
On the Hardness of Adding Nonmasking
Fault Tolerance
Alex Klinkhamer and Ali Ebnenasir

Abstract—This paper investigates the complexity of adding nonmasking fault tolerance, where a nonmasking fault-tolerant program

guarantees recovery from states reached due to the occurrence of faults to states from where its specifications are satisfied. We first

demonstrate that adding nonmasking fault tolerance to low atomicity programs—where processes have read/write restrictions with

respect to the variables of other processes—is NP-complete (in the size of the state space) on an unfair or weakly fair scheduler. Then,

we establish a surprising result that even under strong fairness, addition of nonmasking fault tolerance remains NP-hard! The NP-

hardness of adding nonmasking fault tolerance is based on a polynomial-time reduction from the 3-SAT problem to the problem of

designing self-stabilizing programs from their non-stabilizing versions, which is a special case of adding nonmasking fault tolerance.

While it is known that designing self-stabilization under the assumption of strong fairness is polynomial, we demonstrate that adding

self-stabilization to non-stabilizing programs is NP-hard under weak fairness.

Index Terms—Fault tolerance, distributed programs, NP-hardness

Ç

1 INTRODUCTION

TODAY’S distributed programs are subject to a variety of
types of faults (e.g., node crash, process restart, tran-

sient faults, message loss) due to their inherent complexity,
human errors and environmental factors (e.g., soft errors).
Such programs should guarantee service availability even
in the presence of faults. Nonetheless, designing and verify-
ing recovery of distributed programs is a difficult task in
part due to the limitations of distribution and the need for
global recovery by a coordination of local actions. This
paper investigates the complexity of augmenting an existing
distributed program with nonmasking fault tolerance (i.e.,
adding nonmasking fault tolerance), where a nonmasking
program ensures recovery from a subset of states reached
due to the occurrence of faults to states from where its speci-
fications are satisfied. A special case of nonmasking toler-
ance is self-stabilization where recovery should be provided
from any state.

Several researchers have investigated the problem of
adding nonmasking fault tolerance to programs [1], [2],
[3], [4], [5], [6]. For instance, Liu and Joseph [4] present a
method for the transformation of a fault-intolerant pro-
gram to a fault-tolerant version thereof by going through a
set of refinement steps—where a fault-intolerant program
provides no guarantees when faults occur. They model
faults by state perturbation, where program actions are
executed in an interleaving with fault actions. Arora and
Gouda [2], [3] provide a unified theory for the formulation
of fault tolerance functionalities in terms of closure and
convergence, where closure means that, in the absence of

faults, a fault-tolerant program remains in a set of legiti-
mate states, called its invariant, and convergence specifies
that the state of the program is recovered to its invariant
from a superset of the invariant reached due to the occur-
rence of faults, called a fault-span. Arora and Gouda [2], [3]
use the notions of closure and convergence to define three
levels of fault tolerance based on the extent to which safety
and liveness specifications [7] are satisfied in the presence
of faults. A failsafe fault-tolerant program ensures its safety
at all times even if faults occur, whereas, in the presence of
faults, a nonmasking program provides recovery to its
invariant; no guarantees on meeting safety during recov-
ery. A masking fault-tolerant program is both failsafe and
nonmasking. Arora et al. [5] design nonmasking fault tol-
erance by creating a dependency graph of the local con-
straints of program processes, and by illustrating how
these constraints should be satisfied so global recovery is
achieved. In a shared memory model, Kulkarni and Arora
[6] demonstrate that adding failsafe/nonmasking/mask-
ing fault tolerance to high atomicity programs can be done
in polynomial time in the size of the state space (under no
fairness), where the processes of a high atomicity program
can read/write all program variables in an atomic step.
Nonetheless, they show that, for distributed programs,
adding masking fault tolerance is NP-complete (in the size
of the state space) on an unfair scheduler. The authors of
[6] model distribution in a low atomicity shared memory
model, where each process has read and write restrictions
with respect to the local variables of other processes. Kul-
karni and Ebnenasir [8], [9] show that adding failsafe fault
tolerance to distributed programs is also an NP-complete
problem. However, the complexity of adding nonmasking
fault tolerance has remained an open problem for more
than a decade. While this problem is known to be in NP,
no polynomial-time algorithms are known for efficient
design of nonmasking fault tolerance for low atomicity
programs; nor has there been a proof of NP-completeness.

� The authors are with the Department of Computer Science, Michigan
Technological University, Houghton, MI 49931.
E-mail: {apklinkh,aebnenas}@mtu.edu.

Manuscript received 6 Feb. 2013; revised; 8 Mar. 2014; accepted 18 Mar.
2014. Date of publication 1 Apr. 2014; date of current version 15 May 2015.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TDSC.2014.2315191

338 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 12, NO. 3, MAY/JUNE 2015

1545-5971� 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



In this paper, we prove that adding nonmasking fault tol-
erance to low atomicity programs is NP-complete under no
fairness, weak, and strong fairness assumptions (see Fig. 1).
A weakly fair scheduler infinitely often executes any pro-
gram action that is continuously enabled (i.e., ready for exe-
cution), whereas a strongly fair scheduler infinitely often
executes any transition that is enabled infinitely often. Our
hardness proof is based on a reduction from the 3-SAT
problem [10] to the problem of adding self-stabilization to
non-stabilizing programs under no fairness. Since self-stabi-
lization is a special case of nonmasking fault tolerance, it fol-
lows that, in general, it is unlikely that adding nonmasking
fault tolerance to low atomicity programs can be done effi-
ciently (unless P ¼ NP ). We also show that even under
weak fairness the addition of stabilization to low atomicity
programs remains an NP-complete problem (see Fig. 1),
which implies the NP-completeness of adding nonmasking
fault tolerance under weak fairness in general. Moreover,
we present a surprising result that, while adding stabiliza-
tion under the assumption of strong fairness is known to be
polynomial (in the state space) [11], [12], [13], the general
case complexity of adding nonmasking fault tolerance
under strong fairness remains NP-complete!

Contributions.We present

� a proof of NP-completeness of adding self-stabiliza-
tion to distributed programs under no fairness and
weak fairness assumptions;

� a proof of NP-completeness of adding nonmasking
fault tolerance to distributed programs under any
fairness assumption, thereby solving a decade-old
problem, and

� a proof of NP-completeness of adding self-stabiliza-
tion even in special cases where (i) a process can
atomically read the global state of the distributed
program and can update its own local state, and (ii)
processes have self-disabling actions—where the exe-
cution of an action disables itself.

Organization. Section 2 presents the basic concepts of pro-

grams, faults and fault tolerance. Section 3 formally states the

problem of adding nonmasking fault tolerance. Section 4 illus-

trates that adding nonmasking fault tolerance to low atomicity

programs is in general NP-complete (on an unfair, weakly or

strongly fair scheduler). Section 5 discusses related work.

Finally, Section 6 makes concluding remarks and discusses

future work.

2 PRELIMINARIES

In this section, we present the formal definitions of pro-
grams, specifications, our distribution model (adapted from
[6]), faults and fault tolerance (adapted from [1], [3], [11],
[14]). For ease of presentation, we use a simplified version of
Dijkstra’s token ring (TR) protocol [1] as a running example.

Programs. A program in our setting is a representation of
any system that can be captured by a (non-deterministic)
finite-state machine (e.g., network protocols). Formally, a
program p is a tuple hVp; dp;Pp; Tpi of a finite set Vp of varia-
bles, a set dp of transitions, a finite set Pp of N processes,
where N � 1, and a topology Tp. Each variable vi 2 Vp, for
i 2 Nm where Nm ¼ f0; 1; . . . ;m� 1g and m > 0, has a
finite non-empty domain Di. A state s of p is a valuation
hd0; d1; . . . ; dm�1i of variables hv0; v1; . . . ; vm�1i, where
di 2 Di. A transition t is an ordered pair of states, denoted
ðs0; s1Þ, where s0 is the source and s1 is the target/destina-
tion state of t. A process Pj 2 Pp is a triple hdj; rj; wji, where
0 � j � N � 1 and dj � Sp � Sp denotes the set of transitions
of Pj. The set of transitions of the program p, denoted dp, is
the union of the sets of transitions of its processes; i.e.,
dp ¼

S N�1
j¼0 dj. A deadlock state is a state with no outgoing

transitions. For a variable v and a state s, vðsÞ denotes the
value of v in s. The state space of p, denoted Sp, is the set of
all possible states of p, and jSpj denotes the size of Sp. A state
predicate is any subset of Sp specified as a Boolean expres-
sion over Vp. We say a state predicate X holds in a state s
(respectively, s 2 X) if and only if (iff) X evaluates to true at
s. For simplicity, we misuse the notations p and dp
interchangeably.

To simplify the specification of dp for designers, we use
Dijkstra’s guarded commands language [15] as a shorthand
for representing the set of program transitions. A guarded
command (a.k.a. action) is of the form grd ! stmt, and
includes a set of transitions ðs0; s1Þ such that the predicate
grd holds in s0 and the atomic execution of the statement
stmt results in state s1. An action grd ! stmt is enabled in a
state s iff grd holds at s. A process Pj 2 Pp is enabled in s iff
there exists an action of Pj that is enabled at s.

Computations. Intuitively, a computation of a program
p ¼ hVp; dp;Pp; Tpi is an interleaving of its actions. Formally, a
computation of p is a sequence s ¼ � s0; s1; . . . 	 of states
that satisfies the following conditions: (1) for each transition
ðsi; siþ1Þ in s, where i � 0, there exists an action grd ! stmt
in some process Pj 2 Pp such that grd holds at si and the
execution of stmt at si yields siþ1, and (2) s is maximal in
that either s is infinite or if it is finite, then s reaches a state
sf where no action is enabled. A computation prefix of a pro-
gram p is a finite sequence s ¼� s0; s1; . . . ; sz 	 of states,
where z > 0, such that each transition ðsi; siþ1Þ in s (i 2 Nz)
belongs to some action grd ! stmt in some process Pj 2 Pp.
The projection of a program p on a non-empty state predicate
X, denoted as dpjX, is the program hVp; fðs0; s1Þ : ðs0; s1Þ2
dp ^ s0; s12Xg;Pp; Tpi.

Properties and specifications. For a program p, a safety
property sprop stipulates that nothing bad ever happens (e.
g., no two processes access a shared resource simulta-
neously). Formally, we follow [7], [16] to specify a safety
property sprop as a set of bad transitions that must not
be executed by p; i.e., sprop 2 Sp � Sp. A computation
s ¼ � s0; s1; . . . 	 of p satisfies its safety property sprop
from s0 iff no transition ðsi; siþ1Þ, where i � 0, is in sprop; i.
e., s includes no bad transitions. A liveness property,
denoted lprop, specifies some good things that should even-
tually occur (e.g., a process will eventually access some
shared resource). Formally, liveness is captured as a set of
sequences of states. A computation s ¼� s0; s1; 
 
 
 	 of p

Fig. 1. The complexity of adding nonmasking fault tolerance and self-sta-
bilization under different fairness policies. (� denotes the contributions of
this paper).

KLINKHAMER AND EBNENASIR: ON THE HARDNESS OF ADDING NONMASKING FAULT TOLERANCE 339



satisfies its liveness property lprop from s0 iff s has a suffix in
lprop. Following Alpern and Schneider [7], we define a spec-
ification spec as a set of safety and liveness properties. A
computation s of p satisfies its specification spec from s0 iff
s satisfies the safety and liveness of spec from s0. A program
satisfies its specification spec from a state predicate I iff
every computation of p starting in I satisfies spec.

Read/Write model. We adopt a shared memory model [17]
since reasoning in a shared memory setting is easier, and
several (correctness-preserving) transformations [18], [19]
exist for the refinement of shared memory programs to their
message-passing versions. To model the topological con-
straints (denoted Tp) of a program p, we consider a subset of
variables in Vp that each process Pj (j 2 NN ) can write,
denoted wj, and a subset of variables that Pj is allowed to
read, denoted rj. We assume that for each process Pj,
wj � rj; i.e., if a process can write a variable, then it can also
read that variable. A process Pj is not allowed to update a
variable v =2 wj.

Impact of read restrictions. Every transition of a process Pj

belongs to a group of transitions due to the inability of Pj in
reading variables that are not in rj. Consider two processes
P0 and P1 each having a Boolean variable that is not read-
able for the other process. That is, P0 (respectively, P1) can
read and write x0 (respectively, x1), but cannot read x1
(respectively, x0). Let hx0; x1i denote a state of this program.
Now, if P0 writes x0 in a transition ðh0; 0i; h1; 0iÞ, then P0 has
to consider the possibility of x1 being 1 when it updates x0
from 0 to 1. As such, executing an action in which the value
of x0 is changed from 0 to 1 is captured by the fact that a
group of two transitions ðh0; 0i; h1; 0iÞ and ðh0; 1i; h1; 1iÞ is
included in P0. In general, a transition is included in the set
of transitions of a process iff its associated group of transi-
tions is included. Formally, any two transitions ðs0; s1Þ and
ðs00; s01Þ in a group of transitions formed due to the read
restrictions of a process Pj meet the following constraints:
8v : v 2 rj : ðvðs0Þ ¼ vðs00ÞÞ ^ ðvðs1Þ ¼ vðs01ÞÞ and 8v : v =2 rj :
ðvðs0Þ ¼ vðs1ÞÞ ^ ðvðs00Þ ¼ vðs01ÞÞ. (It is known that the total
number of groups is polynomial in jSpj [6]).

Example: Token Ring. The token ring program (adapted
from [1]) includes three processes fP0; P1; P2g each with an
integer variable xj, where j 2 N3, with a domain f0; 1; 2g.
The process P0 has the following action (� and  respec-
tively denote addition and subtraction in modulo 3):

A0 : ðx0 ¼ x2Þ �! x0 :¼ x2 � 1

When the values of x0 and x2 are equal, P0 increments x0

by one. We use the following parametric action to represent
the actions of Pj, for 1 � j � 2:

Aj : ðxj 6¼ xðj1ÞÞ �! xj :¼ xðj1Þ

Each process Pj copies xj1 only if xj 6¼ xj1, where
j ¼ 1; 2. By definition, process Pj has a token iff xj 6¼ xj1.
Process P0 has a token iff x0 ¼ x2. We define a state predicate
ITR that captures the set of states in which only one token
exists, where ITR is

ððx0 ¼ x1Þ ^ ðx1 ¼ x2ÞÞ _ ððx1 � 1 ¼ x0Þ ^ ðx1 ¼ x2ÞÞ
_ ððx0 ¼ x1Þ ^ ðx2 � 1 ¼ x1ÞÞ

Each process Pj (1 � j � 2) is allowed to read variables
xj1 and xj, but can write only xj. Process P0 is permitted to
read x2 and x0 and can write only x0. Thus, since a process
Pj is unable to read one variable (with a domain of three val-
ues), each group includes three transitions. 3

Closure and invariant. A state predicate X is closed in an
action grd ! stmt iff executing stmt from any state s 2 ðX ^
grdÞ results in a state in X. We say a state predicate X is
closed in a program p iff X is closed in every action of p. In
other words, closure inX requires that every computation of
p starting in X remains in X [11]. A state predicate I is an
invariant of p iff I is closed in p and p satisfies its spec from I.

TR Example. Starting from a state in the state predicate
ITR, the TR protocol generates an infinite sequence of states,
where all reached states belong to ITR. 3

Faults. We capture the impact of faults on a program as
state perturbations. Formally, a class of faults f for a pro-
gram p ¼ hVp; dp;Pp; Tpi is a subset of Sp � Sp. We use p½�f
to denote the transitions obtained by taking the union of
the transitions in dp and the transitions in f . We say that a
state predicate T is an f-span (read as fault-span) of p
from a state predicate I iff I � T and T is closed in p½�f .
Observe that for all computations of p that start in I, T is
a boundary in the state space of p to which (but not
beyond which) the state of p may be perturbed by the
occurrence of f . The same way we use guarded com-
mands to represent program transitions, we use them to
specify fault transitions. While we concentrate on transient
faults that can perturb the state of a program without
causing any permanent damage, the notion of state per-
turbation is appropriate for modeling other types of
faults. Liu and Joseph [4] use state perturbation to model
failstop failures. Chen and Kulkarni [20] show that 20 out
of 31 categories of faults classified by Avizienis et al. [21]
can be modeled by state perturbation.

TR Example. The TR protocol is subject to transient faults
that can perturb its state to an arbitrary state. For instance,
the following action captures the impact of transient faults
on x0, where j denotes the non-deterministic assignment of
values to x0:

F0 : true �! x0 :¼ 0j1j2

The impact of faults on x1 and x2 are captured with two
actions F1 and F2 symmetric to F0. 3

We say that a sequence of states, s ¼ hs0; s1; . . . ; i is a com-
putation of p in the presence of f iff the following conditions are
satisfied: (1) 8j : j > 0 : ðsj�1; sjÞ2ðp½�fÞ; (2) if s is finite and
terminates in state sl, then there is no state s such that
ðsl; sÞ2dp, and (3) 9n : n � 0 : ð8j : j > n : ðsj�1; sjÞ2dpÞ. The
first requirement captures that in each step, either a program
transition or a fault transition is executed. The second
requirement states that if the only transition that starts from
sl is a fault transition ðsl; sfÞ then as far as the program is
concerned, sl is still a deadlock state because the program
does not have control over the execution of ðsl; sfÞ; i.e.,
ðsl; sfÞ may or may not be executed. Finally, the third
requirement captures that the number of fault occurrences
in a computation is finite. This requirement is the same as
that made in previous work (e.g., [1], [3], [22], [23]) to ensure
that eventually recovery can occur.

340 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 12, NO. 3, MAY/JUNE 2015



Masking fault tolerance. Let I be an invariant of a program
p, spec denote the specification of p and f be a class of faults.
We say that p is masking f-tolerant from I for spec iff (1) p
satisfies spec from I in the absence of faults and there exists
an f-span of p from I, denoted T ; (2) T converges to I in p; i.
e., from any state s0 2 T , every computation of p that starts
in s0 reaches a state where I holds, and (3) from any state in
T the computations of p½�f include no bad transitions.

Nonmasking fault tolerance and self-stabilization. We say
that p is nonmasking f-tolerant from I for spec iff the condi-
tions (1) and (2) in the definition of masking tolerance are
met. The program p is self-stabilizing from I iff the f-span of
p is equal to Sp, and convergence to I is guaranteed from
any state in Sp.

Failsafe fault tolerance. A program p is failsafe f-tolerant
from I for spec iff the conditions (1) and (3) in the definition
of masking tolerance hold.

Fairness. Let s ¼� si; siþ1; . . . ; sj; si 	 be a sequence of
states in T�I, where j � i and each state is reached from
its predecessor by the transitions in dp. The sequence s

denotes a cycle in T�I. The definition of what constitutes a
non-progress cycle (a.k.a. livelock) depends on the underly-
ing fairness assumption. An unfair scheduler provides no
guarantees as to how it would execute enabled actions,
whereas a weakly fair scheduler infinitely often executes
actions that are continuously enabled. Under weak fair-
ness, the cycle s in ðT�IÞ is a non-progress cycle iff there is
no program action that is enabled in every state of s and
includes a transition that reaches a state s0 =2 s. Under no
fairness assumption, any cycle in ðT�IÞ is a non-progress
cycle. Under strong fairness (adapted from Gouda [11]), if
the cycle s in ðT�IÞ includes a state sk (i � k � j) with an
outgoing transition ðsk; s0Þ where s0 does not appear in s,
then a strongly fair scheduler would guarantee to eventu-
ally execute ðsk; s0Þ because it is infinitely often enabled in
the cycle s. Thus, the program would recover from this
cycle with the help of the strongly fair scheduler. A com-
mon definition of strong fairness states that any action that
is enabled infinitely often is executed infinitely often.
Under this definition of strong fairness, consider an action
A that includes a transition ðsk; skþ1Þ in s and another tran-
sition ðsr; s0Þ where s0 does not appear in s and i � k; r � j.
Notice that A is enabled infinitely often because both sk
and sr are visited infinitely often, however, the scheduler
could meet its specification by infinitely often executing
just ðsk; skþ1Þ, thereby not recovering from s. That is why
we adopt a more fine-grained definition for strong fairness
compared with the common definition. Nonetheless, the
results of this paper hold for both definitions since the
instance of the problem of adding nonmasking fault toler-
ance built in its proof of NP-hardness does not include
actions like A discussed above.

3 PROBLEM STATEMENT

In this section, we present the problem of adding nonmask-
ing fault tolerance under different fairness assumptions.
Consider a fault-intolerant program p ¼ hVp; dp;Pp; Tpi, its
invariant I, its specification spec, a class of faults f , and a
fairness assumption F 2 funfair, weak, strongg. Our objec-
tive is to generate a revised version of p, denoted p0, such

that p0 is nonmasking f-tolerant from an invariant I 0 under
the fairness assumption F . To separate fault tolerance from
functional concerns, we would like to preserve the behav-
iors of p in the absence of f during the addition of fault toler-
ance; i.e., in the absence of faults, p0 satisfies spec. Thus,
during the synthesis of p0 from p, no states (respectively,
transitions) are added to I (respectively, dpjI). As such, we
have I 0 � I and p0jI 0 � pjI 0. Moreover, if p0 starts in a state
outside I 0, then only convergence to I 0 will be provided
by p0. Thus, we formally state the problem as follows: (This
is an adaptation of the problem of adding fault tolerance
in [6].)

Problem 3.1. Adding Nonmasking Fault Tolerance:

� Input: (1) A program p ¼ hVp; dp;Pp; Tpi that satisfies
its specification spec from an invariant I; (2) a class of
faults f , and (3) a fairness assumption F 2 funfair,
weak, strongg.

� Output: A program p0 ¼ hVp; dp0 ;Pp; Tpi and an
invariant I 0 such that: (1) I 0 is non-empty and I 0 � I;
(2) dp0 jI 0 � dpjI 0, and (3) p0 is nonmasking f-tolerant
from I 0 for spec under F fairness.

We state the corresponding decision problem as follows:

Problem 3.2. Decision Problem of Adding Nonmasking
Fault Tolerance:

� INSTANCE: (1) A program p ¼ hVp; dp;Pp; Tpi that
satisfies its specification spec from an invariant I; (2)
a class of faults f , and (3) a fairness assumption
F 2 funfair, weak, strongg.

� QUESTION: Does there exist a program p0 ¼ hVp;
dp0 ;Pp; Tpi and a state predicate I 0 such that the con-
straints of Problem 3.1 are met under the fairness
assumption F?

A special case of Problem 3.1 is where (i) f denotes a
class of transient faults; (ii) I ¼ I 0; (iii) dp0 jI 0 ¼ dpjI 0, and (iv)
p0 is self-stabilizing from I under F fairness.

Problem 3.3. Decision Problem of Adding Stabilization:

� INSTANCE: (1) A program p ¼ hVp; dp;Pp; Tpi that
satisfies its specification spec from an invariant I; (2)
a class of transient faults f , and (3) a fairness assump-
tion F 2 funfair, weak, strongg.

� QUESTION: Does there exist a program p0 ¼ hVp;
dp0 ;Pp; Tpi such that: (1) I remains unchanged (i.e.,
I 0 ¼ I); (2) dp0 jI ¼ dpjI, and (3) p0 is self-stabilizing
from I for spec under F fairness?

Previous work [11], [12], [13] illustrates that if F ¼
strong, then Problem 3.3 can be solved in polynomial time
in jSpj. Stabilization under strong fairness (a.k.a. weak stabili-
zation) requires that from any state s 2 :I, there exists a com-
putation prefix that includes a state in I [11]. However, the
general case complexity of adding stabilization under no
fairness and weak fairness assumptions have been open
problems thus far. Stabilization under no fairness (a.k.a.
strong stabilization) stipulates that from any state s 2 :I,
every computation prefix includes a state in I [1], [11]. We
have developed heuristics and software tools [13] that syn-
thesize self-stabilizing programs in polynomial time. More-
over, previous research [24], [25] testifies the practical
significance of adding nonmasking tolerance.

KLINKHAMER AND EBNENASIR: ON THE HARDNESS OF ADDING NONMASKING FAULT TOLERANCE 341



4 HARDNESS RESULTS

In this section, we illustrate that adding nonmasking fault
tolerance to low atomicity programs is NP-complete under
no fairness (Section 4.2), weak (Section 4.3) and strong (Sec-
tion 4.4) fairness assumptions. We first state the 3-SAT deci-
sion problem.

Problem 4.1. The 3-SAT decision problem:

� INSTANCE: A set V of n propositional variables
(v0; . . . ; vn�1) and k clauses (C0; . . . ; Ck�1) over V such
that each clause is of the form ðlq _ lr _ lsÞ, where
q; r; s 2 Nn and Nn ¼ f0; 1; . . . ; n� 1g. Each lr
denotes a literal, where a literal is either :vr or vr for
vr 2 V.

� QUESTION: Is there a satisfying truth-value assign-
ment for the variables in V such that each Ci evalu-
ates to true, for all i 2 Nk?

Notation. We say lr is a negative (respectively, positive) lit-
eral iff it has the form :vr (respectively, vr), where vr 2 V.
Consider a clause Ci ¼ ðlq _ lr _ lsÞ. We use a binary vari-
able bij, where i 2 Nk and j 2 N3, to denote the sign of the
first, second and the third literal in Ci. For example, if
lq ¼ :vq; lr ¼ vr and ls ¼ :vs, then we have bi0 ¼ 0; bi1 ¼ 1
and bi2 ¼ 0. Let the tuple Bi ¼ hbi0; bi1; bi2i denote the values of
bij variables, for each clause Ci where j 2 N3.

4.1 Intuition Behind Hardness Proofs

This section presents the intuition behind the hardness of
adding nonmasking fault tolerance under different fairness
assumptions.

No fairness. In Section 4.2, we show that adding stabiliza-
tion under no fairness is NP-hard, thereby implying the
NP-hardness of adding nonmasking fault tolerance in gen-
eral. Consider a deadlock state sd outside I. To ensure that
some state in I will eventually be reached from sd, we need
to build a computation prefix from sd to I while ensuring
that non-progress cycles are not formed in :I. Let ðsd; sÞ be
a transition included in a process Pj during the construction
of some computation prefix. We can include ðsd; sÞ in the set
of transitions of Pj iff we include any transition ðs0d; s0Þ
grouped with ðsd; sÞ (due to read restrictions of Pj), and
ðs0d; s0Þ does not create a cycle with other transitions. That is,
one has to identify a subset of transition groups that con-
struct a computation prefix from any state in :I to I without
creating cycles outside I. Thus, deciding whether a transi-
tion group should be included in some process resembles
the assignment of a truth value to a propositional variable
in the instance of 3-SAT.

Weak fairness (Section 4.3). Under weak fairness, a cycle c
that has an action A enabled in every state of c is not consid-
ered a non-progress cycle because a weakly fair scheduler
guarantees the execution of A, thereby exiting the cycle.
Thus, an algorithm for the addition of stabilization need not
resolve such cycles. One would think that this could sim-
plify the design of stabilization under weak fairness, but
Theorem 4.8 proves otherwise. The intuition behind this
hardness result is that there might still be cycles for which
there is no action similar to A. Thus, we have to deal with a
similar combinatorial problem mentioned for stabilization
under no fairness.

Strong fairness (Section 4.4). A strongly fair scheduler (as
defined in Section 2) ensures that a programwill eventually
exit any reachable cycle c that has some outgoing transition
from one of its states to a state outside c. Thus, to design
self-stabilization under strong fairness, we need to ensure
that from any state there exists a computation prefix that
reaches the invariant; no need to resolve cycles. This prob-
lem is known to be solvable in polynomial time [11], [13].
Since the general case problem of adding nonmasking fault
tolerance should deal with cases where faults may cause
permanent damage (unlike transient faults), one has to
ensure that permanent faults are not activated or else the
system may reach an unrecoverable state. To ensure that a
distributed program does not reach such states, designers
might have to guarantee cycle-freedom (despite strong fair-
ness) in certain subsets of the fault span; otherwise, an
interleaving of fault and cycle transitions may perturb the
program to an unrecoverable state. Thus, designing the
general case nonmasking fault tolerance under strong fair-
ness is at least as hard as designing self-stabilization under
no fairness!

4.2 Hardness Under No Fairness

In this section, we investigate the general case complexity
of Problem 3.3 under no fairness. We specifically demon-
strate that, for a given intolerant program p with an
invariant I, designing a revised version of p, denoted pss,
such that pss is self-stabilizing from I is an NP-hard prob-
lem. Section 4.2.1 presents a polynomial-time mapping
from 3-SAT to an instance of Problem 3.3. Section 4.2.2
shows that the instance of 3-SAT is satisfiable iff a self-sta-
bilizing version of the instance of Problem 3.3 exists
where F ¼ unfair.

4.2.1 Polynomial Mapping

In this section, we present a polynomial-time mapping from
an instance of 3-SAT to the instance of Problem 3.3 where
F ¼ unfair, denoted p ¼ hVp; dp;Pp; Tpi. That is, correspond-
ing to each propositional variable and clause, we illustrate
how we construct a non-stabilizing program p, its processes
Pp, its variables Vp, its read/write restrictions, its specifica-
tion spec and its invariant I. We shall use this mapping in
Section 4.2.2 to demonstrate that the instance of 3-SAT is sat-
isfiable iff a self-stabilizing version of p exists.

Processes, variables and read/write restrictions. We consider
four processes, P0, P1; P2, and P3 in p. Each process Pj

(j 2 N3) has two variables xj and yj, where the domain of xj

is equal to Nn and yj is a binary variable. The process Pj can
read both xj and yj, but can write only yj. Thus, the pro-
cesses P0, P1 and P2 cannot read each other’s variables. We
also consider a fourth process P3 that can read all variables
and write to a binary variable sat 2 N2. The variable sat can
be read by processes P0, P1 and P2, but cannot be written.
Thus, we have Vp ¼ fx0; y0; x1; y1; x2; y2; satg, Pp ¼ fP0; P1;
P2; P3g and the topology of p is identified by the read/write
restrictions of processes as depicted in Fig. 2.

Invariant. Inspired by the form of the 3-SAT instance and
its requirements, we define a state predicate Iss that denotes
the invariant of p.

342 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 12, NO. 3, MAY/JUNE 2015



� Corresponding to each clause Ci ¼ ðlq _ lr _ lsÞ, we
construct a state predicate PredCi � ðx0 ¼ q ¼) y0 ¼
bi0Þ _ ðx1 ¼ r ¼) y1 ¼ bi1Þ _ ðx2 ¼ s ¼) y2 ¼ bi2Þ. In
other words, we have PredCi � ððx0 ¼ qÞ ^ ðx1 ¼ rÞ^
ðx2 ¼ sÞÞ¼)ððy0 ¼ bi0Þ _ ðy1 ¼ bi1Þ _ ðy2 ¼ bi2ÞÞ. This
way, we construct a state predicate Clauses � ð8i 2
Nk : PredCiÞ. Notice that we check the value of each
xj with respect to the index of the literal appearing
in position j in Ci, where j 2 N3. This is due to the
fact that the domain of xj is equal to the range of the
indices of propositional variables (i.e., Nn).

� A literal lr may appear in positions i and j in distinct
clauses of 3-SAT, where i; j 2 N3 and i 6¼ j. Since
each propositional variable vr 2 V gets a unique
truth-value in 3-SAT, the truth-value of lr is indepen-
dent from its position in the 3-SAT formula. Given
the way we construct the state predicate Clauses, it
follows that, in the instance of Problem 3.3, when-
ever xi ¼ xj we should have yi ¼ yj. Thus, we con-
struct the state predicate Iden � ð8i; j 2 N3 : ðxi ¼
xj ¼) yi ¼ yjÞÞ, which is conjoined with the predi-
cate Clauses.

� In the instance of Problem 3.3, we require that
ðsat ¼ 1Þ holds in all invariant states.

Based on the aforementioned reasoning, the invariant of
p is equal to the state predicate Iss, where

Iss � Iden ^ Clauses ^ ðsat ¼ 1Þ

Notice that the size of the state space of p, denoted jSpj, is
2ð2nÞ3, which is polynomial in the size of the 3-SAT
instance.

Specification. The safety of spec forbids any transition that
starts in Iss. That is, the instance of Problem 3.3 is silent in its
invariant (i.e., dpjIss ¼ ;).
Example 4.2. Example Construction

Consider the 3-SAT formula f � ðv0 _ v1 _ v2Þ ^ :v1ð
_:v1 _ :v2Þ ^ :v1 _ :v1 _ v2ð Þ ^ v1 _ :v2 _ :v0ð Þ. Since
there are three propositional variables and four clauses, we
have n ¼ 3 and k ¼ 4. Moreover, based on the mapping
described before, we have C0 � ðv0 _ v1 _ v2Þ, C1 � ð:v1_
:v1 _ :v2Þ, C2 � ð:v1 _ :v1 _ v2Þ and C3 � ðv1 _ :v2 _ :v0Þ.
Thus, we have B0 ¼ h1; 1; 1i, B1 ¼ h0; 0; 0i, B2 ¼ h0; 0; 1i and

B3 ¼ h1; 0; 0i. The predicates PredCi (i 2 N4) have the fol-
lowing form:

PredC0 � ðx0 ¼ 0 ^ x1 ¼ 1 ^ x2 ¼ 2Þ ¼)
ðy0 ¼ 1 _ y1 ¼ 1 _ y2 ¼ 1Þ

PredC1 � ðx0 ¼ 1 ^ x1 ¼ 1 ^ x2 ¼ 2Þ ¼)
ðy0 ¼ 0 _ y1 ¼ 0 _ y2 ¼ 0Þ

PredC2 � ðx0 ¼ 1 ^ x1 ¼ 1 ^ x2 ¼ 2Þ ¼)
ðy0 ¼ 0 _ y1 ¼ 0 _ y2 ¼ 1Þ

PredC3 � ðx0 ¼ 1 ^ x1 ¼ 2 ^ x2 ¼ 0Þ ¼)
ðy0 ¼ 1 _ y1 ¼ 0 _ y2 ¼ 0Þ

The state predicate Iden is as defined before.

4.2.2 Correctness of Reduction

In this section, we show that the instance of 3-SAT is satisfi-
able iff convergence from Sp to Iss can be added to the
instance of Problem 3.3, denoted p.

Lemma 4.3. If the instance of 3-SAT has a satisfying valuation,
then stabilization can be added to the instance of Problem 3.3.

Let there be a truth-value assignment to the propositional
variables in V such that every clause evaluates to true; i.e.,
8i : i 2 Nk : Ci. Let pss denote the self-stabilizing version of
p. Initially, dp ¼ ; and p ¼ pss. Based on the value assign-
ments to propositional variables, we include a set of transi-
tions (represented as convergence actions) in pss. Then, we
show that the following three properties hold: the invariant
Iss � Clauses ^ Iden ^ ðsat ¼ 1Þ remains closed, deadlock
freedom in :Iss and livelock freedom in pssj:Iss.

� If a propositional variable vr (where r 2 Nn) is
assigned true, then we include the following action
in each process Pj, where j 2 N3: xj ¼ r ^ yj ¼ 0 ^
sat ¼ 0 ! yj :¼ 1.

� If a propositional variable vr (where r 2 Nn) is
assigned false, then we include the following action
in each process Pj, where j 2 N3: xj ¼ r ^ yj ¼ 1 ^
sat ¼ 0 ! yj :¼ 0.

� We include the following actions in P3: ðIden ^
ClausesÞ ^ sat ¼ 0 ! sat :¼ 1 and :ðIden ^ ClausesÞ
^ sat ¼ 1 ! sat :¼ 0.

Now, we illustrate that, closure, deadlock freedom and
livelock freedom hold. That is, the resulting program is self-
stabilizing from Iss.

Closure. Since the first three processes can execute an
action only in states where sat ¼ 0, their actions are dis-
abled where sat ¼ 1. Thus, the first three processes exclude
any transition that starts in Iss; i.e., preserving the closure of
Iss and ensuring pssjIss � pjIss. Moreover, P3 takes an action
only in :Iss. Thus, no action violates the closure of Iss, and
the second constraint of the output of Problem 3.1 holds.

Livelock freedom. To show livelock freedom, we prove that
the included actions have no circular dependencies. Due to
read/write restrictions, none of the first three processes exe-
cutes based on the local variables of another process. More-
over, each process can update only its own y value. Once
any one of the processes P0, P1 and P2 updates its y value, it
disables itself. Thus, the actions of one process cannot

Fig. 2. Instance of Problem 3.3 under no fairness.

KLINKHAMER AND EBNENASIR: ON THE HARDNESS OF ADDING NONMASKING FAULT TOLERANCE 343



enable/disable another process. Moreover, since each action
disables itself, there are no self-loops either. The guards
of the actions of P3 cannot be simultaneously true, and
the execution of one cannot enable another (because they
only update the value of sat). Only processes P0, P1 and P2

can make the predicate ðIden ^ ClausesÞ true when sat ¼ 0.
Due to write restrictions, once P3 sets sat to 1 from states
ðIden ^ ClausesÞ ^ sat ¼ 0ð Þ, a state in Iss is reached. There-
fore, there are no cycles that start in :Iss and exclude any
state in Iss.

Deadlock Freedom. We illustrate that, in every state in
:Iss � ð:ðIden ^ ClausesÞ _ ðsat ¼ 0ÞÞ, there is at least one
action that is enabled.

� Case 1. ððIden ^ ClausesÞ ^ ðsat ¼ 0ÞÞ holds. In these
states, the first action of P3 is enabled. Thus, there
are no deadlocks in this case.

� Case 2. ð:ðIden ^ ClausesÞ ^ ðsat ¼ 1ÞÞ holds. In this
case, the second action of P3 is enabled. Thus, there
are no deadlocks in this case.

� Case 3. ð:ðIden ^ ClausesÞ ^ ðsat ¼ 0ÞÞ holds. None
of the actions of P3 are enabled in this case. Nonethe-
less, since :ðIden ^ ClausesÞ holds, either :Iden or
:Clauses, or both are true. When :Clauses holds,
there must be some state predicate PredCi (i 2 Nk)
that is false. (Recall that, the invariant Iss includes a
state predicate PredCi � ðx0 ¼ q ¼) y0 ¼ bi0Þ _ ðx1 ¼
r ¼) y1 ¼ bi1Þ _ ðx2 ¼ s ¼) y2 ¼ bi2Þ corresponding
to each clause Ci � ðlq _ lr _ lsÞ in the instance of 3-
SAT.) This means that the following three state pred-
icates are false: ðx0 ¼ q ¼) y0 ¼ bi0Þ; ðx1 ¼ r ¼) y1 ¼
bi1Þ and ðx2 ¼ s ¼) y2 ¼ bi2Þ. Since the instance of 3-
SAT is satisfiable, at least one of the literals lq; lr or ls
must be true. As a result, based on the way we have
included the actions depending on the truth-values
of the propositional variables, at least one of the fol-
lowing actions must have been included in pss:
ðx0 ¼ q ^ y0 6¼ bi0 ^ sat ¼ 0Þ ! y0 :¼ bi0, ðx1 ¼ r ^ y1 6¼
bi1 ^ sat ¼ 0Þ ! y1 :¼ bi1, and ðx2¼ s ^ y2 6¼ bi2 ^ sat ¼
0Þ ! y2 :¼ bi2. Thus, there is some action that is
enabled when :Clauses holds. A similar reasoning
implies that there exists some action that is enabled
when :Iden holds; hence no deadlocks in Case 3.

Based on the closure of the invariant Iss, deadlock free-
dom in :Iss and lack of non-progress cycles in pssj:Iss, it
follows that the resulting program pss is self-stabilizing.

Example 4.4. Example construction:

In the example discussed in this section, the formula f

has a satisfying assignment of v0 ¼ 1, v1 ¼ 0, v2 ¼ 0. Using
this value assignment, we include the following actions in
the first three processes Pj where j 2 N3:

xj ¼ 0 ^ yj ¼ 0 ^ sat ¼ 0 ! yj :¼ 1

xj ¼ 1 ^ yj ¼ 1 ^ sat ¼ 0 ! yj :¼ 0

xj ¼ 2 ^ yj ¼ 1 ^ sat ¼ 0 ! yj :¼ 0

The actions of P3 are as follows:

Iden ^ Clausesð Þ ^ sat ¼ 0 ! sat :¼ 1

: Iden ^ Clausesð Þ ^ sat ¼ 1 ! sat :¼ 0

Fig. 3 shows the set of states where x0 ¼ 0, x1 ¼ 1, x2 ¼ 2
and transitions of the stabilizing program pss. Each state is
represented by four bits which signify the values of
ðy0; y1; y2; satÞ. Invariant states are depicted by ovals and
the labels on the transitions denote which process executes
that transition.

Lemma 4.5. If there is a self-stabilizing version of the instance of
Problem 3.3 where F ¼ unfair, then the corresponding 3-SAT
instance has a satisfying valuation.

By assumption, we consider a program pss to be a self-
stabilizing version of p from Iss. That is, pss satisfies the
requirements of Problem 3.3.

Only P3 can correct ðsat ¼ 0Þ. Clearly, pss must preserve
the closure of Iss, and should not have any deadlocks
or livelocks in the states in :Iss � ð:ðIden ^ ClausesÞ _
ðsat ¼ 0ÞÞ. Thus, pss must include actions that correct
:ðIden ^ ClausesÞ and ðsat ¼ 0Þ. Since pss must adhere to
the read/write restrictions of p, only P3 can correct ðsat ¼ 0Þ
to ðsat ¼ 1Þ. For the same reason, P3 cannot contribute to
correcting :ðIden ^ ClausesÞ; only P0, P1 and P2 have the
write permissions to do so by updating their own y values.

The rest of the reasoning is as follows: We first illustrate
that P0, P1 and P2 in pss must not execute in states where
ðsat ¼ 1Þ. Then, we draw a correspondence between actions
included in pss and how propositional variables get unique
truth-values in 3-SAT and how the clauses are satisfied.

P0, P1 and P2 can be enabled only when ðsat ¼ 0Þ. We
observe that no process Pj (j 2 N3) can have a transition
that starts in the invariant Iss; otherwise, the constraint
dpss jIss � dpjIss would be violated. We also show that no
recovery action of P0, P1 and P2 can include a transition that
starts in a state where sat ¼ 1. By contradiction, assume that
some Pj (j 2 N3) includes a transition ðs0; s1Þ where
s0 2 :Iss and satðs0Þ ¼ 1 for some fixed values of xj and yj.
Since Pj cannot read xi or yi of other processes Pi, where
ði 2 N3Þ ^ ði 6¼ jÞ, the transition ðs0; s1Þ has a groupmate
ðs00; s01Þ, where xiðs00Þ ¼ xjðs00Þ and yiðs00Þ ¼ yjðs00Þ for all
i 2 N3 where ði 6¼ jÞ. Thus, Iden is true at s00. Moreover, due
to the form of the 3-SAT instance, no clause ðlq _ lr _ lsÞ
exists such that ðq ¼ r ¼ sÞ. Thus, Clauses holds at s00 as
well, thereby making s00 an invariant state. As a result,
ðs0; s1Þ is grouped with a transition that starts in Iss, which
again violates the constraint dpss jIss � dpjIss. Hence, P0, P1

and P2 can be enabled only when ðsat ¼ 0Þ.

Fig. 3. x0 ¼ 0, x1 ¼ 1, x2 ¼ 2:

344 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 12, NO. 3, MAY/JUNE 2015



Actions of P3. We show that P3 must set sat to 0 when
:ðIden ^ ClausesÞ ^ sat ¼ 1 and may only assign sat to 1
when ðIden ^ ClausesÞ ^ sat ¼ 0. As shown above, P0, P1,
and P2 cannot act when sat ¼ 1, forcing P3 to execute from
:ðIden ^ ClausesÞ ^ ðsat ¼ 1Þ. P3 must therefore have the
action :ðIden ^ ClausesÞ ^ sat ¼ 1 ! sat :¼ 0. Conse-
quently, P3 cannot assign sat to 1 when :ðIden ^
ClausesÞ ^ sat ¼ 0; otherwise, it would create a livelock
with the previous action. From states where ðIden ^
ClausesÞ ^ sat ¼ 0 holds, P3 is the only process which can
change sat to 1, thereby reaching an invariant state. Thus,
P3 must include the actions :ðIden ^ ClausesÞ ^ sat ¼ 1 !
sat :¼ 0 and ðIden ^ ClausesÞ ^ sat ¼ 0 ! sat :¼ 1.

Each Pj, for j 2 N3 must have exactly one action for each
unique value of xj. When sat ¼ 0, fixing the value of xj to
some a 2 Nn reduces the possible local states for process Pj

to 2, where yj ¼ 0 or yj ¼ 1 for j 2 N3. (Notice that both of
these states are illegitimate since sat ¼ 0.) Thus, when ðxj ¼
a ^ sat ¼ 0Þ holds, process Pj has four possible actions:
yj ¼ 0 ! yj :¼ 0, yj ¼ 0 ! yj :¼ 1, yj ¼ 1 ! yj :¼ 0, and
yj ¼ 1 ! yj :¼ 1. It is clear that the first and last of these
actions are self-loops and cannot be included. Thus, Pj can
have either action yj ¼ 0 ! yj :¼ 1 or yj ¼ 1 ! yj :¼ 0, but
not both without creating a livelock. That is, Pj cannot have
more than 1 action. To make Iden true, Pj must include
some action. By contradiction, assume that Pj has no
actions. Another process Pi (i 2 N3, i 6¼ j) can be in a state
where xi ¼ xj. There are two possibilities for the y values in
this non-invariant state, yj ¼ 0 ^ yi ¼ 1 or yj ¼ 1 ^ yi ¼ 0. Pi

can resolve either scenario with an action but cannot resolve
both as this would require two actions. That is, to resolve
both cases Pi needs the cooperation of Pj. Thus, Pj must
have some action. Since Pj cannot have more than one
action, it follows that Pj has exactly one action.

Truth-value assignment to propositional variables. Based
on the above reasoning, for each value a 2 Nn, if a process
Pj includes the action xj ¼ a ^ yj ¼ 0 ^ sat ¼ 0 ! yj :¼ 1,
then we assign true to the propositional variable va. If Pj

includes the action xj ¼ a ^ yj ¼ 1 ^ sat ¼ 0 ! yj :¼ 0,
then we assign false to va. Let Pj include the action
xj ¼ a ^ yj ¼ 0 ^ sat ¼ 0 ! yj :¼ 1. By contradiction, if
another process Pi, where i 2 N3 ^ i 6¼ j, includes the
action xi ¼ a ^ yi ¼ 1 ^ sat ¼ 0 ! yi :¼ 0, then Iden
would be violated and pss would never recover from the
state xj ¼ a ^ xi ¼ a ^ yj ¼ 1 ^ yi ¼ 0 ^ sat ¼ 0; i.e., a
deadlock state, which is a contradiction with pss being
self-stabilizing. Thus, each propositional variable gets a
unique truth-value assignment and these value assign-
ments are logically consistent.

Satisfying the clauses. Since pss is self-stabilizing from Iss,
eventually Iss becomes true; i.e., every PredCi in the Clauses
predicate becomes true. The one-to-one correspondence cre-
ated by the mapping between each state predicate PredCi

and each clause Ci implies that PredCi holds iff at least one lit-
eral in Ci holds. Therefore, all clauses are satisfied with the
truth-value assignment based on the actions of pss.

Theorem 4.6. Adding stabilization to low atomicity programs is
NP-complete.

Proof. The NP-hardness of adding stabilization follows
from Lemmas 4.5 and 4.3. The NP membership of adding

stabilization has already been established in [6]; hence
the NP-completeness. tu

Corollary 4.7. Adding nonmasking fault tolerance to low atomic-
ity programs under no fairness is NP-complete.

Proof follows from Theorem 4.6 and the fact that Problem
3.3 is a special case of Problem 3.2.

4.3 Hardness under Weak Fairness

This section illustrates that, even under the assumption of
weak fairness, addition of nonmasking fault tolerance in
general, and self-stabilization in particular remain hard
problems.

Theorem 4.8. Adding stabilization under weak fairness is NP-
complete.

Proof. Consider the mapping from 3-SAT to Problem 3.3
presented in Section 4.2. We leverage the same map-
ping in order to create a mapping from an instance of
3-SAT to an instance of Problem 3.3 where F ¼ weak.
Let pss denote the instance of Problem 3.3 with the
invariant Iss � Clauses ^ Iden ^ ðsat ¼ 1Þ constructed
corresponding to the 3-SAT formula. The instance of
Problem 3.3 where F ¼ weak includes exactly the
same processes and variables in pss. Moreover, we
compose pss with the token ring program introduced
in Section 2. Since the state space of the TR program
includes 27 states, the size of the state space of the
instance of Problem 3.3 under weak fairness remains
polynomial in the size of the 3-SAT formula. (The size
of the state space of the instance of Problem 3.3 where
F ¼ weak is 27� jSpss j.) Let the invariant of the result-
ing program be equal to the conjunction of the invari-
ants of the two programs; i.e., Iw � Iss ^ ITR. Thus, the
resulting composed program will converge to Iw iff
both pss and the TR program stabilize to their corre-
sponding invariants.

) Proof: We show that if the 3-SAT instance is satisfi-
able then the composition of pss and TR is self-stabilizing
from Iw under weak fairness. If the 3-SAT formula is sat-
isfiable then pss is strongly stabilizing from Iss. Moreover,
Dijkstra [1] has illustrated that the TR program is
strongly stabilizing. Outside Iw, if Iss has become true
and ITR is false, then the TR program will eventually
recover to ITR. If the TR program has recovered to its
invariant, but pss has not yet recovered to Iss, then there
must be some action A of pss that is enabled (because the
3-SAT formula is satisfiable). At the same time, TR’s com-
putations in ITR are infinite. That is, the action A is con-
tinuously enabled in a cycle formed in the state predicate
:Iss ^ ITR. Such a cycle is a non-progress cycle only
under no fairness assumption; i.e., under a weakly fair
scheduler, the composed program will eventually stabi-
lize to Iw.

( Proof: Let there be a program pw composed of the
variables of TR and pss, and actions that enable stabiliza-
tion to Iw from any state under weak fairness. That is, Iss
and ITR must both become true eventually. Our proof
strategy is two-fold. First, we make the following obser-
vations to enable compositional reasoning about the two
components of pw:

KLINKHAMER AND EBNENASIR: ON THE HARDNESS OF ADDING NONMASKING FAULT TOLERANCE 345



Observation 4.9. Only processes of TR can make ITR true
and only processes of pss can contribute to reaching Iss
from any state.

Proof of Observation 4.9 is straightforward due to the
read/write restrictions of processes and the indepen-
dence of the two components in reading/writing the var-
iables of each other. That is, even if the actions of the two
components get interleaved, they will not impact the
recovery of each component to its invariant under weak
fairness. Second, since the TR component does not inter-
vene the convergence of pss to Iss (based on Observa-
tion 4.9), we can reason about pss separately. We prove
that, even under weak fairness, the pss component of pw
should be strongly self-stabilizing from Iss. This way, we
can reuse the proof of Lemma 4.5 to demonstrate how
the instance of 3-SAT is satisfied. To this end, we prove
that neither P3 nor P0, P1 and P2 can have any cycles in
dpss j:Iss.
� Actions of P3 alone cannot create a cycle in dpss j:Iss.

From the proof of Lemma 4.5, we know that P0, P1

and P2 can only execute if sat ¼ 0; otherwise, the
closure of Iss would be violated. The only way P3

can have a cycle in dpss j:Iss is to toggle the value
of sat (because only P3 has the permission to write
sat). Since P0, P1 and P2 can only execute if
sat ¼ 0, no action would be continuously enabled
in this cycle. This would constitute a non-progress
cycle under weak fairness, which is a contradiction
with pw having no non-progress cycles under weak
fairness.

� There is no cycle in dpss j:Iss where multiple processes
participate. Since the actions of processes P0, P1

and P2 in pss are independent from each other, it
is impossible that a cycle exists in which P0, P1

and P2 participate. Moreover, there is no cycle
that is formed by the interleaving of the actions of
P0, P1 and P2 with P3’s actions since all processes
of pss would be participating in such a cycle; i.e.,
none of the actions of pss would be continuously
enabled. Such a cycle would constitute a non-
progress cycle under weak fairness.

� Processes Pi (i 2 N3) of pss cannot form any cycles alone
in dpss j:Iss. By contradiction, consider a case where
some Pi contains a cycle including the actions xi ¼ a
^yi ¼ 0 ^ sat ¼ 0 ! yi :¼ 1 and xi¼a ^ yi¼1 ^ sat ¼
0 ! yi :¼ 0. These two actions capture an equiva-
lence class of cycles in the state space of pss. Each
cycle in this equivalence class includes two global
states where xi ¼ a ^ yi ¼ 0 ^ sat ¼ 0 holds in one
and xi ¼ a ^ yi ¼ 1 ^ sat ¼ 0 holds in the other. Con-
sider another process Pj, where j 2 N3 and j 6¼ i.
Either Pj is not in any cycles, or Pj is also trapped in
a cycle similar to Pi’s. The former case means that,
by weak fairness, Pj will get to a state where all its
actions are disabled. In this case, the cycles of Pi

become non-progress cycles under weak fairness. In
the latter case, both Pi and Pj would be in a cycle in
which no action is continuously enabled; hence a
non-progress cycle under weak fairness. Now, we

illustrate that P3 cannot help Pi to exit its cycle either.
Toggling the value of yi would affect the truth-value
of the predicates PredCm that depend on the state of
Pi, where m 2 Nk. This in turn could change the
truth value of the predicate Iden ^ Clause. Since the
actions of P3 must include Iden and Clause in their
guards1, P3 cannot be continuously enabled in the
cycle of Pi. Thus, the cycle of Pi forms a non-progress
cycle under weak fairness, which is a contradiction
with pw being self-stabilizing from Iw under weak
fairness.

Since pss must be a strongly stabilizing program, the
proof of Lemma 4.5 can be reused to demonstrate that
the instance of 3-SAT is satisfied. tu

Corollary 4.10. Adding nonmasking fault tolerance under the
assumption of weak fairness is NP-complete.

Proof of Corollary 4.10 follows from Theorem 4.8 and the
fact that Problem 3.3 is a special case of Problem 3.2 where
F ¼weak.

4.4 Hardness under Strong Fairness

In this section, we present a somewhat surprising result
that adding nonmasking fault tolerance to low atomicity
programs remains NP-hard even under strong fairness!
This is surprising because adding self-stabilization under
strong fairness (a.k.a. weak stabilization [11]) is known to
be polynomial [11], [12], [13]. Our proof strategy is as
follows. We first reuse the reduction presented in the
proofs of Lemmas 4.3 and 4.5 to illustrate that adding
nonmasking tolerance to low atomicity programs under
no fairness is NP-hard. This may seem as a redundant
result to Corollary 4.7, however, in the second step of
our strategy, we reuse the mapping and reduction of
this proof for showing the NP-hardness of adding non-
masking tolerance under strong fairness.

An alternative proof for the NP-hardness of adding nonmask-
ing fault tolerance under no fairness (i.e., Corollary 4.7). First,
we present a mapping from an arbitrary instance of 3-SAT
to an instance of adding nonmasking fault tolerance (i.e.,
Problem 3.2). In Section 4.2.1, we augment the instance of
Problem 3.3 where F ¼ unfair with an additional process
and two new types of faults. (Fig. 2 depicts the structure of
the instance of Problem 3.2.) The idea behind this mapping
is that finding a fault-span and a new invariant I 0 � I for an
intolerant program p with its invariant I is at least as hard
as adding stabilization.

Fig. 4 illustrates the structure of our mapping for adding
nonmasking fault tolerance. Processes P0 to P3 are taken
from the system of Fig. 2. We add a new process P4 that has
a read-only binary variable failed used to mark unrecover-
able states. The invariant of the intolerant program p is
I � Iss ^ ðfailed ¼ 0Þwhere Iss � Iden ^ Clauses ^ ðsat ¼ 1Þ
is the invariant of the system of pss in Fig. 2. Any state where
failed ¼ 1 is unrecoverable since failed cannot be modified
by any process. We consider two classes of faults fss and fn
denoted by f � fss [ fn, where fss and fn are defined as:

1. Otherwise, P3 would include two actions sat ¼ 1 ! sat :¼ 0 and
sat ¼ 0 ! sat :¼ 1 forming a cycle, whose impossibility we have
already shown in the first item of our reasoning.

346 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 12, NO. 3, MAY/JUNE 2015



fss : I ! x0 :¼ select Nnð Þ; y0 :¼ select N2ð Þ;
x1 :¼ select Nnð Þ; y1 :¼ select N2ð Þ;
x2 :¼ select Nnð Þ; y2 :¼ select N2ð Þ;
sat :¼ 0

fn : :Iss ^ sat ¼ 1 ! failed :¼ 1

Faults ensure that a nonmasking f-tolerant program p0

from I exists iff pss is stabilizing from Iss. The fault fss may
occur from states in I 0 � I and perturb the program to any
state where sat ¼ 0 (failed ¼ 0 is unchanged) and all xi and
yi values are randomly chosen by the random function
select. The fault-class fn transitions to an unrecoverable state
(failed ¼ 1) when Iss does not hold but sat ¼ 1. In effect, P3

is forced to assign sat :¼ 1 only when Iden ^ Clauses holds.
P0 to P2 must act to satisfy Iden ^ Clauses when sat ¼ 0,
preserving our mapping between program actions and a 3-
SAT truth-assignment.

The size of the state space jSpj remains polynomial in the
number of propositional variables n in the corresponding 3-
SAT instance, specifically jSpj ¼ 22ð2nÞ3. It remains to show
that a satisfying truth-assignment exists for the 3-SAT
instance iff a nonmasking f-tolerant version of the instance
in Fig. 4 exists from I � Iss ^ ðfailed ¼ 0Þ.

) Proof: Given a satisfying valuation for a 3-SAT
instance, we can create the corresponding stabilizing pro-
gram pss with invariant Iss for the system in Fig. 2 using the
method in Lemma 4.3. Using all actions from pss, we can
form a nonmasking f-tolerant program pft ¼ pss with
invariant Ift � I for this system.

For proof of pft being nonmasking f-tolerant from I, let
us calculate its f-span. From a state in I, we can reach any
state where sat ¼ 0 and failed ¼ 0 due to the occurrence of
faults fss. Since only fss can occur from I, and sat ¼ 0 holds
after the occurrence of fss, fn never gets enabled. Moreover,
from the state predicate :Iss ^ sat ¼ 0 computations of p
will first satisfy Iden ^ Clauses and reach the invariant with
a final action from P3 which assigns sat :¼ 1. At no point
does P3 assign sat :¼ 1 when Iden ^ Clauses does not hold,
leaving all source states of fn out of the f-span. Thus, the
f-span of p from I, denoted T , is equal to ðIss _ sat ¼ 0Þ ^
failed ¼ 0, from where every computation eventually
reaches I.

( Proof: Let p0 be a nonmasking f-tolerant program from
an invariant I 0 � I that meets the constraints of Problem 3.1
from a f-span T for the instance built in our mapping (see
Fig. 4). The proof strategy is to show that a strongly

stabilizing program pss for the corresponding system in
Fig. 2 can be constructed from p0, and then we shall reuse
the proof of Lemma 4.5 to satisfy the 3-SAT instance.
Observe that all states where failed ¼ 1 must be excluded
from T because recovery is impossible from failed ¼ 1 due
to write restrictions. Moreover, states where :Iss ^ sat ¼ 1
holds cannot be in T either, otherwise fn could assign
failed :¼ 1. Thus, the weakest and strongest predicates that
can be considered as T are respectively equal to
ðI _ sat ¼ 0Þ ^ failed ¼ 0 (note I, not I 0) and
ðI 0 _ sat ¼ 0Þ ^ failed ¼ 0. From I 0, the occurrence of fss
can perturb the state of the program to any state where
sat ¼ 0 ^ failed ¼ 0 holds. Thus, recovery to I 0 should be
provided from sat ¼ 0. In such states, either
ðIden ^ ClausesÞ holds or not. If ðIden ^ ClausesÞ holds in
states where sat ¼ 0, then p0 can recover to I 0 only with an
action of P3 that sets sat to 1. If ðIden ^ ClausesÞ does not
hold when sat ¼ 0, then P3 must not set sat to 1 because
then the state of p0 will reach :Iss ^ sat ¼ 1 from where
fault fn can occur and set failed to 1, which is an unrecover-
able state. The only processes that have read/write permis-
sion to make ðIden ^ ClausesÞ true are P0, P1 and P2. Thus,
p0 must provide recovery from :ðIden ^ ClausesÞ to
ðIden ^ ClausesÞ when sat¼0. We can use these actions,
along with actions :ðIden ^ ClausesÞ ^ sat ¼ 1 ! sat :¼ 0
and Iden ^ Clauses ^ sat ¼ 0 ! sat :¼ 1 of P3, to construct
a program pss which is self-stabilizing for the correspond-
ing instance given in Fig. 2. From this point, we use Lemma
4.5 on pss to find a truth-assignment which satisfies the 3-
SAT instance.

Theorem 4.11. Adding nonmasking fault tolerance to low atom-
icity programs under strong fairness is NP-complete.

Proof. Our proof strategy is to augment the mapping pre-
sented in the alternative proof of Corollary 4.7 and then
show that the instance of 3-SAT is satisfiable iff nonmask-
ing fault tolerance can be added to the instance of Prob-
lem 3.2 where F ¼ strong. The proposed polynomial-
time mapping is as follows. We construct an intolerant
program as demonstrated in Fig. 5. Processes P0 to P3 are
the same as those in the program of Fig. 4. We include
three new variables z0, z1 and z2 in process P4 which can
be read and written only by P4. The domain of each zi,
where i 2 N3, is equal to f0; 1; 2g. We also consider a new
fault-class fsi for i 2 N3. The invariant of the instance of
Problem 3.2 is I � Iss ^ ðz0 ¼ z1 ¼ z2 ¼ 0Þ ^ ðfailed ¼ 0Þ.

Fig. 5. Instance of Problem 3.2 where F ¼ strong.

Fig. 4. Instance of Problem 3.2 where F ¼ unfair.

KLINKHAMER AND EBNENASIR: ON THE HARDNESS OF ADDING NONMASKING FAULT TOLERANCE 347



The classes of faults include f � fss [ fn [ fs0 [ fs1 [ fs2,
where fss and fn are taken from Fig. 4, and fsi is defined
as follows (i 2 N3):

fsi : yi ¼ 0 ^ sat ¼ 0 ^ zi ¼ 0 ! zi :¼ 1
fsi : yi ¼ 1 ^ sat ¼ 0 ^ zi ¼ 1 ! zi :¼ 2
fsi : yi ¼ 0 ^ sat ¼ 0 ^ zi ¼ 2 ! failed :¼ 1

The new fault-class fsi ensures that the processes P0,
P1 and P2 of any f-tolerant program p0 do not form non-
trivial cycles in the state predicate sat ¼ 0 if p0 is non-
masking f-tolerant from I 0 � I under strong fairness.
Without fsi, it would be trivial to add fault tolerance
under strong fairness by including the actions yi ¼ 0 ^
sat ¼ 0 ! yi :¼ 1 and yi ¼ 1 ^ sat ¼ 0 ! yi :¼ 0 in Pi for
each specific value of xi, where i 2 N3, and the action
Iden ^ Clauses ^ sat ¼ 0 ! sat :¼ 1 in P3.

Observe that the size of the state space jSpj remains
polynomial in the number of propositional variables n
from the corresponding 3-SAT instance as jSpj ¼ 22ð6nÞ3.
Now, we illustrate that a satisfying truth-value assign-
ment exists for the 3-SAT instance iff a nonmasking f-tol-
erant version of the instance of Problem 3.2 exists where
F ¼ strong.

) Proof: Given a satisfying valuation for the 3-SAT
instance, we can create a nonmasking f-tolerant program
p0 with invariant I 0 ¼ I as specified in Fig. 5, where
f � fss [ fn [ fs0 [ fs1 [ fs2. From I, fss can perturb the
program to states where sat ¼ 0 ^ failed ¼ 0. Thus, states
in :ðIden ^ ClausesÞ ^ sat ¼ 1 are unreachable in the
f-span of p0 from I, thereby ensuring that fn cannot take
the program to the unrecoverable state failed ¼ 1. More-
over, the state yi ¼ 0 ^ zi ¼ 2 must be excluded from the
f-span; otherwise, fault fsi could perturb the program
state to failed ¼ 1. Thus, the weakest predicate we
can consider to be the f-span of p0 from I is equal
to T � ðIss _ sat ¼ 0Þ ^ ðfailed ¼ 0Þ ^ ðy0 ¼ 1 _ z0 6¼ 2Þ^
ðy1 ¼ 1 _ z1 6¼ 2Þ ^ ðy2 ¼ 1 _ z2 6¼ 2Þ.

We include the actions of P0, P1 and P2 in p0 based on
the method outlined in the proof of Lemma 4.3. Thus,
only one of the actions xi ¼ a ^ yi ¼ 0 ^ sat ¼ 0 ! yi :¼ 1
and xi ¼ a ^ yi ¼ 1 ^ sat ¼ 0 ! yi :¼ 0 is included in
each process Pi, where i 2 N3. Process P3 includes the
actions ðIden ^ ClausesÞ ^ sat ¼ 0 ! sat :¼ 1 and :ðIden
^ClausesÞ ^ sat ¼ 1 ! sat :¼ 0. Finally, the process P4

includes the actions zi 6¼ 0 ! zi :¼ 0 for i 2 N3.
We show that the program p0 (with the aforemen-

tioned actions) is nonmasking f-tolerant from I under
strong fairness. Once p0 is perturbed to T�I, recovery to
I is achieved as follows. The processes P0, P1 and P2

ensure that ðIden ^ ClausesÞ is satisfied, and then P3 sets
sat to 1. Moreover, P4 sets zi to 0, thereby recovering to I.
Using Fig. 6, we show that no computation prefix of p0½�f
from invariant I reaches the state failed ¼ 1 even if faults
fsi occur.

The two values in Fig. 6 respectively denote the values
of yi and zi, where i 2 N3, sat ¼ 0 and xi is fixed. These
variables are only affected by processes Pi and P4 and
the fault-class fsi. Dashed arrows represent the two possi-
ble actions of Pi if Pi included both actions that change
yi (i.e., yi ¼ 0 ^ sat ¼ 0 ! yi :¼ 1 and yi ¼ 1 ^ sat ¼ 0
! yi :¼ 0), of which exactly one is chosen in our

construction of p0 (for each unique xi value). Since only
one action is chosen, there exists no computation prefix
of p0½�f from invariant I to an unrecoverable state where
failed ¼ 1. Notice that without the fault-class fsi, the pro-
gram that includes both actions that change yi would
have been nonmasking f-tolerant under strong fairness
because the cycles formed in p0jðT�IÞ are not livelocks
under strong fairness. Moreover, from every state in
T�I there is an enabled action; i.e., deadlock freedom in
T�I. Thus, p0 is nonmasking f-tolerant from I under
strong fairness. tu

( Proof: Given a program p0 that is nonmasking
f-tolerant under strong fairness and meets the constraints
of Problem 3.2, we build a program pft with invariant
Ift � Iss ^ failed ¼ 0 that is nonmasking fss [ fn-tolerant
from Ift under no fairness (see Fig. 4). We note that, in the
presence of faults fsi, P4 must have actions to eventually
assign 0 to zi (required by invariant) from any nonzero
value of zi which is reached in the fault-span. Thus, in
Fig. 6, P4 transitions simply assign zi :¼ 0. Program pft
includes the actions of P0 to P3 which do not form self-
loops and recover from states where sat ¼ 0. Actions of
pft map to a satisfying truth-assignment for the instance
of 3-SAT. Notice that, pft does not tolerate fsi.

The fault-span Tft of pft is a subset of the fault-span T
of p0 since program and fault transitions of pft are a sub-
set of those transitions of p0. It follows that Tft does not
contain unrecoverable states (failed ¼ 1) nor does it
include states :Iss ^ sat ¼ 1 from where fn could bring
pft to an unrecoverable state. Thus, Tft � ðIss _ sat ¼ 0Þ ^
failed ¼ 0 due to the definition of Ift, fault class fss, and
the excluded states which lead to failed ¼ 1. Clearly a
computation exists in pft from every state in Tft to its
invariant Ift since I 0 � Ift (modulo z variables) and p0

eventually reaches I 0 from all states in its fault-span T .
The only states where sat ¼ 1 holds in Tft are also in Ift.
Moreover, we argue that actions of P3 from states where
sat ¼ 0 (and are not self-loops) bring the system to a state
where Iss holds. Otherwise, some action would exist to
set sat to 1 while preserving :Iss. As a result, fn could be
enabled and could take the program state to failed ¼ 1,
which would be a contradiction with p0 being nonmask-
ing f-tolerant from some non-empty subset of I. Thus, P3

actions only set sat to 1when the resulting state is in Iss.
Let us now show that if p0 is to be nonmasking f-toler-

ant under strong fairness, then none of the processes Pi

(i 2 N3) can form nontrivial cycles in states sat ¼ 0.
When sat ¼ 0, yi and zi take values shown in Fig. 6. We

Fig. 6. Effects of fsi.

348 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 12, NO. 3, MAY/JUNE 2015



illustrate that, for a specific xi value, each process Pi must
have only one action that updates yi to ensure no compu-
tation prefix of p0½�f reaches failed ¼ 1. By contradiction,
assume Pi (i 2 N3) has a non-trivial cycle for some fixed
xi ¼ a (a 2 Nn). Since the cycle exists in p0jðsat ¼ 0Þ,
therefore Pi must have actions xi ¼ a ^ yi ¼ 0 ^ sat ¼
0 ! yi :¼ 1 and xi ¼ a ^ yi ¼ 1 ^ sat ¼ 0 ! yi :¼ 0. Now,
we demonstrate the following computation prefix that
reaches failed ¼ 1.

1. Transitions of fss perturb p0 to xi ¼ a ^ yi ¼ 0 ^
sat ¼ 0, where zi ¼ 0 and failed ¼ 0.

2. Then, transitions of fsi can occur, setting zi to 1.
3. Pi sets yi to 1.
4. Transitions of fsi occur again, setting zi to 2.
5. Pi sets yi to 0.
6. From this state, fault fsi can occur, setting failed

to 1 from where no recovery is possible.
Thus, Pi (i 2 N3) cannot have cycles. Recall that when

P3 acts to change sat from 0 to 1, the resulting state must
satisfy Iss. As a result, the program pft constructed from
the actions of processes P0 . . .P3 when sat ¼ 0 is non-
masking ðfss [ fnÞ-tolerant from Ift. The actions of pft
can be mapped to a satisfying truth-assignment for the
instance of 3-SAT. tu
We now discuss the impact of our hardness results on

failsafe and masking fault tolerance. Failsafe fault tolerance
does not require recovery to invariant. Thus, the issue of
fairness is irrelevant for failsafe fault tolerance. For masking
fault tolerance, we observe that in the proof of NP-com-
pleteness of Problem 3.3 under no fairness in Section 4.2.2,
one can consider the write restrictions of each process as
part of a safety property where a process Pj is not allowed
to write any xj, where 0 � j � 2. Thus, it follows that add-
ing stabilization under no fairness would become an
instance of the problem of adding masking fault tolerance.
This way, we simply reuse the proof of NP-completeness of
adding strong stabilization to prove the NP-completeness of
adding masking fault tolerance under no fairness. (This
result matches with Kulkarni and Arora’s results in [6].)
The hardness of adding masking fault tolerance under
weak and strong fairness follow accordingly from the NP-
completeness proofs of this section.

Corollary 4.12. Adding masking fault tolerance is NP-complete
under weak or strong fairness.

5 DISCUSSION

This section discusses algorithmic design of self-stabiliza-
tion, complexity of algorithmic design and fairness
assumptions. Existing methods for the algorithmic design
of self-stabilization include constraint-based methods [26]
and sound heuristics [13], [27]. Abujarad and Kulkarni
[26] consider the program invariant as a conjunction of a
set of local constraints, each representing the set of local
legitimate states of a process. Then, they synthesize con-
vergence actions for correcting the local constraints. None-
theless, they do not explicitly address cases where local
constraints have cyclic dependencies (e.g., maximal
matching on a ring), and their case studies include only
acyclic topologies. In our previous work [13], [27], we

partition the state space to a hierarchy of state predicates
based on the length of the shortest computation prefix
from each state to some state in the invariant. Then, we
systematically explore the space of all candidate recovery
transitions that could contribute in recovery to the invari-
ant without creating non-progress cycles.

Most hardness results [6], [9], [28] presented for the addi-
tion of fault tolerance lack the additional constraint of recov-
ery from any state, which we have in the addition of
stabilization. The proof of NP-hardness of adding failsafe
fault tolerance presented in [9] is based on a reduction from
3-SAT, nonetheless, a failsafe fault-tolerant program does
not need to recover to its invariant when faults occur. The
problem of adding masking fault tolerance relies on finding
a subset of the state space from where recovery is possible;
no need to provide recovery from every state. As such, the
hardness proof presented in [6] is based on a reduction in
which such a subset of state space is identified along with
corresponding convergence actions iff the instance of 3-SAT
is satisfiable. This means that some states are allowed to be
excluded from the fault-span; this is not an option in the
case of adding self-stabilization. The essence of the proof in
[28] also relies on the same principle where Bonakdarpour
and Kulkarni illustrate the NP-hardness of designing prog-
ress from one state predicate to another in low atomicity
programs. Most existing algorithmic methods [6], [13], [26],
[27], [28], [29] investigate the problem of adding fault toler-
ance under no fairness assumption. To the best of our
knowledge, this paper is the first to investigate the impact
of fairness on the addition of fault tolerance.

6 CONCLUSIONS AND FUTURE WORK

This paper illustrates that adding nonmasking fault toler-
ance to low atomicity programs is an NP-hard problem
under no fairness, weak, and strong fairness. In the low
atomicity model, program processes have read/write
restrictions with respect to the variables of other processes.
The presented proof of hardness is from 3-SAT to the prob-
lem of adding stabilization to non-stabilizing programs,
which is a special case of adding nonmasking fault toler-
ance. We first presented a proof for the NP-hardness of add-
ing stabilization under no fairness. Then we showed that,
even under weak fairness adding stabilization remains an
NP-hard problem, which implies the NP-hardness of add-
ing nonmasking tolerance under weak fairness. While it is
known that adding stabilization under strong fairness (a.k.
a. weak stabilization) can be done in polynomial time (in
the size of state space), we showed that adding nonmasking
tolerance under strong fairness remains NP-hard in general.
To extend this work, we will investigate special cases where
the addition of stabilization in particular and nonmasking
in general can be performed efficiently. That is, for what pro-
grams, classes of faults and invariants can the addition of non-
masking fault tolerance be done efficiently?

ACKNOWLEDGMENTS

The authors would like to thank the anonymous referees for
their valuable comments and suggestions. This work was
sponsored by the NSF grant CCF-1116546.

KLINKHAMER AND EBNENASIR: ON THE HARDNESS OF ADDING NONMASKING FAULT TOLERANCE 349



REFERENCES

[1] E. W. Dijkstra, “Self-stabilizing systems in spite of distributed con-
trol,” Commun. ACM, vol. 17, no. 11, pp. 643–644, 1974.

[2] A. Arora, “A foundation of fault-tolerant computing,” Ph.D. dis-
sertation, The Univ. Texas Austin, Austin, TX, USA, 1992.

[3] A. Arora and M. G. Gouda, “Closure and convergence: A founda-
tion of fault-tolerant computing,” IEEE Trans. Softw. Eng., vol. 19,
no. 11, pp. 1015–1027, Nov. 1993.

[4] Z. Liu andM. Joseph, “Transformation of programs for fault-toler-
ance,” Formal Aspects Comput., vol. 4, no. 5, pp. 442–469, 1992.

[5] A. Arora, M. Gouda, and G. Varghese, “Constraint satisfaction as
a basis for designing nonmasking fault-tolerant systems,” J. High
Speed Netw., vol. 5, no. 3, pp. 293–306, 1996.

[6] S. S. Kulkarni and A. Arora, “Automating the addition of fault-tol-
erance,” in Proc. Formal Techn. Real-Time Fault-Tolerant Syst., 2000,
pp. 82–93.

[7] B. Alpern and F. B. Schneider, “Defining liveness,” Inf. Process.
Lett., vol. 21, pp. 181–185, 1985.

[8] S. S. Kulkarni and A. Ebnenasir, “The complexity of adding fail-
safe fault-tolerance,” in Proc. 22nd Int. Conf. Distrib. Comput. Syst.,
2002, pp. 337–344.

[9] S. Kulkarni and A. Ebnenasir, “Complexity issues in automated
synthesis of failsafe fault-tolerance,” IEEE Trans. Dependable Secure
Comput., vol. 2, no. 3, pp. 201–215, Jul.–Sep. 2005.

[10] M. R. Gary and D. S. Johnson, Computers and Intractability: A Guide
to the Theory of NP-Completeness. San Francisco, CA, USA: Free-
man, 1979.

[11] M. Gouda, “The theory of weak stabilization,” in Proc. 5th Int.
Workshop Self-Stabilizing Syst., 2001, vol. 2194, pp. 114–123.

[12] A. Ebnenasir and A. Farahat, “A lightweight method for auto-
mated design of convergence,” in Proc. IEEE Int. Symp. Parallel
Distrib. Process., 2011, pp. 219–230.

[13] A. Farahat and A. Ebnenasir, “A lightweight method for auto-
mated design of convergence in network protocols,” ACM Trans.
Auton. Adaptive Syst., vol. 7, no. 4, pp. 38:1–38:36, Dec. 2012.

[14] M. Gouda, “The triumph and tribulation of system stabilization,”
in Proc. 9th Int. Workshop Distrib. Algorithms, Sep. 1995, vol. 972,
pp. 1–18.

[15] E. W. Dijkstra, A Discipline of Programming. Englewood Cliffs, NJ,
USA: Prentice-Hall, 1990.

[16] S. S. Kulkarni, “Component-based design of fault-tolerance,”
Ph.D. dissertation, Ohio State Univ., Columbus, OH, USA,
1999.

[17] L. Lamport and N. Lynch,Handbook of Theoretical Computer Science:
Chapter 18, Distributed Computing: Models and Methods. Amster-
dam, The Netherlands: Elsevier, 1990.

[18] M. Nesterenko and A. Arora, “Stabilization-preserving atomicity
refinement,” J. Parallel Distrib. Comput., vol. 62, no. 5, pp. 766–791,
2002.

[19] M. Demirbas and A. Arora, “Convergence refinement,” in Proc.
22nd Int. Conf. Distrib. Comput. Syst., Jul. 2002, pp. 589–597.

[20] J. Chen and S. Kulkarni, “Effectiveness of transition systems to
model faults, in,” in Proc. 2nd Int. Workshop Logical Aspects Fault -
Tolerance, 2011.

[21] A. Avizienis, J.-C. Laprie, B. Randell, and C. E. Landwehr, “Basic
concepts and taxonomy of dependable and secure computing,”
IEEE Trans. Dependable Secure Comput., vol. 1, no. 1, pp. 11–33,
Jan.–Mar. 2004.

[22] A. Arora and S. S. Kulkarni, “Designing masking fault-tolerance
via nonmasking fault-tolerance,” IEEE Trans. Softw. Eng., vol. 24,
no. 6, pp. 435–450, Jun. 1998.

[23] G. Varghese, “Self-stabilization by local checking and correction,”
Massachusetts Inst. Technol., Cambridge, MA, USA, Tech. Rep.
MIT/LCS/TR-583, Oct. 1992.

[24] U. Wappler and C. Fetzer, “Software encoded processing: Build-
ing dependable systems with commodity hardware,” in Proc.
Comput. Safety, Rel., Security, 2007, pp. 356–369.

[25] M. Correia, D. G. Ferro, F. P. Junqueira, and M. Serafini, “Practical
hardening of crash-tolerant systems,” in Proc. USENIX Conf.
Annu. Tech. Conf., 2012, vol. 12, pp. 453–466.

[26] F. Abujarad and S. S. Kulkarni, “Automated constraint-based
addition of nonmasking and stabilizing fault-tolerance,” Theoreti-
cal Comput. Sci., vol. 412, no. 33, pp. 4228–4246, 2011.

[27] A. Ebnenasir and A. Farahat, “Swarm synthesis of convergence
for symmetric protocols,” in Proc. 9th Euro. Dependable Comput.
Conf., 2012, pp. 13–24.

[28] B. Bonakdarpour and S. S. Kulkarni, “Revising distributed UNITY
programs is NP-complete,” in Proc. 12th Int. Conf. Principles Dis-
trib. Syst., 2008, pp. 408–427.

[29] A. Ebnenasir, “Automatic synthesis of fault-tolerance,” Ph.D. dis-
sertation, Michigan State Univ., East Lansing, MI, USA, May 2005.

Alex Klinkhamer received the bachelor’s and
master’s degrees, both from Michigan Tech, in
2010 and 2013, respectively. He is currently
working toward the PhD degree in the Depart-
ment of Computer Science at Michigan Tech-
nological University. His research interests
include self-stabilization, distributed systems,
and parallel algorithms.

Ali Ebnenasir received the bachelor’s and
master’s degrees from the University of Isfa-
han and Iran University of Science and Tech-
nology in 1994 and 1998, respectively. He
received the PhD degree from the Computer
Science and Engineering Department at Michi-
gan State University (MSU) in 2005. He is an
associate professor of computer science at
Michigan Technological University and a
senior member of the ACM. After finishing his
postdoctoral fellowship at MSU in 2006, he

joined the Department of Computer Science at Michigan Tech. His
research interests include software dependability, formal methods,
and parallel and distributed computing.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

350 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 12, NO. 3, MAY/JUNE 2015



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


