ that starts
from a state in S′. From 1, c starts in a state in S, and from 2, c is a computation of
P. It follows that c satisfies spec. Hence, every computation of P ′ that starts from
a state in S′ is in spec—in other words, P ′ satisfies spec from S′. We discuss the
following two cases:
(a) Failsafe f1-tolerance to spec from S′. We let the fault span T1 be the set of states

reached in any computation of ψP ′ ∪ f1 that starts from a state in S′. Consider
a computation prefix c of ψP ′ ∪ f1 that starts from a state in T1. From the
definition of T1 there exists a computation prefix c′ of ψP ′ ∪ f1 such that c is a
suffix of c′ and c′ starts from a state in S′. If c′ violates the safety of spec, then
there exists a prefix of c′, say 〈s0, s1, . . . , sn〉, such that 〈s0, s1, . . . , sn〉 violates
the safety of spec. Let 〈s0, s1, . . . , sn〉 be the smallest such prefix; it follows that
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(sn−1, sn) violates the safety of spec, and hence (sn−1, sn) ∈ mt. By construction,
P ′ does not contain any transition in mt1. If (sn−1, sn) is a transition of f1, then
sn−1 ∈ ms1 and (sn−2, sn−1) ∈ mt1, and hence (sn−2, sn−1) is a transition of f1.
By induction, if 〈s0, s1, . . . , sn〉 violates the safety of spec, s0 ∈ ms1, which is a
contradiction since s0 ∈ S′ and S′ ∩ ms1 = ∅. Thus, each prefix of c′ maintains
spec. Since c is a suffix of c′, each prefix of c also maintains spec. Thus, ψP ′ ∪ f1
maintains spec from T1.

(b) Failsafe f2-tolerance to spec from S′. The argument is similar to part (3a).

Proof of completeness. Now we show that if an FF multitolerant program can be de-
signed for the given fault-intolerant program, then Add_FF_Weakmulti will not declare
failure. Let program P ′′ and predicate S′′ solve Problem 3.1. Clearly, S′′ ∩ ms1 = ∅;
if s0 ∈ (S′′ ∩ ms1), then the execution of faults alone from s0 can violate the safety of
spec. It follows that S′′ ⊆ (S − ms1). Likewise, S′′ ⊆ (S − ms2). Moreover, P ′′|S′′ cannot
include any transitions in mt; if P ′′|S′′ contains a transition in mt, then the execution of
these transitions can violate the safety of spec. Thus, P ′′|S′′ ⊆ (P − mt). Finally, every
computation of P ′′ that starts in a state in S′′ must be an infinite computation, if it
were to be in spec. It follows that there exists a subset of S such that all computations
of P − mt within that subset are infinite. Our algorithm declares that no solution for
the Problem 3.1 exists only when there is no subset of S − ms1 − ms2 such that all
computations of P − mt within that subset are infinite. It follows that our algorithm
declares that no FF multitolerant program exists only if the answer to Problem 3.2 is
false.

Remark 5.1. Algorithm Add_FF_Weakmulti can be extended to design a multitolerant
program that is subject to three or more fault classes. Toward this, we specify ms3
for the third fault class and msi for the ith fault class. Then, we calculate mt like
line 3 in Algorithm Add_FF_Weakmulti to specify these transitions that lead to state in⋃

i=1,...,n msi (n is the number of fault classes). Besides, we need to recalculate invariant
S′ by removing states in

⋃
i=1,...,n msi. The remaining steps are similar to Algorithm

Add_FF_Weakmulti.

5.1. Application of Add_FF_Weakmulti

This section presents a practical example to demonstrate how the algorithm
Add_FF_Weakmulti facilitates automated synthesis of an FF multitolerant disk stor-
age system. Specifically, we apply the Add_FF_Weakmulti algorithm in Section 5 to the
fault-intolerant version of the disk storage system.

Fault-intolerant stable disk storage. The stable disk storage (SDS) program (adapted
from Bernardeschi et al. [2000] and Ebnenasir and Kulkarni [2011]) has a controller
that manages two sectors (i.e., Sectors 0 and 1). The controller is in a loop of selecting
and activating a sector for a read/write operation. The controller and the sectors have
the following state variables (which determine its state space): ctrlState ∈ {0, 1} captures
the state of the controller, where 0 represents the state of selecting a sector and 1 means
issuing a command. The variable secNum ∈ {−1, 0, 1} contains the ID of the selected
sector, where –1 denotes that no sector has been selected yet, 0 represents Sector 0 and
1 for Sector 1. The controller activates the sectors by the binary variables activateSec0
and activateSec1, indicating whether a sector is activated or not. The SDS program
has a variable xi ∈ {−1, 0, 1} representing the bit that is read/written in sector i, where
–1 represents a damaged bit and i = 0, 1. We represent the communication channel
between the sector i and the controller by the binary variable ci. This channel is
used to read/write the bit xi from/to sector i, where i = 0, 1. The controller has two
command signals, denoted by the binary variable opi, for i = 0, 1. A read operation
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on xi is represented by opi = 0, and otherwise a write operation on xi. The following
guarded commands represent the set of transitions of the SDS program (adapted from
Ebnenasir and Kulkarni [2011]):

C1 : (ctrlState = 0) ∧ (secNum = −1) −→ secNum := 0|1;
C2 : (ctrlState = 0) ∧ (secNum 
= −1) ∧

((activateSec0 = 0) ∨ (activateSec1 = 0)) −→ ctrlState:= 1;
C3 : (ctrlState = 1) ∧ (secNum = 0) ∧ (activateSec0 = 0)

−→ ctrlState:= 0;
op0 := 0;
activateSec0 := 1;

C4 : (ctrlState = 1) ∧ (secNum = 0) ∧ (activateSec0 = 0)
−→ ctrlState:= 0;

op0 := 1; c0 := 0|1;
activateSec0 := 1;

C5 : (ctrlState = 1) ∧ (secNum = 1) ∧ (activateSec1 = 0)
−→ ctrlState:= 0;

op1 := 0;
activateSec1 := 1;

C6 : (ctrlState = 1) ∧ (secNum = 1) ∧ (activateSec1 = 0)
−→ ctrlState:= 0;

op1 := 1; c1 := 0|1;
activateSec1 := 1;

C7 : (ctrlState = 1) ∧ (secNum = −1) −→ ctrlState := 0;

When the controller receives a request for performing an operation with either Sec-
tor 0 or Sector 1, action C1 nondeterministically assigns 0 or 1 to secNum (denoted by
the vertical bar |). Then, action C2 changes the state of the controller to the state of
issuing commands. Using action C3 (respectively, C5), the controller sends a read com-
mand to Sector 0 (respectively, Sector 1), whereas action C4 (respectively, C6) issues
a write command for Sector 0 (respectively, Sector 1). After the execution of actions
Si1, Si2, and Si3, where i = 0, 1, by the selected sector, action C7 changes the state of
the controller to the sector selection mode. Actions Si1 and Si2 illustrate how sector i
performs a read operation, and action Si3 writes the contents of the channel ci on xi:

Si1 : (opi = 0) ∧ (xi = 0) ∧ (SecNum = i) ∧ (activateSeci = 1)
−→ ci := 0; secNum:= −1; activateSeci := 0;

Si2 : (opi = 0) ∧ (xi = 1) ∧ (SecNum = i) ∧ (activateSeci = 1)
−→ ci := 1; secNum:= −1; activateSeci := 0;

Si3 : (opi = 1) ∧ (SecNum = i) ∧ (activateSeci = 1)
−→ xi := ci ; secNum:= −1; activateSeci := 0;

The specification of the stable disk storage program. Intuitively, the safety specifi-
cation of the SDS program includes the following constraints: (1) a read operation
on xi should return the last value written on xi; (2) if the value of a bit is dam-
aged, then reading it returns 0; (3) after a write operation on xi, the condition xi =
ci must hold; (4) a write operation on a damaged bit has no effect and leaves the
value of that bit unchanged; and (5) during a write on a corrupted bit, the other sec-
tor must not be selected/activated. Formally, we capture the safety requirements of
SDS in a parameterized form for sector i as follows (i = 0, 1). (Recall that we repre-
sent safety specifications as a set of bad transitions that must not appear in program
computations.)
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safetySDS = {(s0, s1) | ((opi(s0) = 0) ∧ (ci(s1) 
= xi(s0))) ∨
((xi(s0) = −1) ∧ (opi(s0) = 0) ∧ (ci(s1) 
= 0)) ∨
((opi(s0) = 1) ∧ (xi(s0) 
= −1) ∧ (xi(s1) 
= ci(s1)) ) ∨
((opi(s0) = 1) ∧ (xi(s0) = −1) ∧ (xi(s0) 
= xi(s1)) ∨
((opi(s0) = 1) ∧ (xi(s0) = −1) ∧ (secNum(s0) = i ∧ secNum(s1) 
= i) ) }

The liveness specification of the SDS program requires deadlock freedom starting
from any state in the invariant ISDS, where

ISDS = {s | ((x0(s) 
= −1) ∧ (x1(s) 
= −1)) ∧ ((ctrlState(s) 
= 1) ∨ (secNum(s) 
= −1)) ∧
((activateSec0(s) 
= 1) ∨ (secNum(s) = 0)) ∧ ((activateSec1(s) 
= 1) ∨ (secNum(s) = 1)) }

The invariant ISDS defines the set of states where x0 and x1 are not damaged, and
if the controller is in the state of issuing a command (i.e., ctrlState = 1), then a sector
must have been selected (i.e., secNum 
= −1). Moreover, if sector i has been activated,
then the sector number matches with the activation command.

Faults affecting the stable disk storage program. Two classes of faults perturb the
SDS program, namely permanent damage and transient faults. The permanent faults
(represented later by action Fp) may permanently damage the contents of a bit of
information xi in a sector by assigning –1 to xi. The actions Fti (shown later), where
i = 0, 1, model the effect of transient faults that may nondeterministically perturb the
sector selection/activation commands—in other words, arbitrarily change the values of
secNum and activateSeci to 0 or 1:

Fp : (xi 
= −1) −→ xi := −1;
Fti : (ctrlState = 0) ∧ (SecNum 
= −1) ∧ (activateSeci = 1)

−→ secNum := 0 | 1; activateSeci := 0 | 1;

5.1.1. Failsafe-Failsafe Multitolerant Stable Disk Storage. In this section, we demonstrate
how we use the algorithm Add_FF_Weakmulti to generate an FF multitolerant version
of the SDS program. We note that this is a case where failsafe fault tolerance cannot
be designed if both permanent and transient faults occur. Specifically, if the transient
faults occur while a write operation is being performed on a corrupted bit, then the last
constraint of the safety specification safetySDS is directly violated by a sequence of fault
transitions (of both types). For this reason, we design an FF program that guarantees
failsafe fault tolerance for each type of fault separately.

We follow the steps of the algorithm Add_FF_Weakmulti to observe how an FF pro-
gram is generated. Notice that the occurrence of permanent faults does not directly
violate safetySDS; safetySDS may be violated after permanent faults damage a bit xi
and a write operation is performed on xi. Thus, ms1 = ∅. Moreover, the perturbation of
the variables secNum and activateSeci does not violate any constraint of safetySDS (i.e.,
ms2 = ∅). As a result, no states are removed from S, which means that S′ = S = ISDS
and the while loop in line 6 of Add_FF_Weakmulti will not remove any states from ISDS.
Since ms1 and ms2 are empty, mt becomes equal to safetySDS. Thus, in the presence
of permanent faults, we need to prevent any write operation on damaged bits, which
results in the following revised actions for the sectors:

S′
i1 : (opi = 0) ∧ ((xi = 0) ∨ (xi = −1)) ∧ (SecNum = i) ∧ (activateSeci = 1)

−→ ci := 0; secNum:= −1; activateSeci := 0;
S′

i2 : (opi = 0) ∧ (xi = 1) ∧ (SecNum = i) ∧ (activateSeci = 1)
−→ ci := 1; secNum:= −1; activateSeci := 0;

S′
i3 : (opi = 1) ∧ (SecNum = i) ∧ (activateSeci = 1) ∧ (xi 
= −1)

−→ xi := ci ; secNum:= −1; activateSeci := 0;
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The guard of the action Si1 has been weakened in action S′
i1 to include transitions

originating outside ISDS that return 0 if the value of xi is –1 and a read operation has
taken place.1 The constraint (xi 
= −1) in action S′

i3 guarantees that a write operation
will not take place on a damaged bit. Notice that in the presence of transient faults
alone, this set of revised actions along with the actions of the controller guarantee
failsafe fault tolerance to transient faults. Nonetheless, transient faults may cause the
program to deadlock in a state where secNum and activateSec variables do not match;
for example, secNum is set to 1, representing the selection of Sector 1, but activateSec1
is set to 0, and activateSec0 is set to 1. Since failsafe fault tolerance does not require
recovery from such states to ISDS, it is acceptable for a failsafe program to halt outside
its invariant (without violating safety). Therefore, the set of revised actions provides
FF multitolerance unless both faults occur simultaneously.

6. COMPLEXITY ANALYSIS OF MM MULTITOLERANCE

In this section, we investigate Problem 3.2 for cases where we want to add multitol-
erance for fδ = {〈 fm1, masking〉, 〈 fm2, masking〉}. We find a surprising result that the
MM (Masking-Masking) multitolerant synthesis problem is NP-complete (in the size
of the program state space), even though, under the restrictions imposed in Ebnenasir
and Kulkarni [2011], this problem can be solved in P.

Before we present the formal proof, we give an intuition behind this complexity.
Consider the case where there exists a transition (s1, s2) of fm2 that violates the safety
specification. We have the following two options: (1) ensure that s1 is unreachable in
the computations of P ∪ fm2, and (2) allow s1 to be reached only while program is
“recovering” from fm1. Moreover, the choice made for this state affects other similar
states. In our proof, we relate the choice made between these two options to the values
of Boolean variables in the SAT formula. This allows us to reduce the SAT problem to
the MM multitolerance synthesis problem.

THEOREM 6.1. The problem of synthesizing MM multitolerant programs from their
fault-intolerant version is NP-complete.

PROOF. Given a program P, with its invariant S, its specification spec, and two
classes of faults fm1 and fm2, we prove that the decision Problem 3.2 is NP-hard when
fδ = {〈 fm1, masking〉, 〈 fm2, masking〉}. Illustrating the NP membership of Problem 3.2
is straightforward and hence omitted.

Mapping. Now we present a polynomial-time mapping from an instance of the
SAT problem to a corresponding instance 〈P, S, spec, fm1, fm2〉 of Problem 3.2. An in-
stance of the SAT problem is specified in terms of a set of literals x1, x2, . . . , xn and
¬x1,¬x2, . . . ,¬xn, where xi and ¬xi are complements of each other. The SAT formula
is of the form φ = C1 ∧ C2 ∧ C3 ∧ . . . ∧ Ck, where each clause Ci is a disjunction of
several literals. Then we show that the given SAT formula is satisfiable iff there exists
a solution for the mapped instance of Problem 3.2. We construct the mapped instance
as follows (Figure 1).

The invariant and state space of the fault-intolerant program, P. The state space of P is
as follows:

—We introduce a state s. This is the only state in the invariant S.
—For each propositional variable xi, 1 ≤ i ≤ n, and its complement ¬xi in the SAT

instance, we introduce the following states: ei, ti, gi, hi, ai, and bi.
—For each clause Cr, 1 ≤ r ≤ k, we introduce states wr and zr.

1Please read the comment on line 10 of Add_FF_Weakmulti.
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Fig. 1. The states and the transitions corresponding to a literals xi and clauses Cr and Cq in the SAT
formula.

—If clause Cr includes literal xi, we introduce a state dri. If clause Cr includes literal
¬xi, we introduce a state d′

ri.

The transitions of fault-intolerant program P|S include only one self-loop transition
(s, s).

The transitions of fm1 and fm2 are as follows:

—For each clause Cr, we include the fault transition (s, wr) in fm1 and the fault transi-
tion (s, zr) in fm2.

—If the clause Cr includes the literal xi, then we include the fault transition (dri, ei) in
fm1.

—If the clause Cr includes the literal ¬xi, then we include the fault transition (d′
ri, ti)

in fm2.
—For each propositional variable xi and its complement ¬xi, we include the fault

transition (gi, ai) in fm1 and (hi, bi) in fm2.

The safety specification of the fault-intolerant program P is as follows:

—Transitions (gi, ai) and (hi, bi) violate safety.
—Transitions (s, s), (s, wr), (s, zr), (dri, ei), and (d′

ri, ti) do not violate safety.
—For each clause Cr, each propositional variable xi, and its complement ¬xi, the fol-

lowing transitions do not violate safety:
—(wr, zr), (zr, dri), (zr, d′

ri), (ei, ti), (ti, ei), (ei, gi), (ti, hi), (gi, s), and (hi, s).
—All transitions except those identified previously ((zr, wr), (zr, s), etc.) violate safety

specification.

Reduction. Now, we show that the given SAT formula is satisfiable iff the answer
to Problem 3.2 for the mapped instance is affirmative where fδ = {〈 fm1, masking〉,
〈 fm2, masking〉}:
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(=⇒) First, we show if the given SAT formula is satisfiable, then there exists a solu-
tion that meets the requirements of the synthesis problem. Since φ has a satisfying
truth assignment, there exists an assignment of truth values to the literals xi, such
that each Cr evaluates to true. Now, we identify the program P ′ that solves MM
multitolerant problem.

The invariant of P ′ is the same as the invariant of P (i.e., {s}). We derive the
transitions of the multitolerant program P ′ as follows:
—For each disjunction Cr, we include the transition (wr, zr).
—If xi is assigned true:

—We include (ei, ti), (ti, hi), (hi, s).
—For each disjunction Cr that includes xi, we include the transitions (zr, dri) and

(dri, s).
—If xi is assigned false:

—We include (ti, ei), (ei, gi), and (gi, s).
—For each disjunction Cr that includes ¬xi, we include the transitions

(zr, d′
ri) and (d′

ri, s).
Thus, in the presence of fm1 alone, P ′ provides safe recovery to s through dri, ei, ti, hi.
In the presence of fm2 alone, P ′ provides safe recovery to s through d′

ri, ti, ei, gi.
Now, we show that P ′ is multitolerant in the presence of faults fm1, fm2.

—(In the absence of faults) P ′|S = P|S. Thus, P ′ satisfies spec in the absence of faults.
—Masking fm1-tolerance. If the faults from fm1 occur, then the program can be per-

turbed to state wr, 1 ≤ r ≤ k. From wr, P ′ has only one transition that reaches zr.
Since Cr evaluates to true, there exists i such that either xi is a literal in Cr and
xi is assigned the truth value true or ¬xi is a literal in Cr and xi is assigned the
truth value false. In the former case, P ′ can recover to s using the two sequences of
transitions, 〈(zr, dri), (dri, s)〉, or 〈(zr, dri), (dri, ei), (ei, ti), (ti, hi), (hi, s)〉. In the latter
case, P ′ can recover to s using exactly one sequence of transitions, 〈(zr, d′

ri), (d′
ri, s)〉.

Note that if xi is true, then P ′ cannot reach gi, from where it can violate safety
specification. Thus, any computation of P ′ ∪ fm1 eventually reaches a state in the
invariant. Moreover, from zr, every computation of P ′ ∪ fm1 does not violate the
safety specification. Based on the preceding discussion, P ′ is masking tolerant to
fm1.

—Masking fm2-tolerance. The argument is similar to the one showing that P ′ is
masking tolerant to fm1.

(⇐=) Second, we show that if there exists a multitolerant program that solves the
instance of the synthesis Problem 3.2, then the given SAT formula is satisfiable. Let
P ′ be the multitolerant program derived from the fault-intolerant program P. The
invariant of P ′, S′, is not empty, and S′ ⊆ S, S′ must include state s. Thus, S′ = S.

Let Cr be a clause in the given SAT formula. The corresponding states added in the
instance of the synthesis problem are wr and zr. Note that wr can be reached from
s by a transition in fm1. Hence, P ′ must include the transition (wr, zr). Thus, zr is
reached in the computation of P ′ ∪ fm1. Hence, P ′ must recover to s from zr without
violating spec. Therefore, for some i, P ′ has to have a transition of the form (zr, dri)
or (zr, d′

ri). If P ′ includes (zr, dri), then we assign xi the truth value true. Likewise,
if P ′ includes (zr, d′

ri) for some i, then we assign xi the truth value false. Thus, by
construction, Cr evaluates to true.

Now, to complete the proof, we have to show that the truth values assigned to all
literals are consistent—in other words, it is not the case that xi is assigned true in
one clause and false in another clause. We show this by a proof by contradiction. If xi
is assigned true in clause Cr and false in clause Cq, then P ′ includes both transitions
(zr, dri) and (zq, d′

qi). Now, from dri, the program can reach ei by the occurrence of fm1
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alone. Hence, the program P ′ cannot include the transition (ei, gi), as including this
transition will allow the program to reach gi in a computation of P ′ ∪ fm1 and violate
safety by executing (gi, ai). Likewise, P ′ can reach ti by the occurrence of fm2 alone.
Hence, P ′ cannot include the transition (ti, hi). If both transitions (ei, gi) and (ti, hi)
are not included, then P ′ cannot recover from ei to the state in the invariant. This
contradicts the assumption that P ′ is masking fm1-tolerant. Thus, the truth value
assignment to all literals is consistent.

6.1. A Heuristic for MM Multitolerance

In this section, we present a sound (but incomplete) algorithm that adds MM mul-
titolerance to a given program P that is subject to two classes of faults, fδ =
{〈 f1, masking〉, 〈 f2, masking〉}, in polynomial time. Our algorithm Add_MM_Weakmulti
takes program actions, faults, and invariant and safety specification as input and gen-
erates an MM multitolerant program. The basic idea of Add_MM_Weakmulti is to first
construct the corresponding FF multitolerant program that ensures safety. Then we
use the fault span of the FF multitolerant program to add recovery. Specifically, let T1
and T2 be the fault spans in the presence of f1 and f2, respectively. We ensure that ev-
ery path from T1 reaches a state in S1, and likewise, every path from T2 reaches a state
in S1. Additionally, we ensure that T1 (respectively, T2) remains closed in transitions
of f1 (respectively, f2) during this revision process.

Given is a program P with its state predicate S and its specification spec. Let P ′
be the synthesized program with invariant S′ that is multitolerant to f1 and f2. By
definition, P ′ is masking f1-tolerant from S′ for spec if only f1 occurs, and masking
f2-tolerant from S′ for spec if only f2 occurs. To this end, line 1 of Algorithm 2 identifies
ms1, a set of states from where execution of one or more f1 transitions violates safety.
In line 2, we identify ms2, which is a set of states from where execution of one or
more f2 transitions violates safety. Next, we compute mt, a set of transitions that reach
ms1 ∪ ms2 or those that violate spec. By calling Algorithm 1 in line 6 of Algorithm 2,
we obtain P1 with invariant S1, where P1 is FF multitolerant to f1 and f2. In the loop
of lines 7 through 12, we reconstruct transitions to ensure that 〈S1,P1 ∪ f1〉 maintains
spec from T1 and 〈S1,P1 ∪ f2〉 maintains spec from T2 on line 9. To guarantee that
from each state outside S1 there is a path that reaches a state in S1 and there are
no cycles in states outside S1, we update P1 by calling the algorithm Ensure_Recovery
in lines 10 and 11. Algorithm 3 captures the details of Ensure_Recovery. Specifically,
Ensure_Recovery is defined in such a way that from each state outside S1 there is a
path that reaches a state in S1, and there are no cycles in states outside S1. As shown
in line 13 of Algorithm 2, if the invariant becomes an empty set after reconstruction,
we cannot find an MM multitolerant program P ′. Details are as shown in Algorithm 2.

THEOREM 6.2. The algorithm Add_MM_Weakmulti is sound.

PROOF. To show the soundness of our algorithm, we need to show that constraints
C1, C2, and C3 of Problem 3.1 are satisfied:

(1) S1 ⊆ S. By the correctness of Add_FF_Weakmulti, S1 obtained at line 6 satisfies C1.
Since the following steps do not add any state to S1, C1 is preserved by the final
program P1.

(2) (s0, s1) ∈ P1 ∧ s0 ∈ S1 ⇒ (s0, s1) ∈ P. By the correctness of Add_FF_Weakmulti, P1
obtained at line 6 of Algorithm 2 satisfies C2. Since the remaining steps do not add
any transition to P1, C2 is preserved by the final program P1.

(3) P1 is MM fault-tolerant to spec from S1. Consider a computation c of P1 that starts
from a state in S1. From part (1) of this proof, c starts in a state in S, and from part
(2), c is a computation of P. It follows that c satisfies spec. Hence, every computation
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ALGORITHM 2: Add MM Weakmulti
Input: P:transitions, f1, f2:faults of two classes that need Masking f -tolerance, S: state

predicate, spec: safety specification
Output: If successful, a fault-tolerant P ′ with invariant S′ that is weak multitolerant to f1

and f2
1 ms1 := {s0 : ∃s1, s2, . . . sn : (∀ j : 0 ≤ j < n : (sj, sj+1) ∈ f1) ∧ (sn−1, sn) violates spec};
2 ms2 := {s0 : ∃s1, s2, . . . sn : (∀ j : 0 ≤ j < n : (sj, sj+1) ∈ f2) ∧ (sn−1, sn) violates spec};
3 mt := {(s0, s1) : ((s1 ∈ ms1 ∪ ms2) ∨ (s0, s1) violates spec)};
4 T1 := S − ms1;
5 T2 := S − ms2;
6 P1, S1 := Add FF Weakmulti(P, f1, f2, S, spec) ; // refer to Algorithm 1
7 repeat
8 T ′

1 := T1, T ′
2 := T2;

9 P1 := {(s0, s1)|(s0 ∈ S1 ⇒ (s0, s1) ∈ P1) ∧ (s0 ∈ T1 ⇒ s1 ∈ T1) ∧ (s0 ∈ T2 ⇒ s1 ∈ T2)} − mt;
10 T1, S1,P1 := Ensure Recovery (P1, f1, T1, S1) ; // refer to Algorithm 3
11 T2, S1,P1 := Ensure Recovery (P1, f2, T2, S1);
12 until T ′

1 = T1 ∧ T ′
2 = T2;

13 if S1 
= ∅ then return P1, S1;
14 else declare failure in generating a multitolerant program P ′, return ∅,∅;

ALGORITHM 3: Ensure Recovery

Input: P:transitions, f :fault actions, T : state predicate, S: state predicate
Output: T : state predicate, S: state predicate, P:transitions
/* Goal: Find T ′, P ′ and S′ such that T ′ ⊆ T , S′ ⊆ S, T ′ is closed in P ′ ∪ f,

every computation of P ′ from T ′ reaches a state in S′. */
1 S1 := S;
2 repeat
3 S1 := S;

/* Rank(s0) = length of the shortest computation prefix of P from s0 to some
state in S. Rank(s0) = ∞ means S is not reachable from s0. */

4 T := T − {s0|Rank(s0) = ∞};
5 T := T − {s0|∃s1 : (s0, s1) ∈ f, s0 ∈ T , s1 /∈ T }; // Ensure T is closed in f
6 S := S ∧ T ;
7 while ∃s0 : s0 ∈ S : (∀s1 : s1 ∈ S : (s0, s1) /∈ P) do
8 S := S − {s0} ;
9 end

10 until S1 = S;
11 P1 := removeCycles(P, S, T ); // returns P1 such that P1 ⊆ P,P1|S = P|S,P1|(T − S)

is acyclic,
/* and ∀s0 : s0 ∈ T : S is reachable from s0 in P1 */
/* There are several possible implementations and any one of them is acceptable.

One possible implementation is to rank each state based upon the shortest
path from that state to a state inside S, and then remove these transitions
that do not decrease the rank. */

12 return P1, S, T ;

of P1 that starts from a state in S1 is in spec—that is, P1 satisfies spec from S1.
Next we discuss the following two cases:
(a) Masking f1-tolerance to spec from S1. To show this, we need to show the follow-

ing three properties:
—T1 is closed in P1 ∪ f1. Closure of T1 in P1 is by construction. Regarding

closure of T1 in f1, observe that there is no change in the last iteration of the
loop in lines 7 through 12 of Algorithm 2. Thus, T1 is closed in f1.
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—P1 ∪ f1 maintains spec from T1. We let the fault span T1 to be the set of
states reached in any computation of P1 ∪ f1 that starts from a state in S1.
Consider a computation prefix c of P1 ∪ f1 that starts from a state in T1.
From the definition of T1, there exists a computation prefix c′ of P1 ∪ f1
such that c is a suffix of c′ and c′ starts from a state in S1. If c′ violates the
safety of spec, then there exists a prefix of c′, say 〈s0, s1, . . . , sn〉, such that
〈s0, s1, . . . , sn〉 violates the safety of spec. Let 〈s0, s1, . . . , sn〉 be the smallest
such prefix; it follows that (sn−1, sn) violates the safety of spec and hence
(sn−1, sn) ∈ mt. By construction, P1 does not contain any transition in mt
(see line 9 of Algorithm 2). Thus, (sn−1, sn) is a transition of f1. If (sn−1, sn) is a
transition of f1, then sn−1 ∈ ms1 and (sn−2, sn−1) ∈ mt1 and hence (sn−2, sn−1)
is a transition of f1. By induction, if 〈s0, s1, . . . , sn〉 violates the safety of spec,
s0 ∈ ms1, which is a contradiction since s0 ∈ S1 and S1 ∩ ms1 = ∅ (guaranteed
by line 6 of Algorithm 2 since the following steps do not add any state in S1).
Thus, each prefix of c′ maintains spec. Since c is a suffix of c′, each prefix of c
also maintains spec. Thus, P1 ∪ f1 maintains spec from T1.

—Every computation of P that starts from a state in T1 eventually reaches
a state of S1. The Ensure_Recovery algorithm only updates P1 by removing
some transitions from P1 in steps 4, 5, and 10 of Algorithm 3. By construc-
tion, Ensure_Recovery removes all of the deadlock states in steps 7 and 8
recursively. In addition, the function RemoveCycles is defined in such a way
that from each state outside S1 there is a path that reaches a state in S1, and
there are no cycles in states outside S1.

(b) Masking f2-tolerant to spec from S1. The argument is similar to part (3a).

Remark 6.1. Note that Add_MM_Weakmulti is sound but not complete. One reason
is because the function removeCycles has several possible implementations, and the
choice of transitions removed in removeCycles (line 11 of Algorithm 3) for ensuring
recovery in the presence of f1 can prevent recovery in the presence of f2. If one were to
consider all possible choices of removeCycles, then the time complexity would become
exponential in the state space.

Remark 6.2. Algorithm Add_MM_Weakmulti can be extended to design a multitol-
erant program that is subject to three or more fault classes. Toward this, we specify
ms3 for the third fault class and the corresponding msi for the ith fault class. Then
we calculate mt like line 3 in Algorithm Add_MM_Weakmulti to specify these tran-
sitions that lead to state in

⋃
i=1,...,n msi (n is the number of fault classes). More-

over, we need to calculate the corresponding Ti for the ith fault class. In particular,
Ensure_Recovery (lines 10 and 11 of Algorithm 2) will be repeated for each fault
class.

7. COMPLEXITY ANALYSIS OF FM MULTITOLERANCE

In this section, we investigate the synthesis problem for multitolerant programs
for the case where the program is subject to two classes of faults, f1 and f2,
for which failsafe and masking fault-tolerance are required, respectively—that is
fδ = {〈 f1, failsafe〉, 〈 f2, masking〉} in Definition 3.1. This synthesis problem is NP-
complete. This result is also surprising since the corresponding problem in Ebnenasir
and Kulkarni [2011], which adds a requirement that failsafe fault tolerance be provided
if both f1 and f2 occur simultaneously, is in P.

THEOREM 7.1. The problem of synthesizing FM multitolerant programs from their
fault-intolerant version is NP-complete.
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PROOF. Given is a program P, with its invariant S; its specification spec; and two
classes of faults, f1 and f2. Since demonstrating membership to NP is trivial, we only
illustrate that the synthesis problem identified in Definition 3.1 is NP-hard when
fδ = {〈 f1, failsafe〉, 〈 f2, masking〉}.

Mapping. We construct the mapping by changing that part of proof for Theorem 6.1
as follows:

—Replace fm1 fault transitions with transitions of f2.
—Replace fm2 fault transitions with transitions of f1.

Reduction. Now we show that the given SAT formula is satisfiable iff there exists a
solution to the FM multitolerant synthesis problem:

(=⇒) By the proof of Theorem 6.1, if the given SAT formula is satisfiable, then there
exists a program that is masking fault tolerant to f1 and fm1. In addition, by Definitions
2.13 and 2.14, a program P that is masking f1-tolerant from S for spec is failsafe f1-
tolerant from S for spec. Hence, if the given SAT formula is satisfiable, then there is a
solution to the corresponding instance of the FM multitolerance synthesis.
(⇐=) This proof is identical to the corresponding proof for Theorem 6.1, and hence we
omit it.

8. COMPLEXITY ANALYSIS OF MN MULTITOLERANCE

In this section, we study the case where a program is subject to two classes of faults, f1
and f2, for which masking and nonmasking fault tolerance are required, respectively—
that is, fδ = {〈 f1, masking〉, 〈 f2, nonmasking〉} in Definition 3.1. We show that such an
MN (Masking-Nonmasking) multitolerant program can be synthesized in polynomial
time in the state space. This sound and complete algorithm also can be easily general-
ized for the case where fδ includes one class of faults for which masking fault tolerance
is desired and two or more fault classes for which nonmasking fault tolerance is de-
sired. Note that from the results in Section 6, if masking fault tolerance is desired for
two or more classes of faults, then the problem is NP-complete.

Given is a program P, with its invariant S and its specification spec. Our objective
is to synthesize a program P ′, with invariant S′ that is multitolerant to fδ. By def-
inition, P ′ must be masking f1-tolerant and nonmasking f2-tolerant. The algorithm
for MN multitolerance utilizes the algorithm Add_Masking (from Kulkarni and Arora
[2000]) that adds masking fault tolerance to a single class of faults. Add_Masking re-
turns the synthesized program P ′, its invariant S′, and its fault span T ′ such that
P ′ is masking fault tolerant to S′, and T ′ is the fault span used to prove this in
Definition 2.13. Algorithm 4 (Add_MN_Weakmulti) only relies on the correctness (i.e.,
soundness and completeness) of Add_Masking. It does not rely on the actual imple-
mentation of Add_Masking. Thus, Add_MN_Weakmulti first invokes Add_Masking on
line 1 with parameters (P, f1, S, spec). As shown in line 2, if the invariant becomes an

ALGORITHM 4: Add MN Weakmulti
Input: P:transitions, fδ1 : {〈 f1, masking〉, 〈 f2, nonmasking 〉}, S: state predicate, spec:

safety specification
Output: If successful, a fault-tolerant P ′ with invariant S′ that is multitolerant to f1

and f2
1 P1, S′, T1 := Add Masking(P, f1, S, spec);
2 if (S′ = {}) declare no multitolerant program P ′ exists, return ∅,∅;
3 P ′ := P1|T1 ∪ {(s0, s1) : (s0, s1) ∈ P, s0 /∈ T1 ∧ s1 ∈ T1};
4 return P ′, S′;
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Fig. 2. Feasibility of adding FF multitolerance.

empty set after reconstruction in line 1, we cannot find an MN multitolerant program
P ′. If the invariant is not empty, we include additional recovery transitions to ensure
recovery to T1.

Note. Algorithm Add_MN_Weakmulti is the same as that from Ebnenasir and
Kulkarni [2011].

THEOREM 8.1. The algorithm Add_MN_Weakmulti is sound and complete.

PROOF. By correctness of Add_Masking, P1 satisfies the constraints of Definition 3.1
for the case where fδ = {〈 f1, masking〉}. Since step 3 does not add or remove any state
of S or a transition from P|T , these constraints are preserved by the final program P ′.
Hence, to complete the proof of this theorem, next we show that P ′ is nonmasking f2-
tolerant. By definition of masking fault tolerance, every computation of P1 that starts
in a state in T1 reaches a state in S′. If f2 perturbs the program to a state outside
T1, then the recovery transitions added in step 3 will recover the program to a state
in T1 from where it can utilize the recovery paths inside P1 to reach S′. Thus, P ′ is
nonmasking f2-tolerant.

Our algorithm declares that an MN multitolerant program does not exist only when
Add_Masking does not find a masking f1-tolerant program. Hence, completeness of
Add_MN_Weakmulti follows from the completeness of Add_Masking.

9. COMPLEXITY ANALYSIS OF NN MULTITOLERANCE

The algorithm Add_NN_Weakmulti for the NN (Nonmasking-Nonmasking) multitoler-
ant problem is identical to Add_MN_Weakmulti, but instead of invoking Add_Masking
on line 1 of Algorithm 4, we call Add_Nonmasking(from Kulkarni and Arora [2000]).

THEOREM 9.1. The algorithm Add_NN_Weakmulti is sound and complete.

PROOF. Since the proof is similar to the proof of algorithm Add_MN_Weakmulti, we
omit it.

10. COMPARISON OF FEASIBILITY OF MULTITOLERANCE

This section studies the limitations and effectiveness of the restricted notion of mul-
titolerance presented in Ebnenasir and Kulkarni [2011] (where the minimum level
of fault tolerance is provided when multiple faults occur simultaneously) versus the
more general definition of multitolerance proposed in this article. We perform this
comparison for all possible levels of multitolerance for two types of faults.

10.1. Feasibility Comparison of FF Multitolerance

In this section, we show that there are instances where adding FF multitolerance
is feasible, although doing the same under restrictions imposed by Ebnenasir and
Kulkarni [2011] (namely, failsafe fault-tolerance when both faults occur in the same
computation) is not. We can show this with a simple example illustrated in Figure 2. In
this example, the input is as follows. The state space of the input program is {s0, s1, s2},
the input program consists of only one transition (s0, s0), and its invariant contains
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only one state s0. The transition (s1, s2) violates safety. The class of fault f1 includes
only one transition (s0, s1), and fault f2 includes only one transition (s1, s2).

Clearly, if faults f1 and f2 occur in the same computation, then safety can be violated
from state s0, which is the only state in the invariant. Hence, under the restrictions
of Ebnenasir and Kulkarni [2011], adding FF multitolerance is not possible. However,
without these restrictions, adding FF multitolerance is feasible. In fact, the program P
itself is FF multitolerant.

10.2. Feasibility Comparison of MM and FM Multitolerance

In this section, we show that there are instances where adding MM (respectively, FM)
multitolerance is feasible. However, if we consider the restricted version of multitoler-
ance from Ebnenasir and Kulkarni [2011], where masking (respectively, failsafe) fault
tolerance must be provided if faults from both classes occur in the same computation,
then adding MM (respectively, FM) multitolerance is impossible. To illustrate this, we
use the input obtained by mapping the SAT formula as discussed in Section 6. As shown
in Section 6, if we begin with an SAT formula that is satisfiable, then the answer to
the decision problem for adding MM multitolerance (Problem 3.2) is affirmative. Next
we show that for this input, the answer to the decision problem for adding MM multi-
tolerance is impossible if we add the restriction that masking fault tolerance must be
provided when faults from both classes occur in the same computation. To show this,
observe that in Figure 1, any recovery path to the invariant must go through either gi
or hi from some i (1 ≤ i ≤ n), where n is the number of propositional variables in the
instance of the SAT problem in Section 6. If f1 and f2 occur in the same computation,
safety will be violated when either fault transition (gi, ai) or (hi, bi) is executed.

We note that using a similar argument, we can show that there are instances where
adding FM multitolerance is feasible, although it becomes infeasible if we add restric-
tions of Ebnenasir and Kulkarni [2011].

10.3. Feasibility Comparison of MN, NN, and FN Multitolerance

Since the algorithm that is used to synthesize the MN/NN multitolerance is the same
as that in Ebnenasir and Kulkarni [2011], the synthesis problem of MN/NN multitol-
erance is unaffected by the restrictions imposed in Ebnenasir and Kulkarni [2011].

Finally, in FN multitolerance, no additional requirements are imposed in Ebnenasir
and Kulkarni [2011] when faults from both classes occur in the same computation.
This is because the minimum of failsafe and nonmasking fault tolerance is no fault
tolerance. Hence, the feasibility of FN multitolerance remains unchanged when one
considers the restrictions from Ebnenasir and Kulkarni [2011].

11. RELATED WORK

Automated program synthesis is studied from different perspectives. One approach
(e.g., Attie et al. [2004]) focuses on synthesizing fault-tolerant programs from their
specification in a temporal logic (e.g., linear temporal logic [Emerson 1990]). The term
synthesis is also used in the context (e.g., De Niz and Rajkumar [2004], Gu and Shin
[2005], Lin et al. [2004], and Hsiung and Lin [2008]) of transforming an abstract (such
as UML) program into a concrete (such as C++) program while ensuring that the loca-
tion of concrete program in memory, its dataflow, and so forth, meet the constraints of an
embedded system. By contrast, our approach focuses on transformation of one abstract
program into another that meets additional properties of interest. Our approach will
advance the applicability of this existing work by allowing designers to add properties
of interest in the abstract model and then using existing work to generate a concrete
program. Thus, our approach is desirable when one needs to extend an existing system
by adding fault tolerance.
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Our work is closely related to the work on controller synthesis [Asarin and Maler
1999; Asarin et al. 1998; Bouyer et al. 2003; D’Souza and Madhusudan 2002] and game
theory [De Alfaro et al. 2003; Faella et al. 2002; Jobstmann et al. 2005]. In most control-
theoretic approaches, the supervisory control has been studied under the assumption of
synchronous execution. Moreover, in both game theory and controller synthesis, since
highly expressive specifications are often considered, the complexity of the proposed
synthesis methods is very high. For example, the synthesis problems presented in
Asarin and Maler [1999], Asarin et al. [1998], De Alfaro et al. [2003], and Faella et al.
[2002] are EXPTIME-complete. Furthermore, deciding the existence of a controller in
Bouyer et al. [2003] and D’Souza and Madhusudan [2002] is 2EXPTIME-complete. In
addition, these approaches do not address some of the crucial concerns of fault tolerance
(e.g., providing recovery in the presence of faults) that are considered in our work. In
addition, the high complexity of these methods is a serious barrier to making synthesis
practical (e.g., tool building) for moderate-sized programs. By contrast, our approach
concentrates only on specifications needed to express properties of interest, thereby
decreasing the complexity of our algorithm. As a result, we have developed software
tools [Ebnenasir 2007; Bonakdarpour and Kulkarni 2008] that add fault tolerance to
programs with 2100 reachable states in less than 1 hour.

The algorithms in Kulkarni and Arora [2002] and Kulkarni and Ebnenasir [2002]
have addressed the problem of adding fault tolerance to only one class of fault. More-
over, the algorithms in Ebnenasir and Kulkarni [2011] add an implicit assumption
about requirements that have to be satisfied when several faults occur simultaneously.
As shown in this article, there are circumstances where these implicit requirements
prevent us from synthesizing the desired program even though the multitolerant sys-
tem can be designed. We have illustrated this with examples in Section 4.

12. DISCUSSION

In this section, we discuss issues related to the way in which we model faults, the
practical significance of our proposed work, and some limitations of our approach.

Fault model. In this article, we model the impact of faults on programs as a set of
transitions (i.e., a nondeterministic finite-state machine) that perturbs the program
state. Designers can identify the classes of faults dependent upon the domain of ap-
plication and the requirements of the system users. To generate a fault class, first we
identify the faults that may perturb the program at hand. Fault forecasting methods
[Laprie and Randell 2004] can be useful to achieve this objective. Then, we formally
characterize each of these faults as state perturbations. Finally, we group the faults
into fault classes based on the corresponding level of tolerance required for each fault
class. The desired level of tolerance is based on the user requirements and feasibility
of providing that level of tolerance under system constraints/resources. As we have
demonstrated in this work, by using this method of fault modeling, one can repre-
sent Byzantine, crash, message loss, input corruption, node leave, and transient faults.
Moreover, previous work [Liu and Joseph 1992, 1999; Pike et al. 2004; Arora 1992;
Ebnenasir and Kulkarni 2011] uses this model to capture other classes of faults such
as stuck-at, omission, disk corruption, and sensor failures. However, our fault model
cannot capture any types of faults that cannot be represented as a finite-state machine
(e.g., impact of external disturbances on aircraft, effect of wing damage on flight control
systems, mechanical systems involving several masses, springs and dampers).

Component-based design. Adding multitolerance enables a method for component-
based design of multitolerant programs. Specifically, consider an existing program P
that provides multitolerance to the fault classes f1, . . . , fn−1. If designers detect a new
fault class fn after the design and implementation of P, then it is desirable to have a
revised version of P, denoted Pc, that provides multitolerance to f1, . . . , fn−1 and fn.
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To design Pc, developers have two options: redesign a new multitolerant program from
scratch or simply design a component C and compose it with P such that the resulting
composition preserves fault tolerance to faults fi, for 1 ≤ i ≤ n − 1, and enables a
specific level of fault tolerance when fn occurs. In fact, the component C has to ensure
that the computations of P ∪ fn meet the requirements of the desired level of fault
tolerance—that is, no guarantees are provided for the computations of the composed
program Pc in the presence of faults f1, . . . , fn−1.

Practical significance. The practical impact of the proposed approach is multifold.
First, the algorithms presented in this article enable a stepwise method for incremen-
tal incorporation of fault tolerance properties. Such a stepwise method is especially
useful in the design of fault-tolerant systems because it is often difficult to anticipate
all classes of faults in the early stages of design due to the complex and dynamic nature
of today’s distributed systems. Second, automated addition of multitolerance exploits
computational redundancy before resorting to resource redundancy. Third, our algo-
rithms can be integrated in model checkers to facilitate the detection and correction
of conflicts between several levels of fault tolerance. Last but not least, although our
focus in this article is on high atomicity programs, the proposed method can be used
for the design of highly resilient network protocols where processing nodes might have
read/write restriction with respect to the variables of other nodes.

For example, consider the consistent hashing protocol in Cassandra [Lakshman and
Malik 2010], which is a decentralized file system used to manage huge datasets dis-
tributed on commodity servers. This protocol is used for data partitioning on a ring
of N processes, where each process in the ring is assigned a value modulo N identi-
fying its position on the ring. Then, a hashing mechanism uses the key of each data
item to determine the coordinator process of that item. Thus, the set of legitimate
configurations of the protocol includes states where we have unique position values
in the ring. Consider the case of transient faults (e.g., soft errors) causing random bit
flips in memory, thereby taking the consistent hashing ring to states where we may
have duplicate position values (or some missing position values). In such cases, one
can algorithmically design a self-stabilizing version of the consistent hashing protocol
that will eventually converge to configurations where each ring process has a unique
position value modulo N. Such convergence occurs without human intervention. In
fact, in this case, a self-stabilizing leader election protocol will guarantee convergence
to configurations where ring processes have distinct position values modulo N.

There are several other examples where the notion of multitolerance and the algo-
rithms devised in this work can be used effectively. For instance, we have designed
[Ebnenasir and Kulkarni 2011] a failsafe-nonmasking multitolerant disk controller
that manages a two-sector disk storage system and issues necessary read/write com-
mand after selecting and activating a sector. The sectors are subject to data corruption
faults, and the sector-select and read/write command lines from the controller to the
sectors are subject to transient faults. The safety specifications require that a read
operation returns the last written value, and reading a damaged bit returns 0. More-
over, writing a damaged bit has no effect on a sector. The invariant of the disk system
includes the states where the selected sector is the same as the activated sector. The
multitolerant disk system ensures that safety specifications are met in the presence of
data corruption and the invariant is restored when transient faults cause random bit
flips in the command lines.

Another example is a token passing system whose topology includes a set of inter-
twined unidirectional rings arranged in a two-level hierarchy [Ebnenasir and Kulkarni
2011]. Such intertwined token rings can be utilized to share resources in a controlled
manner so that the integrity of the resource is maintained. In this example, the lower
level includes a set of rings that behave similar to Dijkstra’s self-stabilizing token ring
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[Dijkstra 1974], and the higher-level ring includes one process from each lower-level
ring. The circulation of the token in the higher-level ring indicates which ring is active
in token circulation. The invariant of this system includes states where there is exactly
one token in the lower-level rings. This system is subject to three types of faults as
follows: (1) fail-stop faults that may cause at most one process to crash in a detectable
fashion, (2) process restart faults that may cause random restarts in at most one pro-
cess, and (3) transient faults that may perturb the entire system to any state in its state
space by introducing multiple tokens. The multitolerant token passing system provides
failsafe fault tolerance in the presence of fail-stop faults, masking tolerance when pro-
cess restarts occur, and nonmasking fault tolerance when transient faults perturb the
system, thereby enabling a failsafe-nonmasking-masking multitolerant system with a
complicated topology.

Yet another example includes a distributed agreement protocol that is nonmasking-
masking multitolerant to transient and Byzantine faults. Such an agreement protocol
forms a basis of a replicated system to ensure that replicas are maintained in a con-
sistent state. Whereas most protocols in this context focus on providing masking fault
tolerance to a fail-stop failure of a replica, this protocol provides several additional
guarantees. In particular, this protocol enables a round-based agreement system where
a distinguished process casts a decision in each round and the rest of the processes
should finalize that round by copying the decision of the distinguished process—in
other words, agree on the same decision. The safety specifications of this system re-
quire that, in each round, if the distinguished process is nonfaulty, then the decision
of all nonfaulty regular processes is identical to that of the distinguished process (i.e.,
validity); otherwise, all nonfaulty regular processes should agree on the same decision
(i.e., agreement). An invariant of this system includes states from where the round-
based computation continues indefinitely, and in each round, validity and agreement
are satisfied. Two types of faults may perturb this system in each round: Byzantine
faults may make a process behave maliciously when it casts different decision to dif-
ferent processes, and transient faults may nondeterministically change the decision
values and cause incoordination in the round-based computation. We have designed a
multitolerant version of this system that is masking fault tolerant to Byzantine faults
and nonmasking tolerant to transient faults. That is, even in the presence of Byzantine
faults, validity and agreement are met in each round, and if perturbed by transient
faults, the system will restore its round-based behavior (while ensuring validity and
agreement in each round).

Limitations. The approach presented in this article has some constraints in terms
of the input to the synthesis algorithms and tool development. First, thus far we have
investigated the problem of adding multitolerance for finite-state programs—that is,
the problem of adding multitolerance to infinite-state programs is still open. Second,
during the addition of multitolerance, our algorithms preserve only the properties
that can be captured in the linear topological characterization of specifications by
Alpern and Schneider [1985]. For instance, if the properties of the intolerant pro-
gram are specified in the computation tree logic [Emerson 1990], then we do not
guarantee that they will be preserved in the absence of faults. Third, the input pro-
gram should be maximal. In other words, from any state, the program should have
the maximum number of nondeterministic outgoing transitions. The maximality of
the intolerant programs increases the chances of success in adding multiple levels
of fault tolerance. For example, the action S′

i1 in the SDS example (synthesized in
Section 5.1) includes additional unreachable transitions that might be useful for the
addition of new levels of fault tolerance. Fourth, our model of programs is an abstract
model in that we do not add multitolerance to C/C++/Java programs. Nonetheless,
we can exploit the existing model extraction techniques [Holzmann 2000; Dams et al.
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2002; Visser et al. 2003] that are used in model checking where a finite model is
generated from a C/C++/Java program and then multitolerance is added to the ex-
tracted model. Fifth, the time/space complexity of synthesis is a bottleneck for tool
development. To tackle this challenge, we plan to reuse the tools that we have de-
veloped for the addition of a single level of fault tolerance to concurrent programs
[Ebnenasir et al. 2008] for the automated design of multitolerant programs. Specifi-
cally, we have developed distributed [Ebnenasir 2007] and symbolic [Bonakdarpour and
Kulkarni 2008] techniques that increase the scalability of algorithms for the addition
of fault tolerance significantly (e.g., for programs with 2100 reachable states).

Finally, in cases where the algorithms for adding multitolerance declare failure,
the design of multitolerance becomes impossible under the constraints/resources of
the program at hand. One solution may be to add more redundancy. It is possible to
revise the algorithms in this article, so additional redundancy could be introduced
automatically. However, we believe that addition of redundancy should be handled
manually, as it requires resources and an automation algorithm cannot determine
whether these resources are reasonable and available. Another possible solution may
be to change the expected level of tolerance. For example, if MM multitolerance is
unfeasible, then system may provide MN multitolerance. Again, the choice of this
depends upon whether the reduced level of tolerance is acceptable to system users. As
stated in Section 1, this involves a trade-off between the cost and level of fault tolerance.
Automation algorithms, like the ones in this article, allow designers to identify a fault-
tolerant program with the given choices in terms of redundancy and level of tolerance.

13. CONCLUSION

In this work, we addressed the problem of synthesizing multitolerant programs from
their fault-intolerant version—that is, adding multitolerance. The input to the synthe-
sis problem consists of the fault-intolerant program, a set of different classes of faults
to which the program is subject, and the expected level of tolerance for each class of
faults. We consider three levels of fault tolerance: (1) a failsafe fault-tolerant program
guarantees to meet its safety specifications at all times (i.e., both in the presence and
in the absence of faults), (2) a nonmasking fault-tolerant program ensures recovery to
a set of legitimate states from where its safety and liveness specifications are satisfied,
and (3) a masking fault-tolerant program is failsafe and nonmasking at the same time.
The problem of adding multitolerance is motivated by the observation that a program is
often subject to multiple classes of faults and the level of tolerance provided to them is
often different. The problem of adding multitolerance considers the special case where
the faults are independent—in other words, occurrences of faults from multiple classes
are unlikely to happen simultaneously, and hence it suffices to ensure that the program
provides the required tolerance to each fault class. By contrast, the restricted notion
of multitolerance considered in Ebnenasir and Kulkarni [2011] focuses on scenarios
where faults from several fault classes can happen simultaneously. For this reason, we
illustrated that there are several instances where adding multitolerance is feasible but
adding restricted multitolerance is not feasible.

Regarding the complexity of adding multitolerance, we considered five possible com-
binations: MM, FM, FF, MN and NN. In each combination, the first letter indicates
the fault-tolerance level for the first class of faults, denoted f1, and the second letter
indicates the fault-tolerance level for the second class of faults, f2. We found a sur-
prising result that if masking fault tolerance is desired for f1 and masking (or failsafe)
fault-tolerance is desired for f2, then adding multitolerance is NP-hard (in program
state space). This result is counterintuitive since the corresponding problem for adding
restricted multitolerance can be solved in polynomial time. We also presented a sound
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heuristic for designing MM multitolerant programs. For other combinations, FF, MN
and NN, we illustrated that the problem of synthesizing multitolerance is in P. To
demonstrate this, we presented a sound and complete algorithm for each combination.

We also investigated the relation between restricted multitolerance and multitol-
erance. Specifically, we argue that if a program is multitolerant under the restricted
definition in Ebnenasir and Kulkarni [2011], then it is also multitolerant under the def-
inition considered in this work, although the reverse is not necessarily true. Moreover,
we identify circumstances where solvability of adding multitolerance and restricted
multitolerance differs. We show that (1) there are situations where adding FF multitol-
erance is feasible but adding the restricted FF multitolerance is not feasible, (2) there
are instances where adding FM multitolerance is feasible but adding restricted FM
multitolerance is not feasible, and (3) the synthesis problem of MN/NN multitolerance
and restricted MN/NN multitolerance have the same feasibility property.

We have already implemented software tools that can add a single level of fault
tolerance [Ebnenasir et al. 2008; Ebnenasir 2007; Bonakdarpour and Kulkarni 2008].
Using such tools, we have been able to add fault tolerance to programs with up to 2100

reachable states in less than an hour. To enable the addition of multitolerance, we will
integrate the algorithms presented in this article into our existing tools.
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