
Automated Synthesis of Multitolerance 1

Sandeep S. Kulkarni Ali Ebnenasir
Software Engineering and Network Systems Laboratory

Department of Computer Science and Engineering
Michigan State University

East Lansing MI 48824 USA

Abstract
We concentrate on automated synthesis of multitolerant pro-
grams, i.e., programs that tolerate multiple classes of faults
and provide a (possibly) different level of fault-tolerance to
each class. We consider three levels of fault-tolerance: (1)
failsafe, where in the presence of faults, the synthesized pro-
gram guarantees safety, (2) nonmasking, where in the pres-
ence of faults, the synthesized program recovers to states from
where its safety and liveness are satisfied, and (3) masking
where in the presence of faults the synthesized program satis-
fies safety and recovers to states from where safety and live-
ness are satisfied.

We focus on the automated synthesis of multitolerant pro-
grams in high atomicity where the program can read and
write all its variables in an atomic step. We show that if
one needs to add failsafe (respectively, nonmasking) fault-
tolerance to one class of faults and masking fault-tolerance
to another class of faults then such addition can be done in
polynomial time in the state space of the fault-intolerant pro-
gram. However, if one needs to add failsafe fault-tolerance to
one class of faults and nonmasking fault-tolerance to another
class of faults then the resulting problem is NP-complete. We
find this result to be counterintuitive since adding failsafe and
nonmasking fault-tolerance to the same class of faults (which
is equivalent to adding masking fault-tolerance to that class
of faults) can be done in polynomial time, whereas adding
failsafe fault-tolerance to one class of faults and nonmasking
fault-tolerance to a different class of faults is NP-complete.

Keywords: Fault-tolerance, Automatic addition of fault-
tolerance, Formal methods, Program synthesis,
Distributed programs

1 Introduction
Today’s systems are often subject to multiple classes of faults
and, hence, these systems need to provide appropriate level
of fault-tolerance to each fault-class. Often it is undesirable
or impractical to provide the same level of fault-tolerance to
each class of faults. Hence, these systems need to tolerate

1Email: sandeep@cse.msu.edu, ebnenasi@cse.msu.edu
Web: http://www.cse.msu.edu/˜{sandeep,ebnenasi}
Tel: +1-517-355-2387, Fax: +1-517-432-1061
This work was partially sponsored by NSF CAREER CCR-0092724,

DARPA Grant OSURS01-C-1901, ONR Grant N00014-01-1-0744, NSF
grant EIA-0130724, and a grant from Michigan State University.

multiple classes of faults, and (possibly) provide a different
level of fault-tolerance to each class. To characterize such
systems, the notion of multitolerance was introduced in [1].
The importance of such multitolerant systems can be easily
observed from the fact that several methods for designing
multitolerant programs as well as several instances of mul-
titolerant programs can be readily found (e.g., [1–4]) in the
literature.

In this paper, we focus on automated synthesis of multitoler-
ant programs. Such automated synthesis has the advantage of
generating fault-tolerant programs that (i) are correct by con-
struction, and (ii) tolerate multiple classes of faults. Since the
synthesized programs are correct by construction, there is no
need for their proof of correctness.

One of the problems in automated synthesis of multitoler-
ant programs is the complexity of such synthesis. Specifi-
cally, there exist situations where satisfying a specific fault-
tolerance requirement for one class of faults conflicts with
providing a different level of fault-tolerance to another fault-
class. Hence, it is necessary to identify situations where syn-
thesis of multitolerant programs can be performed efficiently
and where heuristics need to be developed for adding multi-
tolerance.

In our algorithms, we begin with a fault-intolerant program,
i.e., a program that ensures that its specification is satisfied in
the absence of faults although no guarantees are provided in
the presence of faults. Subsequently, we add fault-tolerance
to the given classes of faults while providing the required
level of fault-tolerance to each of those classes. We consider
three levels of fault-tolerance requirements, failsafe, non-
masking, and masking. Intuitively, in the presence of faults,
a failsafe fault-tolerant program ensures that the safety is sat-
isfied. In the presence of faults, a nonmasking fault-tolerant
program recovers to states from where its safety and liveness
specification is satisfied. And, a masking program satisfies
both these properties (cf. Section 2 for precise definitions.)

Our algorithms are based on the algorithms in [5] where
Kulkarni and Arora have presented algorithms for adding a
single level of fault-tolerance to one class of faults. Specif-
ically, in [5], the authors present sound and complete algo-
rithms for adding failsafe, nonmasking, or masking fault-
tolerance in the high atomicity model where a process can
read and write all program variables in an atomic step. The
complexity of these algorithms is polynomial in the state

1

space of the fault-intolerant program.

Contributions of the paper. We focus on automated syn-
thesis of high atomicity multitolerant programs in a stepwise
fashion. The main results of the paper are as follows:

1. We present a sound and complete stepwise algorithm
for the case where we add nonmasking fault-tolerance
to one class of faults and masking fault-tolerance to an-
other class of faults. The complexity of this algorithm
is polynomial in the state space of the fault-intolerant
program.

2. We present a sound and complete stepwise algorithm for
the case where we add failsafe fault-tolerance to one
class of faults and masking fault-tolerance to another
class of faults. The complexity of this algorithm is also
polynomial in the state space of the fault-intolerant pro-
gram.

3. For the case where failsafe fault-tolerance is added to
one fault-class and nonmasking fault-tolerance is added
to another fault-class, we find a somewhat surprising re-
sult. We find that this problem is NP-complete. This re-
sult is surprising in that automating the addition of fail-
safe and nonmasking fault-tolerance to the same class
of faults can be performed in polynomial time. How-
ever, addition of failsafe fault-tolerance to one class of
faults and nonmasking fault-tolerance to a different class
of faults is NP-complete.

Organization of the paper. The rest of the paper is orga-
nized as follows: In Section 2, we present preliminary con-
cepts where we recall the definitions of programs, specifi-
cations, faults and fault-tolerance. Then, in Section 3, we
present the formal definition of multitolerant programs and
the problem of synthesizing a multitolerant program from a
fault-intolerant program. Subsequently, in Section 4, we re-
call the relevant properties of algorithms in [5] that we use
in automated addition of multitolerance. In Section 5, we
present a sound and complete algorithm for the synthesis of
multitolerant programs that provide nonmasking-masking
multitolerance. Then, in Section 6, we present a sound and
complete algorithm for the synthesis of multitolerant pro-
grams that provide failsafe-masking multitolerance. In Sec-
tion 7, we present the NP-completeness proof for the case
where failsafe-nonmasking multitolerance is added to fault-
intolerant programs. Finally, in Section 8, we make conclud-
ing remarks and discuss future work.

2 Preliminaries
In this section, we give formal definitions of programs, prob-
lem specifications, faults, and fault-tolerance. The programs
are specified in terms of their state space and their transitions.
The definition of specifications is adapted from Alpern and
Schneider [6]. The definition of faults and fault-tolerance is
adapted from Arora and Gouda [7] and Kulkarni [8].
2.1 Program
A program p is specified by a finite state space, Sp, and a set
of transitions, δp, where δp is a subset of {(s0, s1) | s0, s1 ∈
Sp}. A state predicate of p is any subset of Sp. A state

predicate S is closed in the program p (respectively, δp) iff
(∀s0, s1 : (s0, s1)∈δp : (s0∈S ⇒ s1∈S)). A sequence of
states, 〈s0, s1, ...〉, is a computation of p iff the following
two conditions are satisfied: (1) ∀j : j > 0 : (sj−1, sj)∈ δp,
and (2) if 〈s0, s1, ...〉 is finite and terminates in state sl then
there does not exist state s such that (sl, s)∈δp. A sequence
of states, 〈s0, s1, ...〉, is a computation prefix of p iff ∀j :
j > 0 : (sj−1, sj)∈δp, i.e., a computation prefix need not be
maximal.

The projection of program p on state predicate S, denoted as
p|S, is the program 〈Sp, {(s0, s1) : (s0, s1)∈ δp ∧ s0, s1 ∈
S}〉. In other words, p|S consists of transitions of p that start
in S and end in S. Given two programs, p = 〈Sp, δp〉 and
p′=〈S′

p, δ
′

p〉, we say p′ ⊆ p iff S′

p =Sp and δ′p ⊆ δp.

Notation. When it is clear from context, we use p and δp

interchangeably. Also, we say that a state predicate S is true
in a state s iff s∈S.
2.2 Specification
A specification is a set of infinite sequences of states that is
suffix closed and fusion closed. Suffix closure of the set
means that if a state sequence σ is in that set then so are all
the suffixes of σ. Fusion closure of the set means that if
state sequences 〈α, s, γ〉 and 〈β, s, δ〉 are in that set then so
are the state sequences 〈α, s, δ〉 and 〈β, s, γ〉, where α and β
are finite prefixes of state sequences, γ and δ are suffixes of
state sequences, and s is a program state.

Following Alpern and Schneider [6], we let the specification
consist of a safety specification and a liveness specifica-
tion. For a suffix closed and fusion closed specification, the
safety specification can be specified as a set of bad transi-
tions [8], that is, for program p, its safety specification is a
subset of {(s0, s1) : s0, s1 ∈ Sp}. Hence, we say a transi-
tion (s0, s1) violates the safety of specification iff (s0, s1)
belongs to the set of bad transitions. The liveness specifica-
tion is not required in our algorithm; the liveness specifica-
tion satisfied by the fault-intolerant program is preserved in
the synthesized multitolerant program.

Given a program p, a state predicate S, and a specification
spec, we say that p satisfies spec from S iff (1) S is closed
in p, and (2) every computation of p that starts in a state where
S is true is in spec. If p satisfies spec from S and S 6={}, we
say that S is an invariant of p for spec.

For a finite sequence (of states) α, we say that α =
〈s0, s1, · · · , sj〉 maintains spec iff ∀(si, si+1) : 0 ≤ i ≤
j−1 : (si, si+1) does not violate spec. We say that p main-
tains (does not violate) spec from S iff (1) S is closed in p,
and (2) every computation prefix of p that starts in a state in
S maintains spec.

Notation. Whenever the specification is clear from the con-
text, we will omit it; thus, S is an invariant of p abbreviates
S is an invariant of p for spec.
2.3 Faults
The faults that a program is subject to are systematically
represented by transitions. A class of faults f for program
p = 〈Sp, δp〉 is a subset of the set {(s0, s1) : s0, s1 ∈ Sp}.

We use p[]f to denote the transitions obtained by taking the
union of the transitions in p and the transitions in f . We say
that a state predicate T is an f -span (read as fault-span) of
p from S iff the following two conditions are satisfied: (1)
S ⇒ T , and (2) T is closed in p[]f . Observe that for all
computations of p that start at states where S is true, T is a
boundary in the state space of p up to which (but not beyond
which) the state of p may be perturbed by the occurrence of
the transitions in f .

Just as we defined the computation of p, we say that a se-
quence of states, 〈s0, s1, ...〉, is a computation of p in the
presence of f iff the following three conditions are satis-
fied: (1) ∀j : j > 0 : (sj−1, sj)∈(δp ∪f), (2) if 〈s0, s1, ...〉 is
finite and terminates in state sl then there does not exist state
s such that (sl, s)∈ δp, and (3) ∃n : n ≥ 0 : (∀j : j > n :
(sj−1, sj)∈δp).

2.4 Fault-Tolerance
We now define what it means for a program to be fail-
safe/nonmasking/masking fault-tolerant. We say that p is fail-
safe f -tolerant (read as fault-tolerant) from S for spec iff
the following conditions hold: (1) p satisfies spec from S,
and (2) there exists T such that T is an f -span of p from S,
and p[]f maintains spec from T .

Since a nonmasking fault-tolerant program need not satisfy
safety in the presence of faults, p is nonmasking f -tolerant
from S for spec iff the following conditions hold: (1) p sat-
isfies spec from S, and (2) there exists T such that T is an
f -span of p from S, and every computation of p[]f that starts
from a state in T contains a state of S.

A program p is masking f -tolerant from S for spec iff the
following conditions hold: (1) p satisfies spec from S, and
(2) there exists T such that T is an f -span of p from S, p[]f
maintains spec from T , and every computation of p[]f that
starts from a state in T contains a state of S.

Notation. Whenever the program p is clear from the context,
we will omit it; thus, “S is an invariant” abbreviates “S is
an invariant of p”. Also, whenever the specification spec and
the invariant S are clear from the context, we omit them; thus,
“f -tolerant” abbreviates “f -tolerant from S for spec ”.

3 Problem Statement
In this section, we formally define the problem of synthe-
sizing multitolerant programs from their fault-intolerant ver-
sions. Before defining the synthesis problem, we present our
definition of multitolerance; i.e., we identify what it means
for a program to be multitolerant in the presence of multiple
classes of faults.

As mentioned in Section 2.4, a fail-
safe/nonmasking/masking fault-tolerant program
guarantees to provide a desired level of fault-tolerance
(i.e., failsafe/nonmasking/masking) in the presence of a
specific class of faults. Now, we consider the case where
faults from multiple fault-classes, say f1 and f2, occur in a
given program computation.

There exist several possible choices in deciding the level of
fault-tolerance that should be provided in the presence of

multiple fault-classes. One possibility is to provide no guar-
antees when f1 and f2 occur in the same computation. With
such a definition of multitolerance, the program would pro-
vide fault-tolerance if faults from f1 occur or if faults form
f2 occur. However, no guarantees will be provided if both
faults occur simultaneously.

Another possibility is to require that the fault-tolerance pro-
vided for the case where f1 and f2 occur simultaneously
should be equal to the minimum level of fault-tolerance pro-
vided when either f1 occurs or f2 occurs. For example,
if masking fault-tolerance is provided to f1 and failsafe
fault-tolerance is provided to f2 then failsafe fault-tolerance
should be provided for the case where f1 and f2 occur si-
multaneously. In our definition, we follow the latter ap-
proach. The following table illustrates the minimum level of
fault-tolerance provided for different combinations of levels
of fault-tolerance provided to individual classes of faults.

Fault-Tolerance Failsafe Nonmasking Masking

Failsafe Failsafe No-Tolerance Failsafe

Nonmasking No-Tolerance Nonmasking Nonmasking

Masking Failsafe Nonmasking Masking

In a special case, consider the situation where failsafe fault-
tolerance is provided to both f1 and f2. From the above
description, failsafe fault-tolerance should be provided for
the fault class f1 ∪ f2. By taking the union of all the
fault-classes for which failsafe fault-tolerance is provided,
we get one fault-class, say ffailsafe, for which failsafe fault-
tolerance needs to be added. Likewise, we obtain the fault-
class fnonmasking (respectively, fmasking) for which non-
masking (respectively, masking) fault-tolerance is provided.

Now, given (the transitions of) a fault-intolerant program, p,
its invariant, S, its specification, spec, and a set of distinct
classes of faults ffailsafe, fnonmasking , and fmasking , we
define what it means for a synthesized program p′, with in-
variant S′, to be multitolerant by considering how p′ behaves
when (i) no faults occur; (ii) only one class of faults happens,
and (iii) multiple classes of faults happen.

Definition. Program p′ is multitolerant to
ffailsafe, fnonmasking , and fmasking from S′ for spec iff (if
and only if) the following conditions hold:

1. p′ satisfies spec from S ′ in the absence of faults.
2. p′ is masking fmasking-tolerant from S′ for spec.
3. p′ is failsafe (ffailsafe ∪ fmasking)-tolerant from S′ for

spec.
4. p′ is nonmasking (fnonmasking ∪ fmasking)-tolerant

from S′ for spec.

Remark. Since every program is fail-
safe/nonmasking/masking fault-tolerant to a class of
faults whose set of transitions is empty, the above definition
generalizes the cases where one of the classes of faults is not
specified (e.g., fmasking = {}).

Now, using the definition of multitolerant programs, we iden-
tify the requirements of the problem of synthesizing a multi-
tolerant program, p′, from its fault-intolerant version, p. The
problem statement is motivated by the goal of simply adding

multitolerance and introducing no new behaviors in the ab-
sence of faults. This problem statement is the natural exten-
sion to the problem statement in [5] where fault-tolerance is
added to a single class of faults.

Since we require p′ to behave similar to p in the absence of
faults, we stipulate the following conditions: First, we require
S′ to be a subset of S (i.e., S ′ ⊆ S). Otherwise, if there exists
a state s ∈ S′ where s /∈ S then, in the absence of faults, p′

can reach s and perform new computations that do not belong
to p. Thus, p′ will include new ways of satisfying spec from s
in the absence of faults. Second, we require (p′|S′) ⊆ (p|S′).
If p′|S′ includes a transition that does not belong to p|S ′ then
p′ can include new ways for satisfying spec in the absence
of faults. Thus, the problem of multitolerance synthesis is as
follows:

The Synthesis Problem
Given p, S, spec, ffailsafe, fnonmasking , and fmasking

Identify p′ and S′ such that
S′ ⊆ S,
p′|S′ ⊆ p|S′, and
p′ is multitolerant to ffailsafe, fnonmasking , and
fmasking from S′ for spec.

We state the corresponding decision problem as follows:

The Decision Problem
Given p, S, spec, ffailsafe, fnonmasking , and fmasking :

Does there exist a program p′, with its invariant S′

that satisfies the requirements of
the synthesis problem?

4 Addition of Fault-Tolerance To One Fault-
Class

In the synthesis of multitolerant programs, we reuse
algorithms Add Failsafe, Add Nonmasking, and
Add Masking, presented by Kulkarni and Arora [5]. These
algorithms respectively add failsafe/nonmasking/masking
fault-tolerance to a single class of faults. Hence, we recall the
relevant properties of these algorithms in this section. While
we reiterate these algorithms in the Appendix A, we note
that the description of the algorithms presented in this paper
and their proofs depend only on the properties mentioned
in this section and not on the actual implementation of the
algorithms in [5].

The above-mentioned algorithms take a program p, its invari-
ant S, its specification spec, a class of faults f , and synthesize
an f -tolerant program p′ (if any) with the invariant S ′. The
synthesized program p′ and its invariant S′ satisfy the follow-
ing requirements: (i) S ′ ⊆ S; (ii) p′|S′ ⊆ p|S′, and (iii) p′ is
failsafe (respectively, nonmasking or masking) f -tolerant
from S′ for spec.

The invariant S′, calculated by Add Failsafe (respectively,
Add Masking), has the property of being the largest such
possible invariant for any failsafe (respectively, masking)
program obtained by adding fault-tolerance to the given fault-
intolerant program. In other words, if there exists a failsafe

fault-tolerant program p′′, with invariant S′′ that satisfies the
above requirements for adding fault-tolerance then S ′′ ⊆ S′.
Also, if no sequence of fault transitions can violate the safety
of specification from any state inside S then Add Failsafe
will not change the invariant of the fault-intolerant program.
Hence, we make the following observations:

Observation 4.1. Let the input for Add Failsafe be p, S,
spec and f . Let the output of Add Failsafe be fault-tolerant
program p′ and invariant S′. If any program p′′ with invariant
S′′ satisfies (i) S′′ ⊆ S; (ii) p′′|S′′ ⊆ p|S′′, and (iii) p′′ is
failsafe f -tolerant from S ′ for spec then S′′ ⊆ S′.

Observation 4.2. Let the input for Add Failsafe be p, S,
spec and f . Let the output of Add Failsafe be fault-tolerant
program p′ and invariant S′. Unless there exists states in S
from where a sequence of f transitions alone violates safety,
S′=S.

Likewise, the f -span of the masking f -tolerant program, say
T ′, synthesized by the algorithm Add Masking is the largest
possible f -span. Thus, we make the following observation:

Observation 4.3. Let the input for Add Masking be p, S,
spec and f . Let the output of Add Masking be fault-tolerant
program p′, invariant S′, and fault-span T ′. If any program
p′′ with invariant S′′ satisfies (i) S′′ ⊆ S; (ii) p′′|S′′ ⊆ p|S′′,
(iii) p′′ is masking f -tolerant from S ′ for spec, and (iv) T ′′ is
the fault-span used for verifying the masking fault-tolerance
of p′′ then S′′ ⊆ S′ and T ′′ ⊆ T ′.

The algorithm Add Nonmasking only adds recovery transi-
tions from states outside the invariant S to S. Thus, we make
the following observations:

Observation 4.4. Add Nonmasking does not add or remove
any state of S.

Observation 4.5. Add Nonmasking does not add or remove
any transition of p|S.

Based on the Observations 4.1- 4.5, Kulkarni and Arora [5]
show that the algorithms Add Failsafe, Add Nonmasking,
and Add Masking are sound and complete, i.e., the output
of these algorithms satisfy the requirements for adding fault-
tolerance to a single class of faults and these algorithms can
find a fault-tolerant program if one exists.

Theorem 4.5. The algorithms Add Failsafe,
Add Nonmasking, and Add Masking are sound and
complete [5].

5 Nonmasking-Masking Multitolerance
In this section, we present an algorithm for stepwise synthe-
sis of multitolerant programs that are subject to two classes of
faults fnonmasking and fmasking for which respectively non-
masking and masking fault-tolerance is required. We also
show that our synthesis algorithm is sound and complete.

Given a program p, with its invariant S, its specification spec,
our goal is to synthesize a program p′, with invariant S′ that is
multitolerant to fnonmasking and fmasking . By definition, p′

must be masking fmasking-tolerant. In the presence of both
fnonmasking and fmasking (i.e., fnonmasking ∪ fmasking), p′

must provide nonmasking fault-tolerance.

We proceed as follows: Using the algorithm Add Masking,
we synthesize a masking fmasking-tolerant program p1, with
invariant S′, and fault-span Tmasking . Now, since program
p1 is masking fmasking-tolerant, it provides safe recovery to
its invariant, S′, from every state in (Tmasking −S′). Thus,
in the presence of fnonmasking ∪ fmasking , if p1 is perturbed
to (Tmasking −S′) then p1 will satisfy the requirements of
nonmasking fault-tolerance (i.e., recovery to S ′). However,
if fnonmasking ∪ fmasking transitions perturb p1 to states
s, where s /∈ Tmasking , then recovery must be added from
those states. Based on the Observations 4.4 and 4.5, it suf-
fices to add recovery to Tmasking as provided recovery by
p1 from Tmasking to S′ can be reused even after adding
nonmasking fault-tolerance. Thus, the synthesis algorithm
Add Nonmasking Masking is as shown in Figure 1.

Add Nonmasking Masking(p: transitions, fnonmasking , fmasking : fault,
S: state predicate, spec: safety specification)

{
p1, S

′, Tmasking := Add Masking(p, fmasking, S, spec);
if (S′ ={}) declare no multitolerant program p′ exists;

return ∅, ∅;
p′, T ′ := Add Nonmasking(p1, fnonmasking ∪ fmasking , Tmasking , spec);
return p′, S′;

}

Figure 1. Synthesizing nonmasking-masking multitoler-
ance.

Now, in Theorem 5.1, we show the soundness of
Add Nonmasking Masking, i.e., we show that the out-
put of Add Nonmasking Masking satisfies the require-
ments of the problem statement in Section 3. Subse-
quently, in Theorem 5.2, we show the completeness of
Add Nonmasking Masking, i.e., we show that if a multitol-
erant program can be designed for the given fault-intolerant
program then Add Nonmasking Masking will not declare
failure.

Theorem 5.1. The algorithm Add Nonmasking Masking is
sound.

Proof. Based on the soundness of Add Masking (cf. Theo-
rem 4.5), S′ ⊆ S.

Also, using the soundness of Add Masking, we have
p1|S

′ ⊆ p|S′. In addition, based on the Observation 4.5,
we have p1|S

′ = p′|S′. As a result, we have p′|S′ ⊆ p|S′.

Now, we show that p′ is multitolerant to fnonmasking and
fmasking from S′ for spec:

1. Absence of faults. From the soundness of
Add Masking, it follows that p1 satisfies spec from S ′

in the absence of faults. Since Add Nonmasking does
not add to (respectively, remove from) any transitions of
p1|S

′ (cf. Observation 4.5), it follows that p′ satisfies
spec from S′.

2. Masking fmasking-tolerance. From the soundness
of Add Masking, p1 is masking fmasking-tolerant
from S′ for spec. Also, based on the Observa-
tion 4.4 and 4.5, Add Nonmasking preserves masking
fmasking-tolerance property of p1 since p1|Tmasking =

p′|Tmasking . Therefore, p′ is masking fmasking-tolerant
from S′ for spec.

3. Nonmasking (fnonmasking ∪ fmasking)-tolerance.
From the soundness of Add Nonmasking, we know
that p′ is nonmasking (fnonmasking∪fmasking)-tolerant
from Tmasking for spec. Also, based on the Observa-
tion 4.4 and 4.5, Add Nonmasking preserves masking
fmasking-tolerance property of p1 since p1|Tmasking =
p′|Tmasking . Thus, recovery from Tmasking to S′ is
guaranteed in the presence of fnonmasking ∪ fmasking .
Therefore, p′ is nonmasking (fnonmasking ∪fmasking)-
tolerant from S′ for spec.

Based on the above discussion, it follows that p′ is multitol-
erant to fnonmasking and fmasking from S′ for spec. There-
fore, Add Nonmasking Masking is sound.

Theorem 5.2. The algorithm Add Nonmasking Masking is
complete.

Proof. Add Nonmasking Masking declares that a mul-
titolerant program does not exist only when Add Masking
does not find a masking fmasking-tolerant program. Since
the synthesized program must be masking fmasking-tolerant,
from the completeness of Add Masking, completeness of
Add Nonmasking Masking follows.

6 Failsafe-Masking Multitolerance
In this section, we investigate the stepwise synthesis of pro-
grams that are multitolerant to two classes of faults ffailsafe

and fmasking for which we respectively require failsafe and
masking fault-tolerance. We present a sound and complete
algorithm for synthesizing failsafe-masking multitolerant
programs.

Let p be the input fault-intolerant program with its invariant
S, its specification spec, and p′ be the synthesized multitol-
erant program with its invariant S ′. Since the multitolerant
program p′ must maintain safety of spec from every reach-
able state in the computations of p′[](ffailsafe ∪ fmasking)
and p′[]fmasking , p′ must not reach a state from where safety
is violated by a sequence of ffailsafe ∪ fmasking transitions.
Hence, we calculate a set of states, say ms (cf. Figure 2),
from where safety of spec is violated by a sequence of tran-
sitions of ffailsafe ∪ fmasking . Also, p′ must not execute
transitions that take p′ to a state in ms. Hence, we define
mt to include these transitions as well as the transitions that
violate safety of spec.

Now, since p′ should be masking fmasking-tolerant, we use
the algorithm Add Masking to synthesize a program p1

given the input parameters p−mt, fmasking , S−ms, and
mt. We only consider faults fmasking because p1 need not
be masking fault-tolerant to ffailsafe. Since a multitolerant
program must not reach a state of ms, we use the state pred-
icate S−ms as the input invariant to Add Masking. Finally,
we use mt transitions in place of the spec parameter (i.e.,
the fourth parameter of Add Masking). Since Add Masking
treats mt as a set of safety-violating transitions, it does not
include them in the synthesized program p1. Thus, start-
ing from a state in S′, a computation of p1[]fmasking does
not reach a state in ms. As a result, if Tmasking contains a

state s in ms, s can be removed while preserving the mask-
ing fmasking-tolerance property of p1. Hence, we make the
following observation:

Observation 6.1. In the output of the algorithm
Add Masking (cf. Figure 2), removing ms states from
Tmasking preserves masking fmasking-tolerance property of
p1.

Now, if faults ffailsafe ∪ fmasking perturb p1 to a state s,
where s /∈ Tmasking then our synthesis algorithm will have
to ensure that safety is maintained. To achieve this goal,
we add failsafe (ffailsafe ∪ fmasking)-tolerance to p1 from
(Tmasking−ms) using the algorithm Add Failsafe.

Add Failsafe Masking(p: transitions, ffailsafe, fmasking : fault,
S: state predicate, spec: safety specification)

{
ms := {s0 : ∃s1, s2, ...sn :

(∀j : 0≤j <n : (sj , s(j+1)) ∈ (ffailsafe ∪ fmasking)) ∧
(s(n−1), sn) violates spec };

mt := {(s0, s1) : ((s1∈ms) ∨ (s0, s1) violates spec) };
p1, S

′, Tmasking := Add Masking(p− mt, fmasking , S−ms, mt);
if (S′={}) declare no multitolerant program p′ exists;

return ∅, ∅;
p′, T ′ := Add Failsafe(p1, ffailsafe ∪ fmasking , Tmasking−ms, mt);
return p′, S′;

Figure 2. Synthesizing failsafe-masking multitolerance.

The algorithm Add Failsafe takes the program p1, faults
ffailsafe ∪ fmasking , the state predicate (Tmasking −ms),
and the set of mt transitions as the set of transitions that
the multitolerant program is not allowed to execute. Since
the input invariant to Add Failsafe (i.e., (Tmasking −ms))
has no ms state, based on the Observation 4.2, the algo-
rithm Add Failsafe does not remove any state of (Tmasking−
ms). Also, Add Failsafe does not remove any transition of
p1|(Tmasking−ms). Thus, we have (p′|(Tmasking−ms)) =
(p1|(Tmasking−ms)) and p′|S′ = p1|S

′.

Theorem 6.1. The algorithm Add Failsafe Masking is
sound and complete.

Since the proof of Theorem 6.1 is similar to the proofs of
Theorems 5.1 and 5.2, we relegate the proof to the Appendix
B.

7 Failsafe-Nonmasking-Masking Multitoler-
ance

In this section, we show that, in general, the problem of syn-
thesizing multitolerant programs from their fault-intolerant
version is NP-complete. Towards this end, in Section 7.1,
we show that the problem of synthesizing multitolerant pro-
grams from their fault-intolerant version is in NP by design-
ing a non-deterministic polynomial algorithm. Afterwards, in
Section 7.2, we present a mapping between a given instance
of the 3-SAT problem and an instance of the (decision) prob-
lem of synthesizing multitolerance. Then, in Section 7.3, we
show that the given 3-SAT instance is satisfiable iff the an-
swer to the decision problem is affirmative; i.e., there exists
a multitolerant program synthesized from the instance of the
decision problem of multitolerance synthesis.

7.1 Non-Deterministic Synthesis Algorithm
In this section, we first identify the difficulties of adding
multitolerance to three distinct classes of faults ffailsafe,
fnonmasking , and fmasking . Then, we present a non-
deterministic solution for adding multitolerance to fault-
intolerant programs.

For a program p that is subject to three classes of faults
ffailsafe, fnonmasking , and fmasking , consider the cases
where there exists a state s such that (i) s is reachable in
the computations of p[](ffailsafe ∪fmasking) from invariant,
(ii) s is reachable in the computations of p[](fnonmasking ∪
fmasking) from invariant, and (iii) no safe recovery is possi-
ble from s to the invariant.

In such cases, we have the following options: (i) ensure
that s is unreachable in the computations of p[](ffailsafe ∪
fmasking) and add a recovery transition (that violates safety)
from s to the invariant, or (ii) ensure that s is unreachable in
the computations of p[](fnonmasking ∪fmasking) and leave s
as a deadlock state. Moreover, the choice made for this state
affects other similar states. Hence, one needs to explore all
possible choices for each such state s, and as a result, brute-
force exploration of these options requires exponential time
in the state space.

Now, given a program p, with its invariant S, its specifica-
tion spec, and three classes of faults ffailsafe, fnonmasking ,
and fmasking , we present the non-deterministic algorithm
Add Multitolerance. In our non-deterministic algorithm,
first, we guess a program p′, its invariant S′, and three fault-
spans Tfailsafe, Tnonmasking , and Tmasking . Then, we ver-
ify a set of conditions that ensure the multitolerance property
of p′. We have shown our algorithm in Figure 3.

Theorem 7.1 The algorithm Add Multitolerance is sound
and complete.

Theorem 7.2 The problem of synthesizing multitolerant pro-
grams from their fault-intolerant versions is in NP.

Since the Add Multitolerance algorithm simply verifies the
conditions needed for multitolerance, the proof is straightfor-
ward, and hence, omitted.

7.2 Mapping 3-SAT To Multitolerance
In this section, we give an algorithm for polynomial-time
mapping of any given instance of the 3-SAT problem into
an instance of the decision problem defined in Section 3.
The instance of the decision problem of synthesizing mul-
titolerance consists of the fault-intolerant program, p, its
invariant, S, its specification, and three classes of faults
ffailsafe, fnonmasking , and fmasking that perturb p. The
problem statement for the 3-SAT problem is as follows:

3-SAT problem.
Given is a set of literals, a1, a2, ..., an and a′

1, a
′

2, ..., a
′

n,
where ai and a′

i are complements of each other, and a
Boolean formula c = c1 ∧ c2 ∧ ... ∧ cM , where each cj

is a disjunction of exactly three literals.
Does there exist an assignment of truth values to

a1, a2, ..., an such that c is satisfiable?

Add Multitolerance (p: transitions, ffailsafe, fnonmasking , fmasking : fault, S: state predicate,
spec: safety specification)

{
ms := {s0 : ∃s1, s2, ...sn : (∀j : 0≤j <n : (sj , s(j+1)) ∈ (ffailsafe ∪ fmasking)) ∧

(s(n−1), sn) violates spec }; (1)
mt := {(s0, s1) : ((s1∈ms) ∨ (s0, s1) violates spec) }; (2)

Guess p′, S′, Tfailsafe, Tnonmasking , Tmasking ; (3)
Verify the following conditions:

S′ ⊆ S; S′ 6= {}; S′ ⊆ Tfailsafe; S′ ⊆ Tnonmasking ; S′ ⊆ Tmasking ; (4)
(∀s0 : s0 ∈ S′ : (∃s1 :: (s0, s1) ∈ p′)); (5)
p′|S′ ⊆ p|S′; S′ is closed in p′; (6)

Tmasking is closed in p′[]fmasking ; (7)
Tmasking ∩ ms = ∅; (p′|Tmasking) ∩ mt = ∅; (8)
(∀s0 : s0 ∈ Tmasking : (∃s1 :: (s0, s1) ∈ p′)); (p′|(Tmasking−S′)) is acyclic; (9)

Tfailsafe is closed in p′[](ffailsafe ∪ fmasking); (10)
Tfailsafe ∩ ms = ∅; (p′|Tfailsafe) ∩ mt = ∅; (11)

Tnonmasking is closed in p′[](fnonmasking ∪ fmasking); (12)
(∀s0 : s0 ∈ Tnonmasking : (∃s1 :: (s0, s1) ∈ p′)); (p′|(Tnonmasking−S′)) is acyclic; (13)

}

Figure 3. A non-deterministic polynomial algorithm for synthesizing multitolerance.

Next, we identify each entity of the instance of the problem
of multitolerance synthesis, based on the given instance of
the 3-SAT formula.

The state space and the invariant of the fault-intolerant
program, p. The invariant, S, of the fault-intolerant pro-
gram, p, includes only one state, say s. Based on the literals
and disjunctions of the given 3-SAT instance, we include ad-
ditional states outside the invariant. Specifically, for each lit-
eral ai and its complement, we introduce the following states
(cf. Figure 4):
• xi, x

′

i, yi, vi

And, for each disjunction cj = (ai ∨ a′

k ∨ ar) (1 ≤ i ≤ n,
1 ≤ k ≤ n, and 1 ≤ r ≤ n), we introduce a state zj outside
the invariant (1 ≤ j ≤ M).

The transitions of the fault-intolerant program. The only
transition in the fault-intolerant program is a self-loop (s, s).

The transitions of ffailsafe. The transitions of ffailsafe

can perturb the program from xi to vi. Thus, the class of
faults ffailsafe is equal to the set of transitions {(xi, vi) :
1 ≤ i ≤ n}.

The transitions of fnonmasking . The transitions of
fnonmasking can perturb the program from x′

i to vi. Thus,
we have fnonmasking = {(x′

i, vi) : 1 ≤ i ≤ n}.

The transitions of fmasking . The transitions of fmasking

can take the program from s to yi. Also, for each disjunction
cj , we introduce a fault transition that perturbs the program
from state s to state zj (1 ≤ j ≤ M). Thus, the class of faults
fmasking is equal to the set of transitions {(s, yi) : 1 ≤ i ≤
n} ∪ {(s, zj) : 1 ≤ j ≤ M}.

The safety specification of the fault-intolerant program, p.
None of the fault transitions, namely ffailsafe, fnonmasking ,

and fmasking identified above violate safety. In addition, for
each literal ai and its complement a′

i (1 ≤ i ≤ n), the fol-
lowing transitions do not violate safety (cf. Figure 4):
• (yi, xi), (xi, s), (yi, x

′

i), (x
′

i, s)

And, for each disjunction cj = ai ∨ a′

k ∨ ar, the following
transitions do not violate safety:
• (zj , xi), (zj , x

′

k), (zj , xr)

All transitions except those identified above violate safety of
specification. Also, observe that the transition (vi, s), shown
in Figure 4, violates safety.
7.3 Reduction From 3-SAT
In this section, we show that the given instance of 3-SAT is
satisfiable iff multitolerance can be added to the problem in-
stance identified in Section 7.2. Specifically, in Lemma 7.3,
we show that if the given instance of the 3-SAT formula is sat-
isfiable then there exists a multitolerant program that solves
the instance of the multitolerance synthesis problem identi-
fied in Section 7.2. Then, in Lemma 7.4, we show that if
there exists a multitolerant program that solves the instance
of the multitolerance synthesis problem, identified in Section
7.2, then the given 3-SAT formula is satisfiable.

Lemma 7.3 If the given 3-SAT formula is satisfiable then
there exists a multitolerant program that solves the instance
of the addition problem identified in Section 7.2.

Proof. Since the 3-SAT formula is satisfiable, there exists
an assignment of truth values to the literals ai, 1 ≤ i ≤ n,
such that each cj , 1 ≤ j ≤ M , is true. Now, we identify a
multitolerant program, p′, that is obtained by adding multitol-
erance to the fault-intolerant program p identified in Section
7.2.

The invariant of p′ is the same as the invariant of p (i.e., {s}).
We derive the transitions of the multitolerant program p′ as

i

Program transition

Nonmasking faults

Failsafe faults

Masking faultsfm

ff
fn

zj

fm

fm

iv

x’xi i Legend

y .

.

.

..
ff fn

s

Figure 4. The states and the transitions corresponding to the literals in the 3-SAT formula.

follows. (As an illustration, we have shown the partial struc-
ture of p′ where ai = true, ak = false, and ar = true
(1 ≤ i, k, r ≤ n) in Figure 5.)
• For each literal ai, 1 ≤ i ≤ n, if ai is true then we will

include the transitions (yi, xi) and (xi, s). Thus, in the
presence of fmasking alone, p′ provides safe recovery to
s through xi.

• For each literal ai, 1 ≤ i ≤ n, if ai is false then we
will include (yi, x

′

i) and (x′

i, s) to provide safe recov-
ery to the invariant. In this case, since state vi can be
reached from x′

i by faults fnonmasking , we include tran-
sition (vi, s) so that in the presence of fmasking and
fnonmasking program p′ provides nonmasking fault-
tolerance.

• For each disjunction cj that includes ai, we include the
transition (zj , xi) iff ai is true. And, for each disjunc-
tion cj that includes a′

i, we include transition (zj , x
′

i) iff
ai is false.

Now, we show that p′ is multitolerant in the presence of faults
ffailsafe, fnonmasking , and fmasking .

• p′ in the absence of faults. p′|S = p|S. Thus, p′

satisfies spec in the absence of faults.
• Masking tolerance to fmasking . If the faults from

fmasking occur then the program can be perturbed to
(1) yi, 1≤ i≤n, or (2) zj , 1≤j≤M .
In the first case, if ai is true then there exists ex-
actly one sequence of transitions, 〈(yi, xi), (xi, s)〉, in
p′[]fmasking . Thus, any computation of p′[]fmasking

eventually reaches a state in the invariant. Moreover,
starting from yi the computations of p′[]fmasking do
not violate the safety specification. And, if ai is false
then there exists exactly one sequence of transitions,
〈(yi, x

′

i), (x
′

i, s)〉, in p′[]fmasking . By the same argu-
ment, even in this case, any computation of p′[]fmasking

reaches a state in the invariant and does not violate the
safety specification during recovery.
In the second case, since cj evaluates to true, one of the
term in cj (a literal or its complement) evaluates to true.
Thus, there exists at least one transition from zj to some
state xk (respectively, x′

k) where ak (respectively, a′

k)
is a literal in cj and ak (respectively, a′

k) evaluates to
true. Moreover, the transition (zj , xk) is included in p′

iff ak evaluates to true. Thus, (zj , xk) is included in p′

iff (xk , s) is included in p′. Since from xk (respectively,

x′

k), there exists no other transition in p′[]fmasking ex-
cept (xk , s), every computation of p′ reaches the invari-
ant without violating safety. Based, on the above discus-
sion, p′ is masking tolerant to fmasking .

• Failsafe tolerance to fmasking ∪ ffailsafe. Clearly,
based on the case considered above, if only faults from
fmasking occur then the program is also failsafe fault-
tolerant. Hence, we consider only the case where at least
one fault from ffailsafe has occurred.

Faults in ffailsafe occur only in state xi, 1≤ i≤n. And,
p′ reaches xi iff ai is assigned true in the satisfaction of
the given 3-SAT formula. Moreover, if ai is true then
there is no transition from vi. Thus, after a fault transi-
tion of class ffailsafe occurs p′ simply stops. Therefore,
p′ does not violate safety.

• Nonmasking tolerance to fmasking ∪ fnonmasking .
This proof is similar to the proof of failsafe fault-
tolerance shown above. Specifically, we only need to
consider the case where at least one fault transition of
class fnonmasking has occurred.

Faults in fnonmasking occur only in state x′

i, 1≤ i≤n.
And, p′ reaches x′

i iff ai is assigned false in the satisfac-
tion of the given 3-SAT formula. Moreover, if ai is false
then the only transition from vi is (vi, s). Thus, in the
presence of fmasking and fnonmasking , p′ recovers to
its invariant. (Note that the recovery in this case violates
safety.)

Lemma 7.4 If there exists a multitolerant program that
solves the instance of the synthesis problem identified earlier
then the given 3-SAT formula is satisfiable.

Proof. Suppose that there exists a multitolerant program
p′ derived from the fault-intolerant program, p, identified in
Section 3. Since the invariant of p′, S′, is non-empty and
S′ ⊆ S, S′ must include state s. Thus, S ′ = S. Also, since
each yi, 1 ≤ i ≤ n, is directly reachable from s by a fault
from fmasking , p′ must provide safe recovery from yi to s.
Thus, p′ must include either (yi, xi) or (yi, x

′

i). We make the
following truth assignment as follows: If p′ includes (yi, xi)
then we assign ai to be true. And, if p′ includes (yi, x

′

i) then
we assign ai to be false. Clearly, each literal in the 3-SAT
formula will get at least one truth assignment. Now, we show
that the truth assignment to each literal is consistent and that
each disjunct in the 3-SAT formula evaluates to true.

ia a’ ra=

ry

 rx’

n

rv

ff

 rx

nf

 k

ff

 k

c

mf

x’

v

 k

f

s

v

mfmf

z

 kx’

j)\/ \/(

yi

j

x .

.

. ky

ff

 ix

mf

 i

nf

i.

. . .

.

...

.

.

.

Figure 5. The partial structure of the multitolerant program

• Each literal gets a unique truth assignment. Suppose
that there exists a literal ai, which is assigned both true
and false, i.e., both (yi, xi) and (yi, x

′

i) are included
in p′. Now, vi can be reached by the following tran-
sitions (s, yi), (yi, x

′

i), and (x′

i, vi). In this case, only
faults from fmasking and fnonmasking have occurred.
Hence, p′ must provide recovery from vi to invariant.
Also, vi can be reached by the following transitions
(s, yi), (yi, xi), and (xi, vi). In this case, only faults
from fmasking and ffailsafe have occurred. Hence, p′

must ensure safety. Based on the above discussion, p′

must provide a safe recovery to the invariant from vi.
Based on the definition of the safety specification iden-
tified in Section 7.2, this is not possible. Thus, literal ai

must be assigned only one truth value.
• Each disjunction is true. Let cj = ai∨a′

k∨ar be a dis-
junction in the given 3-SAT formula. The corresponding
state added in the instance of the multitolerance problem
is zj . Note that state zj can be reached by the occurrence
of a fault from fmasking from s. Hence, p′ must provide
safe recovery from zj . Since the only safe transitions
from zj are those corresponding to states xi, x′

k and xr,
p′ must include at least one of the transitions (zj , xi),
(zj , x

′

k), or (zj , xr).

Now, we show that the transition included from zj is
consistent with the truth assignment of literals. Specif-
ically, consider the case where p′ contains transition
(zj , xi) and ai is assigned false, p′ can reach xi in the
presence of faults from fmasking alone. Moreover, if ai

is assigned false then p′ contains the transition (yi, x
′

i).
Thus, x′

i can also be reached by the occurrence of faults
from fmasking alone. Based on the above proof for
unique assignment of truth values to literals, p′ can-
not reach xi and x′

i in the presence of fmasking alone.
Hence, if (zj , xi) is included in p′ then ai must have
been assigned truth value true. Likewise, if (zj , x

′

k) is
included in p′ then ak must be assigned truth value false.
Thus, with the truth assignment considered above, each
disjunction must evaluate to true.

Theorem 7.5 The problem of synthesizing multitolerant pro-
grams from their fault-intolerant versions is NP-complete.

7.4 Failsafe-Nonmasking Multitolerance

In this section, we extend the NP-completeness proof of syn-
thesizing multitolerance for the case where we add failsafe
fault-tolerance to one class of faults, say ffailsafe, and we
add nonmasking fault-tolerance to another class of faults, say
fnonmasking .

Our mapping for this case is similar to that in Section 7.2.
We replace the fmasking fault transition (s, yi) with a se-
quence of transitions of ffailsafe and fnonmasking as shown
in Figure 6. Likewise, we replace fault transition (s, zj) with
a structure similar to Figure 6. Thus, yi (respectively, zi)
is reachable by ffailsafe faults alone and by fnonmasking

faults alone. As a result, vi is reachable in the computations
of p′[]ffailsafe and in the computations of p′[]fnonmasking .
Thus, to add multitolerance, safe recovery must be added
from vi to s (cf. Figure 4). Now, we note that with this
mapping, the proofs of Lemmas 7.3 and 7.4 and Theorem
7.5 can be easily extended to show that synthesizing failsafe-
nonmasking multitolerance is NP-complete. Thus, we have

Corollary 7.6. The problem of synthesizing failsafe-
nonmasking multitolerant programs from their fault-
intolerant version is NP-complete.

y

w w’ i i

s

 i

ff nf

nfff

.

.

.

.

Figure 6. A proof sketch for NP-completeness of synthe-
sizing failsafe-nonmasking multitolerance.

8 Conclusion and Future Work

In this paper, we investigated the problem of synthesiz-
ing multitolerant programs from their fault-intolerant ver-
sions. The input to the synthesis algorithm included the fault-
intolerant program, different classes of faults to which fault-
tolerance had to be added, and the level of tolerance pro-
vided for each class of faults. Our algorithms ensured that
the synthesized program provided the specified level of fault-
tolerance if a fault from any single class had occurred. More-
over, it ensured that if faults from multiple classes occurred
then the program would provide the minimal level of fault-
tolerance provided to each of those classes.

We considered three levels of fault-tolerance, failsafe, non-
masking and masking. We presented a sound and complete
algorithm for the case where failsafe (respectively, nonmask-
ing) fault-tolerance would be added to one class of faults and
masking fault-tolerance would be provided to another class
of faults. Thus, in these cases, if a multitolerant program
could be synthesized for the given input program, our algo-
rithms always would produce one such fault-tolerant algo-
rithm. The complexity of these algorithms is polynomial in
the state space of the fault-intolerant program.

For the case where one needs to add failsafe fault-tolerance
to one class of faults and nonmasking fault-tolerance to an-
other class of faults, we found a surprising result. Specif-
ically, we showed that this problem is NP-complete. As
mentioned earlier, this result was counterintuitive as adding
failsafe and nonmasking fault-tolerance to the same class of
faults can be done in polynomial time. However, adding fail-
safe fault-tolerance to one class of faults and nonmasking
fault-tolerance to another class of faults is NP-complete.

Our synthesis approach is different from specification-based
approaches [9–12] where one synthesizes a fault-tolerant pro-
gram from its temporal logic specification. Hence, our ap-
proach is desirable when one needs extend an existing sys-
tem by adding fault-tolerance. Also, the synthesis algorithms
of [5, 13, 14] add fault-tolerance to only one class of faults
whereas we address the synthesis of programs that simulta-
neously tolerate multiple classes of faults. To our knowledge,
ours is the first algorithm for automated design of multitoler-
ant programs.

Although the results focused in this paper deal with the high
atomicity model, we note that the algorithms in high atom-
icity model are important in synthesizing distributed fault-
tolerant programs as well. Specifically, our algorithms iden-
tify a limit upto which even highly powerful processes can
add the necessary multitolerance. Thus, the output of these
algorithms can be used in identifying the limits that dis-
tributed processes — along with their limitation on reading
and writing variables of the program — can achieve in terms
of adding the necessary multitolerance. As an illustration,
we note that in [14], we have identified how algorithms in
high atomicity can be systematically used in adding fault-
tolerance to a single class of faults.

As an extension to our work we plan to explore the poly-
nomial boundary of synthesizing multitolerant programs by

identifying necessary and sufficient conditions for polyno-
mial synthesis of multitolerant programs. Some of the suf-
ficient conditions identified in this paper include the cases
where (i) only failsafe and masking fault-tolerance is added,
and (ii) only nonmasking and masking fault-tolerance is
added. Also, we intend to identify heuristics by which we can
synthesize multitolerant programs in polynomial time. An-
other extension to our work is to use these heuristics and al-
gorithms in synthesizing multitolerant distributed programs.

References

[1] Sandeep S. Kulkarni A. Arora. Component based design of multitol-
erant systems. IEEE Transactions on Software Engineering, 1998.

[2] V. Hadzilacos E. Anagnostou. Tolerating transient and permanent fail-
ures. Proceedings of the 7th International Workshop on Distributed
Algorithms. Les Diablerets, Switzerland, 1993.

[3] S. Dolev and T. Herman. Superstabilizing protocols for dynamic
distributed systems. Proceedings of the Second Workshop on Self-
Stabilizing Systems, 1995.

[4] S. Tsang and E. Magill. Detecting feature interactions in the intelligent
network. Feature Interactions in Telecommunications Systems II, IOS
Press, 1994.

[5] S. S. Kulkarni and A. Arora. Automating the addition of fault-
tolerance. Formal Techniques in Real-Time and Fault-Tolerant Sys-
tems, 2000.

[6] B. Alpern and F. B. Schneider. Defining liveness. Information Pro-
cessing Letters, 21:181–185, 1985.

[7] A. Arora and M. G. Gouda. Closure and convergence: A foundation of
fault-tolerant computing. IEEE Transactions on Software Engineering,
19(11):1015–1027, 1993.

[8] S. S. Kulkarni. Component-based design of fault-tolerance. PhD the-
sis, Ohio State University, 1999.

[9] E.A. Emerson and E.M. Clarke. Using branching time temporal logic
to synthesize synchronization skeletons. Science of Computer Pro-
gramming, 2(3):241–266, 1982.

[10] A. Arora, P. C. Attie, and E. A. Emerson. Synthesis of fault-tolerant
concurrent programs. Proceedings of the 17th ACM Symposium on
Principles of Distributed Computing (PODC), 1998.

[11] P. Attie and A. Emerson. Synthesis of concurrent programs for an
atomic read/write model of computation. ACM TOPLAS (a preliminary
version of this paper appeared in PODC96), 23(2), March 2001.

[12] O. Kupferman and M.Y. Vardi. Synthesizing distributed systems. In
Proc. 16th IEEE Symp. on Logic in Computer Science, July 2001.

[13] S. S. Kulkarni and A. Ebnenasir. The complexity of adding failsafe
fault-tolerance. International Conference on Distributed Computing
Systems, 2002.

[14] S. S. Kulkarni and A. Ebnenasir. Enhancing the fault-tolerance of non-
masking programs. International Conference on Distributed Comput-
ing Systems, 2003.

