
Adding Fault-Tolerance Using Pre-Synthesized

Components1

Sandeep S. Kulkarni and Ali Ebnenasir

Department of Computer Science and Engineering
Michigan State University

48824 East Lansing, Michigan, USA
{sandeep, ebnenasi}@cse.msu.edu

http://www.cse.msu.edu/~{sandeep,ebnenasi}

Abstract. We present a hybrid synthesis method for automatic addition
of fault-tolerance to distributed programs. In particular, we automatically
specify and add pre-synthesized fault-tolerance components to programs
in the cases where existing heuristics fail to add fault-tolerance. Such
addition of pre-synthesized components has the advantage of reusing
pre-synthesized fault-tolerance components in the synthesis of different
programs, and as a result, reusing the effort put in the synthesis of one
program for the synthesis of another program. Our synthesis method is
sound in that the synthesized fault-tolerant program satisfies its spec-
ification in the absence of faults, and provides desired level of fault-
tolerance in the presence of faults. We illustrate our synthesis method
by adding pre-synthesized components with linear topology to a token
ring program that tolerates the corruption of all processes. Also, we have
reused the same component in the synthesis of a fault-tolerant alternat-
ing bit protocol. Elsewhere, we have applied this method for adding
presynthesized components with hierarchical topology.

Keywords: Automatic addition of fault-tolerance, Formal methods, Detec-
tors, Correctors, Distributed programs

1 Introduction
Automatic synthesis of fault-tolerant distributed programs from their fault-
intolerant versions is desirable in variety of disciplines (e.g., safety-critical sys-
tems, embedded systems, network protocols) since such automated synthesis (i)
generates a program that is correct by construction, and (ii) has the potential to
preserve the properties of the fault-intolerant program. However, the exponen-
tial complexity of synthesis is one of the important obstacles in such automated
synthesis. Thus, it is desirable to reuse the effort put in the synthesis of one pro-
gram for the synthesis of another program. In this paper, we concentrate on the
identification and the addition of pre-synthesized fault-tolerance components to

1 This work was partially sponsored by NSF CAREER CCR-0092724, DARPA Grant
OSURS01-C-1901, ONR Grant N00014-01-1-0744, NSF grant EIA-0130724, and a
grant from Michigan State University.

2 Sandeep S. Kulkarni and Ali Ebnenasir

fault-intolerant programs so that we can reuse those components in the synthesis
of different programs.

In the previous work on automatic transformation of fault-intolerant pro-
grams to fault-tolerant programs, Kulkarni and Arora [1] present polynomial
time algorithms (in the state space of the fault-intolerant program) for the
synthesis of fault-tolerant programs in the high atomicity model – where each
process of the program can read/write all program variables in an atomic step.
However, for the synthesis of fault-tolerant distributed programs, they show that
the complexity of synthesis is exponential. Techniques presented in [2–4] reduce
the complexity of synthesis by using heuristics and by identifying classes of pro-
grams and specifications for which efficient synthesis is possible. However, these
approaches cannot apply the lessons learnt in synthesizing one fault-tolerant pro-
gram while synthesizing another fault-tolerant program. As we encounter new
problems, it is desirable to reuse synthesis techniques that we have already used
during the synthesis of other problems. Hence, if we recognize the patterns that
we often apply in the synthesis of fault-tolerant distributed programs then we
can organize those patterns in terms of fault-tolerance components and reuse
them in the synthesis of new problems.

To investigate the use of pre-synthesized fault-tolerance components in the
synthesis of fault-tolerant distributed programs, we use detectors and correctors

identified in [5]. Specifically, in [5], it is shown that detectors and correctors
suffice in the manual design of a rich class of masking fault-tolerant programs
– where the fault-tolerant program satisfies its safety and liveness specification
even in the presence of faults. To achieve our goal, we present a synthesis method
that adds pre-synthesized detectors and correctors to a given fault-intolerant
program in order to synthesize its fault-tolerant version. Using our synthesis
method, we identify (i) the representation of the pre-synthesized detectors and
correctors; (ii) when and where the synthesis algorithm should use a detector or
a corrector, and (iii) how to ensure the correctness of the fault-tolerant program
and pre-synthesized detectors and correctors in the presence of each other.

Contributions. The contributions of this paper are as follows: (i) we develop a
synthesis method for reusing pre-synthesized fault-tolerance components in the
synthesis of different programs; (ii) we reduce the chance of failure of the synthe-
sis algorithm by using pre-synthesized fault-tolerance components in the cases
where existing heuristics fail; (iii) we present a systematic approach for expand-
ing the state space of the program being synthesized in the cases where synthesis
fails in the original state space, and finally (iv) we present a systematic method
for adding new variables to programs for the sake of adding fault-tolerance.

As an illustration of our synthesis method, we add pre-synthesized compo-
nents with linear topology to a token ring program that is subject to process-
restart faults. The masking fault-tolerant (token ring) program can recover even
from the situation where every process is corrupted. We note that the previ-
ous approaches that added fault-tolerance to the token ring program presented
in this paper fail to synthesize a fault-tolerant program when all processes are
corrupted. We have also synthesized a fault-tolerant alternating bit protocol by

Adding Fault-Tolerance Using Pre-Synthesized Components 3

reusing the same pre-synthesized fault-tolerance component used in the synthe-
sis of the token ring program (cf. [6] for this synthesis). Elsewhere [7], we have
used this method for synthesizing a fault-tolerant diffusing computation where
the added component is hierarchical in nature. This example also demonstrates
the addition of multiple components. Thus, the synthesis method presented in
this paper can be used for adding fault-tolerance components (i) on different
topologies, and (ii) for different types of faults.

Note. The notion of program in this paper refers to the abstract structure of a
program. The abstract structure of a program is an abstraction of the parts of
the program code that execute inter-process synchronization tasks.

The organization of the paper. In Section 2, we present preliminary con-
cepts. In Section 3, we formally state the problem of adding fault-tolerance com-
ponents to fault-intolerant programs. Then, in Section 4, we present a synthesis
method that identifies when and how the synthesis algorithm decides to add a
component. Subsequently, in Section 5, we describe how we formally represent a
fault-tolerance component. In Section 6, we show how we automatically specify
a required component and add it to a program. We discuss issues related to our
synthesis method in Section 7. Finally, we make concluding remarks and discuss
future work in Section 8.

2 Preliminaries
In this section, we give formal definitions of programs, problem specifications,
faults, and fault-tolerance. The programs are specified in terms of their state
space and their transitions. We have adapted the definition of (i) specifications
from Alpern and Schneider [8], and (ii) faults and fault-tolerance from Arora
and Gouda [9] and Kulkarni and Arora [10]. The issues of modeling distributed
programs is adapted from [1,11].
Program. A program p is a finite set of variables and a finite set of processes.
Each variable is associated with a finite domain of values. A state of p is obtained
by assigning each variable a value from its respective domain. The state space

of p, Sp, is the set of all possible states of p.
A process, say Pj , in p is associated with a set of program variables, say rj ,

that Pj can read and a set of variables, say wj , that Pj can write. Also, process
Pj consists of a set of transitions of the form (s0, s1) where s0, s1 ∈ Sp. The set
of the transitions of p is the union of the transitions of its processes.

A state predicate of p is any subset of Sp. A state predicate S is closed in the
program p iff (if and only if) ∀s0, s1 : (s0, s1)∈p : (s0∈S ⇒ s1∈S). A sequence
of states, 〈s0, s1, ...〉, is a computation of p iff the following two conditions are
satisfied: (1) ∀j : j > 0 : (sj−1, sj)∈p, and (2) if 〈s0, s1, ...〉 is finite and terminates
in state sl then there does not exist state s such that (sl, s)∈ p. A sequence of
states, 〈s0, s1, ..., sn〉, is a computation prefix of p iff ∀j : 0 < j ≤ n : (sj−1, sj)∈p
, i.e., a computation prefix need not be maximal. The projection of program p
on state predicate S, denoted as p|S, consists of transitions {(s0, s1) : (s0, s1)∈
p ∧ s0, s1∈S}.
Distribution issues. We model distribution by identifying how read/write re-
strictions on a process affect its transitions. A process Pj cannot include transi-

4 Sandeep S. Kulkarni and Ali Ebnenasir

tions that write a variable x, where x /∈ wj . In other words, the write restrictions
identify the set of transitions that a process Pj can execute. Given a single tran-
sition (s0, s1), it appears that all the variables must be read to execute that
transition. For this reason, read restrictions require us to group transitions and
ensure that the entire group is included or the entire group is excluded. As an
example, consider a program consisting of two variables a and b, with domains
{0, 1}. Suppose that we have a process that cannot read b. Now, observe that
the transition from the state 〈a = 0, b = 0〉 to 〈a = 1, b = 0〉 can be included
iff the transition from 〈a = 0, b = 1〉 to 〈a = 1, b = 1〉 is also included. If we
were to include only one of these transitions, we would need to read both a and
b. However, when these two transitions are grouped, the value of b is irrelevant,
and we do not need read it.

Specification. A specification is a set of infinite sequences of states that is
suffix closed and fusion closed. Suffix closure of the set means that if a state
sequence σ is in that set then so are all the suffixes of σ. Fusion closure of the set
means that if state sequences 〈α, s, γ〉 and 〈β, s, δ〉 are in that set then so are the
state sequences 〈α, s, δ〉 and 〈β, s, γ〉, where α and β are finite prefixes of state
sequences, γ and δ are suffixes of state sequences, and s is a program state.

Following Alpern and Schneider [8], we rewrite the specification as the in-
tersection of a safety specification and a liveness specification. For a suffix-closed
and fusion-closed specification, the safety specification can be specified [10] as a
set of bad transitions that must not occur in program computations, that is, for
program p, its safety specification is a subset of Sp × Sp.

Given a program p, a state predicate S, and a specification spec, we say that
p satisfies spec from S iff (1) S is closed in p, and (2) every computation of p
that starts in a state in S is in spec. If p satisfies spec from S and S 6= {}, we
say that S is an invariant of p for spec.

We do not explicitly specify the liveness specification in our algorithm; the
liveness requirements for the synthesis is that the fault-tolerant program eventu-
ally recovers to states from where it satisfies its safety and liveness specification.

Faults. The faults that a program is subject to are systematically represented
by transitions. A fault f for a program p with state space Sp, is a subset of
the set Sp × Sp. A sequence of states, σ = 〈s0, s1, ...〉, is a computation of p in

the presence of f (denoted p[]f) iff the following three conditions are satisfied:
(1) every transition t ∈ σ is a fault or program transition; (2) if σ is finite and
terminates in sl then there exists no program transition originating at sl, and
(3) the number of fault occurrences in σ is finite.

We say that a state predicate T is an f -span (read as fault-span) of p from S
iff the following two conditions are satisfied: (1) S ⇒ T and (2) T is closed in
p[]f . Observe that for all computations of p that start at states where S is true,
T is a boundary in the state space of p up to which (but not beyond which) the
state of p may be perturbed by the occurrence of the transitions in f .

Fault-tolerance. Given a program p, its invariant, S, its specification, spec,
and a class of faults, f , we say p is masking f -tolerant for spec from S iff the
following two conditions hold: (i) p satisfies spec from S; (ii) there exists a state

Adding Fault-Tolerance Using Pre-Synthesized Components 5

predicate T such that T is an f -span of p from S, p[]f satisfies spec from T , and
every computation of p[]f that starts from a state in T has a state in S.
Program representation. We use Dijkstra’s guarded commands [12] to represent
the set of program transitions. A guarded command (action) is of the form
grd → st, where grd is a state predicate and st is a statement that updates
the program variables. The guarded command grd → st includes all program
transitions {(s0, s1) : grd holds at s0 and the atomic execution of st at s0 takes
the program to state s1}.

3 Problem Statement
In this section, we formally define the problem of adding fault-tolerance compo-
nents to a fault-intolerant program. We identify the conditions of the addition
problem by which we can verify the correctness of the synthesized fault-tolerant
program after adding fault-tolerance components.

Given a fault-intolerant program p, its state space Sp, its invariant S, its
specification spec, and a class of faults f , we add pre-synthesized fault-tolerance
components to p in order to synthesize a fault-tolerant program p′ with the new
invariant S′. When we add a fault-tolerance component to p, we also add the
variables associated with that component. As a result, we expand the state space
of p. The new state space, say Sp′ , is actually the state space of the synthesized
fault-tolerant program p′.

After the addition, we require the fault-tolerant program p′ to behave similar
to p in the absence of faults f . In the presence of faults f , p′ should satisfy mask-

ing fault-tolerance. To ensure the correctness of the synthesized fault-tolerant
program in the new state space, we need to identify the conditions that have to
be met by the synthesized program, p′. Towards this end, we define a projec-
tion from Sp′ to Sp using onto function H : Sp′ → Sp. We apply H on states,
state predicates, transitions, and groups of transitions in Sp′ to identify their
corresponding entities in Sp.

Let the invariant of the synthesized program be S ′ ⊆ Sp′ . If there exists a
state s′0 ∈ S′ where H(s′0) /∈ S then in the absence of faults p′ can start at s′0
whose image, H(s′0), is outside S. As a result, in the absence of faults, p′ will
include computations in the new state space Sp′ that do not have correspond-
ing computations in p. These new computations resemble new behaviors in the
absence of faults, which is not desirable. Therefore, we require that H(S ′) ⊆ S.
Also, if p′ contains a transition (s′0, s

′

1) in p′|S′ that does not have a correspond-
ing transition (s0, s1) in p|H(S′) (where H(s′0) = s0 and H(s′1) = s1) then p′

can take this transition and create a new way for satisfying spec in the absence
of faults. Therefore, we require that H(p′|S′) ⊆ p|H(S′). Now, we present the
problem of adding fault-tolerance components to p.

The Addition Problem.
Given p, S, spec, f , with state space Sp such that p satisfies spec from S,

Sp′ is the new state space due to adding fault-tolerance components to p,
H : Sp′ → Sp is an onto function,

Identify p′ and S′ ⊆ Sp′ such that
H(S′) ⊆ S,

6 Sandeep S. Kulkarni and Ali Ebnenasir

H(p′|S′) ⊆ p|H(S′), and
p′ is masking f -tolerant for spec from S ′. ut

4 The Synthesis Method
In this section, we present a synthesis method to solve the addition problem.
In Section 4.1, we present a high level description of our synthesis method and
express our approach for combining heuristics from [2] (cf. Section 4.2 for an
example heuristic) with pre-synthesized components. Then, in Section 4.2, we
illustrate our synthesis method using a simple example, a token ring program
with 4 processes. We use the token ring program as a running example in the
rest of the paper, where we synthesize a token ring program that is masking
fault-tolerant to process-restart faults.

4.1 Overview of Synthesis Method
Our synthesis method takes as its input a fault-intolerant program p with a set
of processes P0 · · ·Pn (n > 1), its specification spec, its invariant S, a set of
read/write restrictions r0 · · · rn and w0 · · ·wn, and a class of faults f to which
we intend to add fault-tolerance. The synthesis method outputs a fault-tolerant
program p′ and its invariant S′.

The heuristics in [2] (i) add safety to ensure that the masking fault-tolerant
program never violates its safety specification, and (ii) add recovery to ensure
that the masking fault-tolerant program never deadlocks (respectively, livelocks).
Moreover, while adding recovery transitions, it is necessary to ensure that all the
groups of transitions included along that recovery transition are safe unless it
can be guaranteed (with the help from heuristics) that those transitions cannot
be executed. Thus, adding recovery transitions from deadlock states is one of the
important issues in adding fault-tolerance. Hence, the method presented in this
paper, focuses on adding pre-synthesized components for resolving such deadlock
states, say sd.

Now, in order to resolve sd using our hybrid approach, we proceed as follows:
First, for each process Pi in the given fault-intolerant program, we introduce a
high atomicity pseudo process PSi. Initially, PSi has no action to execute, how-
ever, we allow PSi to read all program variables and write only those variables
that Pi can write. Using these special processes, we present the ResolveDeadlock
routine (cf. Figure 1) that is the core of our synthesis method. The input of
ResolveDeadlock consists of the deadlock state that needs to be resolved, sd,
and the set of high atomicity pseudo processes PSi (0 ≤ i ≤ n).

First, in Step 1, we invoke a heuristic-based routine Add Recovery to add
recovery from sd under the distribution restrictions (i.e., in the low atomic-
ity model) – where program processes have read/write restrictions with respect
to the program variables. Add Recovery explores the ability of each process
Pi to add recovery transition from sd under the distribution restrictions. If
Add Recovery fails then we will choose to add a fault-tolerance component in
Steps 2 and 3.

In Steps 2 and 3, we identify a fault-tolerance component and then add it
to p in order to resolve sd. To add a fault-tolerance component, the synthesis

Adding Fault-Tolerance Using Pre-Synthesized Components 7

algorithm should (i) specify the required component; (ii) retrieve the specified
component from a given library of components; (iii) ensure the interference free-
dom of the component and the program, and finally (iv) add the extracted
component to the program. As a result, adding a pre-synthesized component is
a costly operation. Hence, we prefer to add a component during the synthesis
only when available heuristics for adding recovery fail in Step 1.

Resolve Deadlock(sd: state, PS0, · · · , PSn: high atomicity pseudo process)
{
Step 1. If Add Recovery (sd) then return true.
Step 2. Else non-deterministically choose a PSindex, where 0 ≤ index ≤ n and PSindex

adds a high atomicity recovery action grd → st

Step 3. If (there exists a PSindex) and (there exists a detector d in the component
library that suffices to refine grd → st without interfering with the program)
then add d to the program, and return true.
else return false.

// Subsequently, we remove some transitions to make sd unreachable.
}

Fig. 1. Overview of the synthesis method.

To identify the required fault-tolerance components, we use pseudo process
PSi that can read all program variables and write wi (i.e., the set of variables
that Pi can write). In other words, we check the ability of each PSi to add high
atomicity recovery – where we have no read restrictions – from sd. If no PSi can
add recovery from sd then our algorithm fails to resolve sd. If there exist one or
more pseudo processes that add recovery from sd then we non-deterministically
choose a process PSindex with high atomicity action ac : grd → st. Since we give
PSindex the permission to read all program variables for adding recovery from
sd, the guard grd is a global state predicate that we need to refine. If there exists
a detector that can refine grd without interfering with the program execution
then we will add that detector to the program. (The discussion about how to
specify the required detector d and how to add d to the fault-intolerant program
is in Sections 5 and 6.)

In cases where Resolve Deadlock returns false, we remove some transitions
to make sd unreachable. If we fail to make sd unreachable then we will declare
failure in the synthesis of the masking fault-tolerant program p′. Observe that
by using pre-synthesized components, we increase the chance of adding recovery
from sd, and as a result, we reduce the chance of reaching a point where we
declare failure to synthesize a fault-tolerant program.

4.2 Token Ring Example
Using our synthesis method (cf. Figure 1), we synthesize a token ring program
that is masking fault-tolerant for the case where all processes are corrupted.
The token ring program. The fault-intolerant program consists of four pro-
cesses P0, P1, P2, and P3 arranged in a ring. Each process Pi has a variable xi

(0 ≤ i ≤ 3) with the domain {⊥, 0, 1}. Due to distribution restrictions, process
Pi can read xi and xi−1 and can only write xi (1 ≤ i ≤ 3). P0 can read x0 and
x3 and can only write x0. We say, a process Pi (1 ≤ i ≤ 3) has the token iff

8 Sandeep S. Kulkarni and Ali Ebnenasir

xi 6= xi−1 and fault transitions have not corrupted Pi and Pi−1. And, P0 has the
token iff x3 =x0 and fault transitions have not corrupted P0 and P3. A process
Pi (1 ≤ i ≤ 3) copies xi−1 to xi if the value of xi is different from xi−1. Also, if
x0 =x3 then process P0 copies the value of (x3 ⊕ 1) to x0, where ⊕ is addition
in modulo 2. This way, a process passes the token to the next process.

We denote a state s of the token ring program by a 4-tuple 〈x0, x1, x2, x3〉.
Each element of the 4-tuple 〈x0, x1, x2, x3〉 represents the value of xi in s (0 ≤
i ≤ 3). Thus, if we start from initial state 〈0, 0, 0, 0〉 then process P0 has the
token and the token circulates along the ring. We represent the transitions of
the fault-intolerant program TR by the following actions (1 ≤ i ≤ 3).

TR0 : (x0 = 1) ∧ (x3 = 1) −→ x0 := 0;
TR′

0 : (x0 = 0) ∧ (x3 = 0) −→ x0 := 1;
TRi : (xi = 0) ∧ (xi−1 = 1) −→ xi := 1;
TR′

i : (xi = 1) ∧ (xi−1 = 0) −→ xi := 0;

Faults. Faults can restart a process Pi. Thus, the value of xi becomes unknown.
We use ⊥ to model the unknown value of xi.
Specification. The problem specification requires that the corrupted value of
one process does not affect a non-corrupted process, and there is only one process
that has the token.
Invariant. The invariant of the above program includes states 〈0, 0, 0, 0〉,
〈1, 0, 0, 0〉, 〈1, 1, 0, 0〉, 〈1, 1, 1, 0〉, 〈1, 1, 1, 1〉, 〈0, 1, 1, 1〉, 〈0, 0, 1, 1〉, and 〈0, 0, 0, 1〉.
A heuristic for adding recovery. In the presence of faults, the program TR
may reach states where there exists at least a process Pi (0 ≤ i ≤ 3) whose xi

is corrupted (i.e., xi = ⊥). In such cases, processes Pi and P((i+1) mod 4) cannot
take any transition, and as a result, the propagation of the token stops (i.e., the
whole program deadlocks).

In order to recover from the states where there exist some corrupted pro-
cesses, we apply the heuristic for single-step recovery from [2] in an iterative
fashion. Specifically, we identify states from where single-step recovery to a set
of states RecoverySet is possible. The initial value of RecoverySet is equal to the
program invariant. At each iteration, we include a set of states in RecoverySet
from where single-step recovery to RecoverySet is possible.

In the first iteration, we search for deadlock states where there is only one
corrupted process in the ring. For example, consider a state s0 = 〈1,⊥, 1, 0〉. In
the state s0, P1 and P2 cannot take any transitions. However, P3 can copy the
value of x2 and reach s2 = 〈1,⊥, 1, 1〉. Subsequently, P0 changes x0 to 0, and as
a result, the program reaches state s3 = 〈0,⊥, 1, 1〉. The state s3 is a deadlock
state since no process can take any transition at s3. To add recovery from s3, we
allow P1 to correct itself by copying the value of x0, which is equal to 0. Thus,
by copying the value of x0, P1 adds a recovery transition to an invariant state
〈0, 0, 1, 1〉. Therefore, we include s3 in the set of states RecoverySet in the first
iteration. Note that this recovery transition is added in low atomicity in that all
the transitions included in action (x0 = 0)∧(x1 = ⊥) → x1 := 0 can be included
in the fault-tolerant program without violating safety.

In the second and third iterations, we follow the same approach and add
recovery from states where there are two or three corrupted processes to states

Adding Fault-Tolerance Using Pre-Synthesized Components 9

that we have already resolved in the previous iterations. Adding recovery up to
the fourth iteration of our heuristic results in the intermediate program ITR
(1 ≤ i ≤ 3).

ITR0 : ((x0 = 1) ∨ (x0 = ⊥)) ∧ (x3 = 1) −→ x0 := 0;
ITR′

0 : ((x0 = 0) ∨ (x0 = ⊥)) ∧ (x3 = 0) −→ x0 := 1;
ITRi : ((xi = 0) ∨ (xi = ⊥)) ∧ (xi−1 = 1) −→ xi := 1;
ITR′

i : ((xi = 1) ∨ (xi = ⊥)) ∧ (xi−1 = 0) −→ xi := 0;

Using above heuristic, we can only add recovery from the states where there
exists at least one uncorrupted process. If there exists at least one uncorrupted
process Pj (0 ≤ j ≤ 3) then P((j+1) mod 4) will initiate the token circulation
throughout the ring, and as a result, the program recovers to its invariant.
However, in the fourth iteration of the above heuristic, we reach a point where
we need to add recovery from the state where all processes are corrupted; i.e.,
sd = 〈⊥,⊥,⊥,⊥〉. In such a state, the program ITR deadlocks as an action of
the form (x0 = ⊥)∧ (x1 = ⊥) → x1 := 0 cannot be included in the fault-tolerant
program. Such an action can violate safety if x2 and x3 are not corrupted. In fact,
no process can add safe recovery from sd in low atomicity. Thus, Add Recovery
returns false for 〈⊥,⊥,⊥,⊥〉.

Adding the actions of the high atomicity pseudo process. In order to add
masking fault-tolerance to the program ITR, a process Pindex (0 ≤ index ≤ 3)
should set its x value to 0 (respectively, 1) when all processes are corrupted.
Hence, we follow our synthesis method (cf. Figure 1), where the pseudo process
PS0 takes the high atomicity action HTR and recovers from sd. Thus, the actions
of the masking program MTR are as follows (1 ≤ i ≤ 3).

MTR0 : ((x0 = 1) ∨ (x0 = ⊥)) ∧ (x3 = 1) −→ x0 := 0;
MTR′

0 : ((x0 = 0) ∨ (x0 = ⊥)) ∧ (x3 = 0) −→ x0 := 1;
MTRi : ((xi = 0) ∨ (xi = ⊥)) ∧ (xi−1 = 1) −→ xi := 1;
MTR′

i : ((xi = 1) ∨ (xi = ⊥)) ∧ (xi−1 = 0) −→ xi := 0;
HTR : (x0 = ⊥) ∧ (x1 = ⊥) ∧ (x2 = ⊥) ∧ (x3 = ⊥) −→ x0 := 0;

In order to refine the high atomicity action HTR, we need to add a detector
that detects the state predicate (x0 = ⊥) ∧ (x1 = ⊥) ∧ (x2 = ⊥) ∧ (x3 = ⊥).
In Section 5, we describe the specification of fault-tolerance components, and we
show how we use a distributed detector to refine high atomicity actions.

Remark. Had we non-deterministically chosen to use PSi (i 6= 0) as the process
that adds the high atomicity recovery action then the high atomicity action
HTR would have been different in that HTR would write xi. (We refer the
reader to [13] for a discussion about this issue.)

5 Specifying Pre-Synthesized Components

In this section, we describe the specification of fault-tolerance components (i.e.,
detectors and correctors). Specifically, we concentrate on detectors and we con-
sider a special subclass of correctors where a corrector consists of a detector and
a write action on the local variables of a single process.

10 Sandeep S. Kulkarni and Ali Ebnenasir

5.1 The Specification of Detectors
We recall the specification of a detector component presented in [10,14]. Towards
this end, we describe detection predicates, and witness predicates. A detector,
say d, identifies whether or not a global state predicate, X , holds. The global
state predicate X is called a detection predicate in the global state space of a
distributed program [10,14].

It is often difficult to evaluate the truth value of X in an atomic action.
Thus, we (i) decompose the detection predicate X into a set of smaller detection
predicates X0 · · ·Xn where the compositional detection of X0 · · ·Xn leads us to
the detection of X , and (ii) provide a state predicate, say Z, whose value leads
the detector to the conclusion that X holds. Since when Z becomes true its value
witnesses that X is true, we call Z a witness predicate. If Z holds then X will
have to hold as well. If X holds then Z will eventually hold and continuously
remain true. Hence, corresponding to each detection predicate Xi, we identify a
witness predicate Zi such that if Zi is true then Xi will be true.

The detection predicate X is either the conjunction of Xi (0 ≤ i ≤ n) or the
disjunction of Xi. Since the detection predicates that we encounter represent
deadlock states, they are inherently in conjunctive form where each conjunct
represents the valuation to program variables at some process. Hence, in the
rest of the paper, we consider the case where X is a conjunction of Xi, for
0 ≤ i ≤ n.
Specification. Let X and Z be state predicates. Let ‘Z detects X ’ be the
problem specification. Then, ‘Z detects X ’ stipulates that

– (Safety) When Z holds, X must hold as well.
– (Liveness) When the predicate X holds and continuously remains true, Z

will eventually hold and continuously remain true. ut

We represent the safety specification of a detector as a set of transitions that
a detector is not allowed to take. Thus, the following set of transitions represents
the safety specification of a detector.

specd = {(s0, s1) : (Z(s1) ∧ ¬X(s1))}

Notation. The predicate Z(s1) denotes the truth value of Z at state s1.

5.2 The Representation of Detectors
In this section, we describe how we formally represent a distributed detector.
While our method allows one to use detectors of different topologies (cf. Section
6.1), in this section, we comprehensively describe the representation of a linear
(sequential) detector as such a detector will be used in our token ring example.
The composition of detectors. A detector, say d, with the detection pred-
icate X ≡ X0 ∧ . . . ∧ Xn is obtained by composing di, 0 ≤ i ≤ n, where di is
responsible for the detection of Xi using a witness predicate Zi (0 ≤ i ≤ n). The
elements of d can execute in parallel or in sequence. More specifically, parallel
detection of X requires d0 · · · dn to execute concurrently. As a result, the state
predicate (Z0 ∧ · · · ∧ Zn) is the witness predicate for detecting X .

A sequential detector requires the detectors d0 · · · dn to execute one after
another. For example, given a linear arrangement dn · · · d0, a detector di (0 ≤

Adding Fault-Tolerance Using Pre-Synthesized Components 11

i < n) detects its detection predicate, using Zi, after di+1 witnesses. Thus, when
Zi becomes true, it shows that Zi+1 already holds. Since when Zi becomes true

Xi must be also true, it follows that the detection predicates Xn · · ·Xi hold.
Therefore, we can atomically check the witness predicate Z0 in order to identify
whether or not X ≡ (Xn ∧ · · · ∧ X0) holds.

The detection of global state predicates of programs that have a hierarchical
topology (e.g., tree-like structures) requires parallel and sequential detectors. For
brevity, we demonstrate our method in the context of a linear detector. As such
a detector suffices for the example considered in this paper, we refer the reader
to [7] for an illustration of this method for hierarchical components.
A linear detector. We consider a detector d with linear topology. The detec-
tor d consists of n+1 elements (n > 0), its specification specd, its variables, and
its invariant U . Since the structure of the detector is linear, without loss of gen-
erality, we consider an arrangement dn · · · d0 for the elements of the distributed
detector, where the left-most element is dn and the right-most element is d0.
Component variables. Each element di, 0 ≤ i ≤ n, of the detector has a
Boolean variable yi.
Read/write restrictions. Element di can read yi and yi+1, and can only write
yi (0 ≤ i < n). dn reads and writes yn. Also, di is allowed to read ri; i.e., the set
of variables that are readable for a process Pi with which di is composed.
Witness predicates. The witness predicate of each di, say Zi, is equal to
(yi = true).
The detector actions. The actions of the linear detector are as follows (0 ≤
i < n).

DAn : (LCn) ∧ (yn = false) −→ yn := true;
DAi : (LCi) ∧ (yi = false) ∧ (yi+1 = true) −→ yi := true;

Using action DAi (0 ≤ i < n), each element di of the linear detector witnesses
(i.e., sets the value of yi to true) whenever (i) the condition LCi becomes true,
where LCi represents a local condition that di atomically checks (by reading the
variables of Pi), and (ii) its neighbor di+1 has already witnessed. The detector
dn witnesses (using action DAn) when LCn becomes true.
Detection predicates. The detection predicate Xi for element di is equal to
(LCn ∧ · · · ∧ LCi) (0 ≤ i ≤ n). Therefore, d0 detects the global detection
predicate LCn ∧ · · · ∧ LC0.
Invariant. During the detection, when an element di sets yi to true, the el-
ements dj , for i < j ≤ n, have already set their y values to true. Hence, we
represent the invariant of the linear detector by the predicate U , where

U = {s : (∀i : (0 ≤ i ≤ n) : (yi(s) ⇒ (∀j : (0 ≤ j ≤ n) ∧ (j > i) : LCj))}

Faults. We model the fault transitions that affect the linear detector using
the following action (cf. Section 7 for a discussion about the way that we have
modeled the faults).

F : true −→ yi := false;

Theorem 5.1 The linear detector is masking F -tolerant for ‘Z detects X ’ from
U . (cf. [13] for proof.) ut

12 Sandeep S. Kulkarni and Ali Ebnenasir

5.3 Token Ring Example Continued
In Section 4.2, we added the following high atomicity action to the token ring
program ITR that is executed by the pseudo process PS0.

HTR : (x0 = ⊥) ∧ (x1 = ⊥) ∧ (x2 = ⊥) ∧ (x3 = ⊥) −→ x0 := 0

In order to synthesize a distributed program (that includes low atomicity
actions), we need to refine the guard of the above action. The read/write restric-
tions of the processes in the token ring program identify the underlying communi-
cation topology of the fault-intolerant program, which is a ring. Hence, we select
a linear detector, d, so that we can organize its elements, d3, d2, d1, d0, in the ring.
Each detector di is responsible to detect whether or not the local conditions LC3

to LCi hold (LCi ≡ (xi = ⊥)), for 0 ≤ i ≤ 3. Thus, the detection predicate Xi is
equal to ((x3 = ⊥)∧· · ·∧(xi = ⊥)), for 0 ≤ i ≤ 3. As a result, the global detection
predicate of the linear detector is ((x3 = ⊥)∧ (x2 = ⊥) ∧ (x1 = ⊥) ∧ (x0 = ⊥)).
The witness predicate of each di, say Zi, is equal to (yi = true), and the actions
of the sequential detector are as follows (0 ≤ i ≤ 2).

DA3 : (x3 = ⊥) ∧ (y3 = false) −→ y3 := true;
DAi : (xi = ⊥) ∧ (yi = false) ∧ (yi+1 = true) −→ yi := true;

Note that we replace (LCi) with (xi = ⊥) in the above actions. During
the synthesis, after the synthesis algorithm acquires the actions of its required
component, it replaces each (LCi) with the appropriate condition in order to
create the transition groups corresponding to each action of the component.

6 Using Pre-Synthesized Components
In this section, we describe how we perform the second and the third step of our
synthesis method presented in Figure 1. In particular, in Section 6.1, we show
how we automatically specify the required components during the synthesis.
Then, in Section 6.3, we show how we ensure that no interference exists between
the program and the fault-tolerance component. Afterwards, we present an algo-
rithm for the addition of fault-tolerance components. In Sections 6.2 and 6.4, we
respectively present the algorithmic specification and the algorithmic addition
of a linear detector to the token ring program.

6.1 Algorithmic Specification of the Fault-Tolerance Components
We present the Component Specification algorithm (cf. Figure 2) that takes a
deadlock state sd, the distribution restrictions (i.e., the read/write restrictions)
of the program being synthesized, and the set of high atomicity pseudo processes
PSi (0 ≤ i ≤ n). First, the algorithm searches for a high atomicity process
PSindex that is able to add a high atomicity recovery action, ac : grd → st, from
sd to a state in the state predicate Srec, where Srec represents the set of states
from where there exists a safe recovery path to the invariant. Also, we verify the
closure of Srec ∪ sd in the computations of p[]f . If there exists such a process
PSindex then the algorithm returns a triple 〈X, R, index〉, where (i) X is the
detection predicate that should be refined in the refinement of the action ac; (ii)
R is a relation that represents the topology of the program, and (iii) the index
is an integer that identifies the process that should detect grd and execute st.

The Component Specification algorithm constructs the state predicate X us-
ing the LCi conditions. Each LCi condition is by itself a conjunction that consists

Adding Fault-Tolerance Using Pre-Synthesized Components 13

of the program variables readable for process Pi. Therefore, the predicate X will
be the conjunction of LCi conditions (0 ≤ i ≤ n).

The relation R ⊆ (P × P) identifies the communication topology of the
distributed program, where P is the set of program processes. We represent R
by a finite set {〈i, j〉 : (0 ≤ i ≤ n) ∧ (0 ≤ j ≤ n) : wi ⊆ rj} that we create using
the read/write restrictions among the processes. The presence of a pair 〈i, j〉 in
R shows that there exists a communication link between Pi and Pj . Since we
internally represent R by an undirected graph, we consider the pair 〈i, j〉 as an
unordered pair.

The interface of the fault-tolerance components. The format of the inter-
face of each component is the same as the output of the Component Specification

algorithm, which is a triple 〈X, R, index〉 as described above. We use this in-
terface to extract a component from the component library using a pattern-
matching algorithm. Towards this end, we use existing specification-matching
techniques [15]. For reasons of space, we omit the details of the component ex-
traction from the library of components.

Component Specification(sd: state, Srec: state predicate, PS0, · · · , PSn: high atomicity
pseudo process, spec: safety specification, r0, · · · , rn: read restrictions,

w0, · · · , wn: write restrictions)
{ // n is the number of processes.
if (∃index : 0 ≤ index ≤ n : (∃s : s ∈ Srec : (sd, s) ∈ PSindex ∧

((sd, s) does not violate spec) ∧ (∀x : (x(sd) 6= x(s)) : x ∈ windex)))
then X := ∧n

i=0
(LCi), where LCi = (∧|ri|(x = x(sd)));

R = {〈i, j〉 : (0 ≤ i ≤ n) ∧ (0 ≤ j ≤ n) : wi ⊆ rj};
return X , R, index;

else return false, ∅, -1;
}

Fig. 2. Automatic specification of a component.

The output of the component library. Given the interface 〈X, R, index〉 of
a required component, the component library returns the witness predicate, Z,
the invariant, U , and the set of transition groups, gd0 ∪ · · · ∪ gdk ∪ gindex, of the
pre-synthesized component (k ≥ 0). The group of transitions gindex represents
the low atomicity write action that should be executed by process Pindex.

Complexity. Since the algorithm Component Specification checks the possibil-
ity of adding a high atomicity recovery action to each state of Srec, its complexity
is polynomial in the number of states of Srec.

6.2 Token Ring Example Continued

We trace the algorithm of Figure 2 for the case of token ring program. First, we
non-deterministically identify PS0 as the process that can read every program
variable and can add a high atomicity recovery transition from the deadlock
state sd = 〈⊥,⊥,⊥,⊥〉. Thus, the value of index will be equal to 0. Second, we
construct the detection predicate X , where X ≡ ((x0 = ⊥) ∧ (x1 = ⊥) ∧ (x2 =
⊥)∧ (x3 = ⊥)). Finally, using the read/write restrictions of the processes in the
token ring program, the relation R will be equal to {〈0, 1〉, 〈1, 2〉, 〈2, 3〉, 〈3, 0〉}.

14 Sandeep S. Kulkarni and Ali Ebnenasir

6.3 Algorithmic Addition of The Fault-Tolerance Components

In this section, we present an algorithm for adding a fault-tolerance component
to a fault-intolerant distributed program to resolve a deadlock state sd. Before
the addition, we ensure that no interference exists between the program and the
fault-tolerance component; i.e., the execution of one of them does not violate
the (safety or liveness) specification of the other one. We show that our addition
algorithm is sound; i.e., the synthesized program satisfies the requirement of the
addition problem (cf. Section 3).

We represent the transitions of p by the union of its groups of transitions (i.e.,
∪m

i=0gi). We also assume that we have extracted the required pre-synthesized
component, c, as described in Section 6.1. The component c consists of a detector
d that includes a set of transition groups ∪k

i=0gdi, and the write action of the
pseudo process PSindex represented by a group of transitions gindex in the low
atomicity.

The state space of the composition of p and d is the new state space Sp′ . We
introduce an onto function H1 : Sp′ → Sp (respectively, H2 : Sp′ → Sd) that
maps the states in the new state space Sp′ to the states in the old state space Sp

(respectively, Sd where Sd is the state space of the detector d). Now, we show
how we verify the interference-freedom of the composition of c and p.

Interference-freedom. In order to ensure that no interference exists between p
and c, we have to ensure the following three conditions hold in the new state space
Sp′ : (i) transitions of p do not interfere with the execution of d; (ii) transitions
of d do not interfere with the execution of p, and (iii) the low atomicity write
action associated with c does not interfere with the execution of p and d.

First, we ensure that the set of transitions of p do not interfere with the
execution of d by constructing the set of groups of transitions I1, where I1

contains those groups of transitions in the new state space Sp′ that violate either
the safety of d or the closure of its invariant U .

I1 = {g : (∃gj : (gj ∈ p) ∧ (0 ≤ j ≤ m) : (H1(g) = gj) ∧
(∃(s′0, s

′

1) : (s′0, s
′

1) ∈ g : ((s′0, s
′

1) violates specd)∨
(H2(s

′

0) ∈ U ∧ H2(s
′

1) /∈ U))}

The transitions of p do not interfere with the liveness of d because d need
not execute when p is not in the deadlock state sd. Thus, p does not affect the
liveness of d. Hence, we are only concerned with the safety of the detector d
and the closure of U . When we map the transitions of p to the new state space,
the mapped transitions should preserve the safety of d. Moreover, if the image
of a transition (s′0, s

′

1) starts in U (i.e., H2(s
′

0) ∈ U) then the image of (s′0, s
′

1)
will have to end in U (i.e., H2(s

′

1) ∈ U). The emptiness of I1 shows that the
transitions of p do not interfere with the execution of d.

Likewise, we construct the set of groups of transitions I2 and I3 in the new
state space Sp′ to verify the second and the third conditions of interference-
freedom. Since I2 and I3 are structurally similar to I1, we skip their presentation
(cf. [13] for details). Thus, if I1, I2, and I3 are empty then we declare that no
interference will happen due to the addition of c to p.

Adding Fault-Tolerance Using Pre-Synthesized Components 15

Addition. We present the Add Component algorithm for an interference-free
addition of the fault-tolerance component c to p. In the new state space Sp′ ,
we construct a set of transition groups pH1

(respectively, dH2
) that includes

all groups of transitions, g, whose images in Sp (respectively, Sd) belong to p
(respectively, d). Besides, no transition of (s′0, s

′

1) ∈ g violates the safety specifi-
cation of d (respectively, p) or the closure of the invariant of d (respectively, p),
i.e., U (respectively, S). Note that in the set dH2

, the image of every group g in
d and p must belong to the same process.

Add Component(S, Srec, U : state predicate, H1, H2: onto mapping function,
spec, specd: safety specification, g0, · · · , gm, gd0, · · · , gdk, gindex: groups of transitions)

{ // p = g0 ∪ · · · ∪ gm, and d = gd0 ∪ · · · ∪ gdk ∪ gindex

// P0 · · ·Pn are the processes of p, and d0 · · · dn are the elements of d

pH1
= {g : (∃gj : (gj ∈ p) ∧ (0 ≤ j ≤ m) : (H1(g) = gj) ∧

(∀(s′

0
, s′

1
) : (s′

0
, s′

1
) ∈ g : ((s′

0
, s′

1
) does not violate specd) ∧ (H2(s

′

0
) ∈ U ⇒ H2(s

′

1
) ∈ U))}

dH2
= {gd : (∃gdj : (gdj ∈ d) ∧ (0 ≤ j ≤ k) : (H2(gd) = gdj) ∧

(∃di, Pl : (0 ≤ i ≤ n) ∧ (0 ≤ l ≤ n) : (H2(gd) ∈ di) ∧ (H1(gd) ∈ Pl) ∧ (l = i)) ∧
(∀(s′

0
, s′

1
) : (s′

0
, s′

1
) ∈ gd : ((s′

0
, s′

1
) does not violate spec) ∧ (H1(s

′

0
) ∈ S ⇒ H1(s

′

1
) ∈ S))}

pc := {g : (H2(g) = gindex) ∧ (∀(s′

0
, s′

1
) : (s′

0
, s′

1
) ∈ g : ((s′

0
, s′

1
) does not violate spec)∧

(H1(s
′

1
) ∈ Srec) ∧ (H2(s

′

0
) ∈ U ⇒ H2(s

′

1
) ∈ U) ∧ ((s′

0
, s′

1
) does not violate specd))}

S′ := {s : s ∈ Sp′ : H1(s) ∈ S ∧ H2(s) ∈ U}
p′ := pH1

∪ dH2
∪ pc;

return p′, S′;
}

Fig. 3. The automatic addition of a component.

The set pc includes all groups of transitions, g, whose every transition has
an image in gindex under the mapping H2. Further, no transition (s′0, s

′

1) ∈ g
violates the safety of spec or the closure of S.

The set of states of the invariant of the synthesized program, S ′, consists of
those states whose images in Sp belong to the program invariant S and whose
images in the state space of the detector, Sd, belong to the detector invariant U .
Theorem 6.1 The algorithm Add Component is sound. (cf. [13] for proof.) ut
Theorem 6.2 The complexity of Add Component is polynomial in Sp′ . (cf. [13]
for proof.) ut

6.4 Token Ring Example Continued
Using Add Component, we add the detector specified in Section 6.2 to the token
ring program MTR introduced in Section 4.2. The resulting program, consisting
of the processes P0 · · ·P3 arranged in a ring, is masking fault-tolerant to process-
restart faults. We represent the transitions of P0 by the following actions.

MTR0 : ((x0 = 1) ∨ (x0 = ⊥)) ∧ (x3 = 1) −→ x0 := 0;
MTR′

0 : ((x0 = 0) ∨ (x0 = ⊥)) ∧ (x3 = 0) −→ x0 := 1;
D0 : (x0 = ⊥) ∧ (y0 = false) ∧ (y1 = true) −→ y0 := true;
C0 : (y0 = true) −→ x0 := 0; y0 := false;

The actions MTR0 and MTR′

0 are the same as the actions of the MTR pro-
gram presented in Section 4.2. The action D0 belongs to the sequential detector

16 Sandeep S. Kulkarni and Ali Ebnenasir

that sets the witness predicate Z0 to true. The action C0 is the recovery action
that P0 executes whenever the witness predicate (y0 = true) becomes true. Now,
we present the actions of P3.

MTR3 : ((x3 = 0) ∨ (x3 = ⊥)) ∧ (x2 = 1) −→ x3 := 1; y3 := false;
MTR′

3 : ((x3 = 1) ∨ (x3 = ⊥)) ∧ (x2 = 0) −→ x3 := 0; y3 := false;
D3 : (x3 = ⊥) ∧ (y3 = false) −→ y3 := true;

The action D3 belongs to the detector d3 that sets Z3 to true. We represent
the transitions of P1 and P2 as the following parameterized actions (for i = 1, 2).

MTRi : ((xi = 0) ∨ (xi = ⊥)) ∧ (xi−1 = 1) −→ xi := 1; yi := false;
MTR′

i : ((xi = 1) ∨ (xi = ⊥)) ∧ (xi−1 = 0) −→ xi := 0; yi := false;
Di : (xi = ⊥) ∧ (yi = false) ∧ (yi+1 = true) −→ yi := true;

The above program is masking fault-tolerant for the faults that corrupt one
or more processes. Note that when a process Pi (1 ≤ i ≤ 3) changes the value
of xi to a non-corrupted value, it falsifies Zi (i.e., yi). The falsification of Zi

is important during the recovery from sd = 〈⊥,⊥,⊥,⊥〉 in that when xi takes
a non-corrupted value, the detection predicate Xi no longer holds. Thus, if Zi

remains true then the detector di witnesses incorrectly, and as a result, violates
the safety of the detector. However, P0 does not need to falsify its witness predi-
cate Z0 in actions MTR0 and MTR′

0 because the action C0 has already falsified
Z0 during a recovery from sd.

7 Discussion
In this section, we address some of the questions raised by our synthesis method.
Specifically, we discuss the following issues: the model of faults considered in
this paper, the fault-tolerance of the components, the choice of detectors and
correctors, and pre-synthesized components with non-linear topologies.
Does the fault model used in this paper enable us to capture different types of

faults?

Yes. The notion of state perturbation is general enough to model different
types of faults (namely, stuck-at, crash, fail-stop, omission, timing, or Byzantine)
with different natures (intermittent, transient, and permanent faults). As an
illustration, we modeled the process-restart faults that affect the token ring
program, presented in this paper, by state perturbation. This model has also been
used in designing fault-tolerance to (i) fail-stop, omission faults (e.g., [9]), (ii)
transient faults and improper initialization (e.g., [16]), and (iii) input corruption
(e.g., [9]).
Can the synthesis method deal with the faults that affect the fault-tolerance com-

ponents?

Yes. The added component may itself be perturbed by the fault to which
fault-tolerance is added. Hence, the added component must itself be fault-tolerant.
For example, in our token ring program, we modeled the effect of the process
restart on the added component and ensured that the component is fault-tolerant
to that fault (cf. Theorem 5.1). For the fault-classes that are commonly used, e.g.,
process failure, process restart, input corruption, Byzantine faults, such model-
ing is always possible. For arbitrary fault-classes, however, some validation may
be required to ensure that the modeling is appropriate for that fault.

Adding Fault-Tolerance Using Pre-Synthesized Components 17

How does the choice of detectors and correctors help in the synthesis of fault-

tolerant programs?

While there are several approaches (e.g., [17]) that manually transform a
fault-intolerant program into a fault-tolerant program, we use detectors and cor-
rectors in this paper, based on their necessity and sufficiency for manual addition
of fault-tolerance [5]. The authors of [5] have also shown that detectors and cor-
rectors are abstract enough to generalize other components (e.g., comparators
and voters used in replication-based approaches) for the design of fault-tolerant
programs. Hence, we expect that the synthesis method in this paper can benefit
from the generality of detectors and correctors in the automated synthesis of
fault-tolerant programs as there is a potential to provide a rich library of fault-
tolerance components. Moreover, pre-synthesized detectors provide the kind of
abstraction by which we can integrate efficient existing detections approaches
(e.g., [18, 19]) in pre-synthesized fault-tolerance components.
Does the synthesis method support pre-synthesized components with non-linear

topologies?

Yes. Using the synthesis method of this paper, we have added presynthesized
components with tree-like structure to a diffusing computation program [7] where
we synthesize a program that is fault-tolerant to the faults that perturb the state
of the diffusing computation and the program topology.

8 Conclusion and Future Work
In this paper, we identified an approach for the synthesis of fault-tolerant pro-
grams from their fault-intolerant versions using pre-synthesized fault-tolerance
components. Our approach differs from the synthesis method presented in [20]
where one has to synthesize a fault-tolerant program from its temporal logic
specification. Specifically, we demonstrated a hybrid synthesis method that com-
bines heuristics presented in [2–4] with pre-synthesized detectors and correctors.
We presented a sound algorithm for automatic specification and addition of
pre-synthesized detectors/correctors to a distributed program. We showed how
one could verify the interference-freedom of the fault-intolerant program and
the added components. Using our synthesis algorithm, we showed how mask-
ing fault-tolerance is added to a token-ring program where all processes may
be corrupted. By contrast, the previous synthesis algorithms fail to synthesize a
fault-tolerant program when all processes are corrupted.

We also extended the problem of adding fault-tolerance to the case where
new variables can be introduced while synthesizing fault-tolerant programs. By
contrast, previous algorithms required that the state space of the fault-tolerant
program is the same as that of the fault-intolerant program. Moreover, our syn-
thesis method controls the way new variables are introduced; new variables are
determined based on the added components. Hence, the synthesis method con-
trols the way in which the state space is expanded.

References

1. S. S. Kulkarni and A. Arora. Automating the addition of fault-tolerance. Formal
Techniques in Real-Time and Fault-Tolerant Systems, page 82, 2000.

18 Sandeep S. Kulkarni and Ali Ebnenasir

2. S. S. Kulkarni, A. Arora, and A. Chippada. Polynomial time synthesis of byzantine
agreement. Symposium on Reliable Distributed Systems, 2001.

3. S. S. Kulkarni and A. Ebnenasir. The complexity of adding failsafe fault-tolerance.
International Conference on Distributed Computing Systems, pages 337–334, 2002.

4. S. S. Kulkarni and A. Ebnenasir. Enhancing the fault-tolerance of nonmasking
programs. International Conference on Distributed Computing Systems, pages 441–
450, 2003.

5. S. S. Kulkarni. Component-based design of fault-tolerance. PhD thesis, Ohio State
University, 1999.

6. Ali Ebnenasir and Sandeep S. Kulkarni. FTSyn: A framework for automatic syn-
thesis of fault-tolerance. http://www.cse.msu.edu/~ebnenasi/research/tools/

ftsyn.htm.
7. Ali Ebnenasir and S.S. Kulkarni. Hierarchical presynthesized components for au-

tomatic addition of fault-tolerance: A case study. In the extended abstracts of the
ACM workshop on the Specification and Verification of Component-Based Systems
(SAVCBS), Newport Beach, California, 2004.

8. B. Alpern and F. B. Schneider. Defining liveness. Information Processing Letters,
21:181–185, 1985.

9. A. Arora and M. G. Gouda. Closure and convergence: A foundation of fault-
tolerant computing. IEEE Transactions on Software Engineering, 19(11):1015–
1027, 1993.

10. A. Arora and S. S. Kulkarni. Detectors and correctors: A theory of fault-tolerance
components. International Conference on Distributed Computing Systems, pages
436–443, May 1998.

11. P. Attie and A. Emerson. Synthesis of concurrent programs for an atomic
read/write model of computation. ACM TOPLAS (a preliminary version of this
paper appeared in PODC96), 23(2), March 2001.

12. E. W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1990.
13. S. S. Kulkarni and Ali Ebnenasir. Adding fault-tolerance using pre-synthesized

components. Technical report MSU-CSE-03-28, Department of Computer Sci-
ence, Michigan State University, East Lansing, Michigan, USA. A revised
version is available at http: // www. cse. msu. edu/ ~sandeep/ auto_ component_

techreport. ps , 2003.
14. A. Arora and S. S. Kulkarni. Component based design of multi-tolerant systems.

IEEE Transactions on Software Engineering, 1998.
15. A. Moormann Zaremski and J.M. Wing. Specification matching of software com-

ponents. in proceedings of the 3 rd ACM SIGSOFT Symposium on the Foundations
of Software Engineering, 1995.

16. E. W. Dijkstra. Self-stabilizing systems in spite of distributed control. Communi-
cations of the ACM, 1974.

17. Z. Liu and M. Joseph. Transformations of programs for fault-tolerance. Formal
Aspects of Computing, 1992.

18. A.I. Tomlinson and V.K. Garg. Detecting relational global predicates in distributed
systems. In proceedings of the ACM/ONR Workshop on Parallel and Distributed
Debugging, San Diego, California., pages 21–31, May 1993.

19. Neeraj Mittal. Techniques for Analyzing Distributed Computations. PhD thesis,
The University of Texas at Austin, 2002.

20. A. Arora, P. C. Attie, and E. A. Emerson. Synthesis of fault-tolerant concurrent
programs. Proceedings of the 17th ACM Symposium on Principles of Distributed
Computing (PODC), 1998.

