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Abstract
In order to facilitate incremental modeling and analysis

of fault-tolerant embedded systems, we introduce an object
analysis pattern, called the detector pattern, that provides
a reusable strategy for capturing the requirements of fail-
safe fault-tolerance in an existing conceptual model, where
a failsafe system satisfies its safety requirements even when
faults occur. We also present a method that (i) uses the de-
tector pattern to help create a behavioral model of a fail-
safe fault-tolerant system in UML, (ii) generates and model
checks formal models of UML state diagrams of the fault-
tolerant system, and (iii) visualizes the model checking re-
sults in terms of the UML diagrams to facilitate model re-
finement. We demonstrate our analysis method in the con-
text of an industrial automotive application.

Keywords: Requirements Analysis, Fault-Tolerance,
Formal Methods, Detector, UML

1 Introduction
The complexity of developing fault-tolerant systems is,

in part, due to the crosscutting and evolving nature of fault-
tolerance requirements. Since it is difficult to anticipate all
types of faults2 at early stages of development, it is better to
have techniques that enable existing analysis artifacts to be
revised once a new type of fault is detected. Such a revision
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2A fault-type is a representation of the hypothesized cause of an error.
An error is characterized by a (set of) state(s) from where failures may
occur. A failure is a behavioral deviation from system specifications [4].

would potentially crosscut all components of the concep-
tual model of an existing system. As such, developers need
rigorous techniques and reusable artifacts for adding fault-
tolerance concerns to conceptual models. This paper in-
troduces a pattern-based approach for adding failsafe fault-
tolerance to an existing conceptual model (in UML [7]),
where a failsafe fault-tolerant system is expected to meet
its safety requirements even when faults occur.

Numerous approaches exist to support fault-tolerance
[1,5,14,30,32,33] and to analyze system safety in the pres-
ence of failures [6, 23, 27], most of which (i) rely on a spe-
cific fault-tolerance design/implementation mechanism; (ii)
do not emphasize on reuse in analysis phases, and (iii) lack
sufficient support for formal analysis of the potential inter-
ferences between fault-tolerance and functional concerns.
For example, Saridakis [32] presents a set of design patterns
based on existing recovery mechanisms [14,30]. Bondavalli
et al. [6] translate UML structural and behavioral diagrams
to Stochastic Petri Nets in order to provide quantitative pre-
dictions for system dependability/reliability. Leveson and
Stolzy [27] present a formal framework based on Timed
Petri Nets to model and analyze fault-tolerance in real-time
systems. The UML profile for fault-tolerance [1] and sev-
eral aspect-oriented approaches [18, 34] use redundancy of
services [33] to mask faults, which is sometimes impracti-
cal and costly [2]. Approaches based on safety cases [23]
present a framework for goal-based failure analysis and sys-
tematic specification of lessons and recommendations for
post-failure corrections of safety-critical systems. Further-
more, some existing analysis methods for fault-tolerance
[22, 31] assume that a specific fault-tolerance design mech-
anism (e.g., exception handling, redundancy) will be used
and specify analysis requirements within those design con-
straints, which may overly constrain and preclude useful
fault-tolerance solutions. (For example, it is difficult to
specify and model self-stabilization [9] solely based on ex-
ception handling.) While all aforementioned approaches
present useful and important techniques for modeling and
analyzing fault-tolerance concerns, three important features



distinguish our approach from existing work: (1) provid-
ing reusable modeling artifacts for incremental modeling of
fault-tolerance; (2) ensuring the fault-tolerance of the mod-
eling elements added for fault-tolerance purposes, and (3)
facilitating automated reasoning (coupled with visualiza-
tion) in analyzing the mutual impact of fault-tolerance and
functional concerns.

We introduce an object analysis pattern, called the de-
tector pattern, that provides a reusable strategy for elicit-
ing and specifying the requirements of error detection in
UML object models for embedded systems. Our focus
on capturing error detection requirements is an extension
of Arora and Kulkarni’s [3] results where they show that
detection is necessary and sufficient for developing a rich
class of failsafe fault-tolerant systems. As such, the de-
tector pattern is intended to provide a generic artifact in
model-driven development of failsafe systems. Object anal-
ysis patterns apply a similar approach to that used by de-
sign patterns [19], but instead of focusing on design they
address the construction of the conceptual model of a sys-
tem [10]. Patterns for the analysis stage of software devel-
opment are not new (see [17,24]). For example, Fowler [17]
presents a method for characterizing recurring ideas in busi-
ness modeling as reusable analysis patterns. Konrad et al.
[24] present domain-specific object analysis patterns for an-
alyzing the conceptual models of embedded systems. The
proposed detector pattern in this paper provides a reusable
building block for the construction of the conceptual models
of failsafe systems.

Our pattern-based method comprises fault modeling,
fault-tolerance modeling, and automated analysis of the
UML models of fault-tolerant embedded systems. Specif-
ically, to construct the UML model of a Fault-Tolerant
System (FTS), we start with the UML model of its fault-
intolerant version, where a Fault-Intolerant System (FIS)
meets its functional requirements in the absence of faults
(i.e., when no faults occur) and provides no guarantees in
the presence of faults (i.e., when faults occur). Then we
model faults in the UML model of the FIS to produce a
model with faults. We use the notion of state perturbation to
model different types of faults in UML state diagrams [2,9].
Next, we specify error states that are reached due to the oc-
currence of faults. Subsequently, we add instances of the
detector pattern to the model with faults to capture the re-
quirements of error detection and to generate a candidate
UML model of a failsafe FTS. To create a valid UML model
of the failsafe FTS, we have to ensure that the candidate
UML model is interference-free. That is, in the absence
of faults, the candidate model meets all functional require-
ments of the FIS, and in the presence of faults, the candidate
model at least meets the safety requirements of the FIS and
the instances of the detector pattern. To ensure interference-
freedom, we extend McUmber and Cheng’s formalization

framework [28] to generate formal specifications of faults,
fault-tolerance and functional concerns in the Promela mod-
eling language [21]. Subsequently, we use the Spin model
checker [21] to detect inconsistencies between the detec-
tor pattern instances and the functional model of the FIS.
The automated analysis with the Spin model checker cou-
pled with a new visualization tool, called Theseus [20], that
animates counterexample traces enables a roundtrip engi-
neering process for modeling and analyzing failsafe FTSs.

We demonstrate our approach by modeling and analyz-
ing an adaptive cruise control (ACC) system in UML. We
have also validated our approach for several other examples
from industry [12], including a diesel filter system for re-
ducing soot from diesel truck exhaust. The remainder of
this paper is organized as follows. Section 2 introduces an
approach to modeling faults in UML state diagrams. Sec-
tion 3 discusses the relation between failsafe fault-tolerance
and error detection. Section 4 presents the detector pattern.
Section 5 focuses on formal analysis of UML models of
FTSs using Spin [21]. Finally, Section 6 gives concluding
remarks and discusses future work.

2 Modeling
In this section, we present the basic concepts of model-

ing FISs, faults, and failsafe fault-tolerance in UML. We re-
iterate the definitions of faults and fault-tolerance from [2].
The motivation behind using UML is two-fold. First, UML
is the de facto standard for object-oriented modeling. Sec-
ond, UML state diagrams enable us to capture any form
of fault-tolerance that can be expressed in a state machine-
based formalism.

UML Models. We use conventional UML nota-
tions [7] to represent the UML-based conceptual models of
FISs (respectively, FTSs). Since our focus is on modeling
and analyzing fault-tolerant embedded systems, we follow
Douglass [10] in using UML class diagrams to model struc-
tural constraints of (software and hardware components of)
embedded systems during the object analysis phase. We use
state diagrams to capture high-level behavioral information
of UML object models. The combination of class and state
diagrams yields an object analysis model.

Depending on the semantics of object interactions, the
complexity of automatic analysis of a FTS varies from poly-
nomial (in a shared memory model [25]) to undecidable (in
an asynchronous message-passing model [16]). To facilitate
an automated analysis method with a manageable complex-
ity, in this paper, we consider a high atomicity model where
transitions of UML state diagrams are executed atomically,
and any instance of message passing between two objects
takes place in an atomic step. Another motivation be-
hind this assumption is that modeling fault-tolerance in a
high atomicity model provides an impossibility test in early
stages of development (which could potentially reduce de-
velopment costs). That is, if a conceptual model of an FTS



cannot be derived from the conceptual model of its fault-
intolerant version in the high atomicity model, then it would
be impossible to derive a model of the FTS in a lower atom-
icity level.3

Underlying Computational Model. In an UML ob-
ject model M = 〈O1, · · · , On〉, where each Oi (1 ≤ i ≤ n)
is an object, we denote the state transition diagram of each
object Oi by SDi = < Si, δi >, where Si is the set of
states in the state diagram SDi and δi denotes the set of
transitions of SDi. A state of an object Oi is a valuation of
its state variables (i.e., attributes). A transition of an object
Oi is of the form (a, evt[grd]/act, b), by which Oi transi-
tions from state a to state b if a triggering event evt occurs
and a condition grd holds. During such a transition, Oi ex-
ecutes an action act. A global state predicate is a Boolean
expression defined over a set of states of multiple objects. A
local state predicate is a Boolean expression specified over
the set of states of only one object Oi (i.e., Si). A computa-
tion of an object Oj (1 ≤ j ≤ n) is a sequence 〈s0, s1, · · ·〉
such that ∀si : i ≥ 0 : (si ∈ Sj) ∧ (si, si+1) ∈ δj . A com-
putation of an UML object model M = 〈O1, · · · , On〉 is a
sequence of states 〈s0, s1, · · ·〉, where ∀si : i ≥ 0 : (∃Oj :
1 ≤ j ≤ n : (si ∈ Sj) ∧ ((si, si+1) ∈ δj)).

Modeling Functional Requirements. We consider
the set of functional requirements as a conjunction of a set
of safety requirements and a set of liveness requirements.
Intuitively, safety requirements stipulate that nothing bad
ever happens, and the liveness requirements specify that
something good will eventually occur in a finite amount
of time. For example, in a cruise control system, the ac-
tual speed of the car must not exceed 1% of the desired
speed set by the driver (i.e., safety), and when the driver
applies the brakes, the cruise control system will eventu-
ally be deactivated (i.e., liveness). We represent safety re-
quirements by a set of transitions, say B, that must not oc-
cur in the computations of any object. We do not explic-
itly specify liveness requirements, instead, since we want
to derive a model of an FTS from a valid model of its fault-
intolerant version, we stipulate that during such transforma-
tions no deadlock states (states with no outgoing transitions)
should be introduced in the absence of faults. The dead-
lock freedom requirement captures the fact that, in the ab-
sence of faults, fault-tolerant embedded systems have non-
terminating computations and always react to their environ-
ment. We say a computation 〈s0, s1, · · ·〉 meets safety re-
quirements iff (if and only if) ∀i : i ≥ 0 : (si, si+1) /∈ B.
A computation σ = 〈s0, s1, · · ·〉 meets functional require-
ments if and only if σ meets safety requirements and does
not deadlock. A computation of an UML model M that

3A theoretical investigation of this claim can be found in [26]. Also, in
cases such atomicity assumptions do not hold (e.g., distributed systems),
one can use existing fault-tolerance-preserving refinements (e.g., [8]) to
generate a refined model from a high atomicity model developed using our
proposed approach.

meets the functional requirements of M is a formal repre-
sentation of a functional scenario.

Running Example: Adaptive Cruise Control (ACC).
The ACC system comprises a standard cruise control sys-
tem and a radar system to control the distance between the
car and the front vehicle, called the target vehicle. The
ACC system has different modes of operation (see Figure
1), namely closing, coasting and matching. When the radar
detects a target vehicle, the ACC system enters the closing
mode. In the closing mode, the goal is to control the way
that the car approaches the target vehicle, and to keep the
car in a fixed trail distance from the target vehicle with a
zero relative speed. The trail distance is the distance that
the target vehicle travels in a fixed amount of time (e.g., 2
seconds). The distance to the target vehicle must not be less
than a safety zone, which is 90% of the trail distance. The
ACC system calculates a coasting distance that is the dis-
tance at which the car should start decelerating in order to
achieve the trail distance; i.e., the car enters the coasting
zone. When the car reaches the trail distance, the relative
speed of the car should be zero; i.e., the ACC system is in
the matching mode. The safety requirements of the ACC
system state that the car is never in the safety zone and it
will never accelerate in the coasting or matching modes.

Figure 1. The adaptive cruise control system.

2.1 Modeling Faults in State Diagrams

We systematically model a fault-type as a set of transi-
tions in UML state diagrams (see Figure 2). Representing
faults as a set of transitions has already appeared in previ-
ous work [2, 9], and it is known that state perturbation is
sufficiently expressive to represent different types of faults,
such as crash, input-corruption and Byzantine, from differ-
ent behavioral categories; i.e., transient, intermittent, per-
manent [2, 9]. To model a fault-type f in a UML model
M = 〈O1, · · · , On〉, we model the effect of f on the state
diagram SDi of each object Oi by introducing a new set of
transitions in SDi denoted fi, for 1 ≤ i ≤ n (see dashed
arrows in Figure 2). We denote the set of transitions of SDi

in the presence of faults fi by δi ∪ fi. An object Oi does
not have control over the execution of faults fi, whereas the
execution of regular transitions is controlled by the thread
of execution in Oi (see solid arrows in Figure 2). Model-
ing a fault-type f in all state diagrams of the UML model



M creates a model with faults f . In a computation with
faults 〈s0, s1, · · ·〉, there exists a fault transition (si, si+1),
for some i ≥ 0. A computation with faults is a formal rep-
resentation of a scenario with faults.

State1 State2

State4 State3

ErrorState_1 ErrorState_2

ErrorState_3

ErrorState_5

ErrorState_4

Object transitions Transitions of fault-type

Legend: Object transitions 
in the fault-spanfi

Fault-Span

Normal_States

Figure 2. Modeling faults in UML state diagrams.
When modeling a fault type fi in a state diagram SDi of

the UML model of the FIS, modelers should identify the ef-
fect of fi on the behavior of Oi. In the absence of faults, an
object Oi of the FIS is in a set of normal states from where
it meets its functional requirements. When fi occurs, Oi

may reach error states that are outside of the set of normal
states. The set of states reachable from the normal states by
a combination of fault and regular transitions is the fault-
span of Oi for fault fi , denoted fi-span of Oi [25]. For ex-
ample, in Figure 2, all error states are only reachable when
faults occur. Thus, modeling faults in a state diagram may
introduce new states and transitions in that state diagram.
A computation of an object that starts in its fault-span out-
side the set of normal states may lead to a failure scenario
in which it may (i) violate safety requirements, (ii) fall into
non-progress cycles, or (iii) reach a deadlock state. For ex-
ample, in Figure 2, if the object is in State1 then the faults
fi may non-deterministically transition to ErrorState 1 from
where the object may either be trapped in a non-progress cy-
cle (comprising ErrorState 1 and ErrorState 2) or be dead-
locked in ErrorState 5. Since manual identification of fi-
span is a tedious task, we use our previously develop Fault-
Tolerance Synthesizer (FTSyn) [13] to automatically gener-
ate the fault-span.

ACC Example: The object model of the ACC system in-
cludes three main objects, namely Control, Car and Radar
(see Figure 5). (We use Sans Serif font to denote sys-
tem variables, objects and states.) The Control object cap-
tures the controlling activities that set the mode of the ACC
system. The Car object models the engine management
functionalities such as acceleration and deceleration. The

Radar object samples the speed and the distance of the car
to the target vehicle. Figure 3 illustrates an excerpted state
diagram of the Car object in the ACC system. The Car ob-
ject continuously compares the real speed of the car, saved
in the variable RealV, with respect to the setpoint, which is
the desired speed determined by the driver. If the setpoint is
less than the real speed of the car, then the Car object tran-
sitions to the Decelerating state. If the setpoint is greater
than the real speed of the car, then the Car object transi-
tions to the Accelerating state. The ACC system is subject
to a transient fault-type fACC that causes the Car object
to transition to the Accelerating state non-deterministically.
Hence, we model the effect of fACC on the Car object as
a set of transitions fcar that perturb the state of Car to the
Accelerating state. In this case, the fault-type fcar does not
introduce any new states.

CalculatingRealV

Accelerating Decelerating

fcar

[RealV > setpoint]/

[RealV < setpoint]/

[RealV = setpoint]/

fcar

Fault transition System transition

Legend:

State
Event[guard]/actionEvent[guard]/action

Excerpted state machine 
of the car object

RealV: Real speed 
         of car

Setpoint: desired 
speed set by driver

[RealV = setpoint]/

fcar

[RealV = 
setpoint]/

Figure 3. Modeling faults in the state transition diagram
of the car.

2.2 Failsafe Fault-Tolerance

Intuitively, failsafe fault-tolerance requires that nothing
bad ever happens even in the presence of faults [2]. For a
fault-type f and a UML model M of an FIS that is subject
to f , we want to derive a UML model M ′ from M such that
M ′ satisfies the following conditions: (1) in the absence
of f , the set of computations of M ′ is non-empty and is a
subset of the set of computations of M , and (2) all compu-
tations of M ′, including the set of computations with faults
f , meet safety requirements.

3 Necessity and Sufficiency of Detection
In this section, we intuitively explain the relation be-

tween error detection in the presence of faults and fail-
safe fault-tolerance. Specifically, to preserve safety require-
ments even if faults occur, a failsafe fault-tolerant system
should ensure that none of its computations would reach a
state from where faults may directly violate safety. More-
over, after faults perturb the state of a failsafe system out-
side its set of normal states, the system must not execute



transitions that violate safety. To enable such functionali-
ties, a failsafe system should be able to detect its current
state and take necessary actions that will not lead to the
violation of safety requirements. Hence, we define two
categories of states that should be detected by a failsafe
system, namely fault-unsafe and at-risk states. The set of
fault-unsafe states, represented by a state predicate Sunsafe,
captures the set of states in the fault-span from where a
sequence of fault transitions alone may violate safety re-
quirements. A failsafe FTS must never reach a state in
Sunsafe. In the set of at-risk states, denoted as a state pred-
icate Sat−risk, a FIS itself may execute actions that violate
safety requirements. (FTSyn [13] automatically identifies
these state predicates.) For example, in the ACC system, a
global state where the control is in the coasting mode and
the car is in the Accelerating state is an at-risk state since
the car may accelerate and violate the requirement of no ac-
celeration while coasting. (A soundness proof of the above
argument about necessity and sufficiency of detection for
failsafe fault-tolerance can be found in [3, 25].)

4 Detector Pattern
In this section, we introduce the detector pattern that we

use to augment the FIS conceptual model to derive a con-
ceptual model of a failsafe FTS while preserving the safety
and liveness requirements of the FIS in the absence of faults.
In order to facilitate its use, we define a template for the de-
tector pattern based on the fields used in the design patterns
presented by Gamma et al. [19], with modifications to re-
flect analysis-level information. For example, we do not use
the Implementation and Sample Code fields. The Structure
field captures structural constraints of the detector pattern
represented by UML class diagrams. The detector pattern
also includes several new fields that are added for the pur-
pose of specifying and analyzing fault-tolerance concerns.
For example, the detector pattern includes the Detection Re-
quirements field that specifies a set of requirements that
must be met by the resulting UML model to guarantee that
the detection occurs correctly. Next, we describe the fields
of the detector pattern. Example application of each field to
the ACC system is denoted in italics.
Detection Predicate. In a UML model M =
〈O1, · · · , On〉, a detection predicate is a global/local state
predicate. In a distributed system, it is difficult for an ob-
ject to detect a global detection predicate X in an atomic
step [29]. Thus, we decompose X into a set of local pred-
icates X1, · · · , Xn, and specify the detection of X based
on the detection of X1, · · · , Xn, where each Xi is a local
state predicate specified for object Oi. Since the state pred-
icate Sunsafe captures the local unsafe states of each ob-
ject, Sunsafe is often specified as a conjunction of a set of
local state predicates. For the same reason, Sat−risk most
often has a conjunctive form. Hence, we limit the scope
of the application of the detector pattern to the detection of

conjunctive predicates. Moreover, since embedded systems
frequently detect the conditions of their underlying physical
system, the corresponding conditions remain stable relative
to the processing speed of the embedded computing system
until the embedded system detects them and takes necessary
actions. Hence, in this section, we focus on stable global
predicates that once hold remain true until detected.

ACC Example: In order to preserve safety requirements
in the presence of fault fACC , the ACC system should detect
if it is in the coasting or matching mode before accelerating
the car. The corresponding detection predicate in the ACC
system is the predicate XACC ≡ Xcar ∧ Xcontrol, where
Xcar ≡ (Car is in the accelerating state) and Xcontrol ≡
((Control is in the coasting mode) ∨ (Control is in the
matching mode)).
Detector Elements (Participants). A detector element di,
1 ≤ i ≤ n, captures the detection of a local state predicate
Xi in a functional object Oi. Each detector element di, for
1 ≤ i ≤ n, is indeed a participant of the detector pattern
and has its own detection predicate Xi.4

Distinguished Element. An element dindex (1 ≤ index ≤
n) that finalizes the detection of X based on the detection
of X1, · · · , Xn is called the distinguished element.
Structure. The choice of the structure of the detector pat-
tern depends on the inter-object associations in a UML ob-
ject model. For example, if one needs to detect a global
predicate over a set of functional objects that are associated
with each other in a tree-like structure, then it is appropriate
to use an instance of the detector pattern with a hierarchical
(parallel) structure. Due to space constraints, we omit the
presentation of sequential and compositional detector pat-
terns (see [12] for details). In a parallel detector (see Figure
4), the detection of X can be done in parallel, where all
elements di, 1 ≤ i ≤ n, detect their detection predicates
concurrently. The shadowed objects represent the elements
of the detector pattern encapsulated in a dashed box that de-
notes an instance of the detector pattern. The distinguished
element of the detector pattern is depicted by the dark shad-
ing. Each detector participant di is associated with an object
Oi (1 ≤ i ≤ n). In Figure 4, the distinguished element is
associated with all participants di.

ACC Example: Figure 5 depicts an excerpted class dia-
gram of the ACC system in which an instance of the parallel
detector pattern has been instantiated. Such an instanti-
ation is performed manually as a modeling activity. The
instance of the detector pattern applied to the ACC system
comprises two elements dcontrol and dcar modeled as two
new objects in the class diagram of the ACC system. The

4In the design and implementation phases, the detector elements may
be realized as independent software/hardware components that execute
concurrently with other components of an embedded system. We con-
jecture that any additional execution overhead on system performance in-
curred by adding detector elements would not be worse than the use of
conventional redundancy mechanisms.



element dcontrol is responsible for detecting Xcontrol and
the element dcar should detect Xcar.
Witness Predicate. Since we decompose the global de-
tection predicate X into a set of local detection predicates
X1, · · · , Xn, we should specify what implies the truth value
of X . Towards this end, we introduce the notion of a witness
predicate Z that is a local condition belonging to the distin-
guished element, which implies that the detection is com-
plete by just communicating with detector elements. We
also consider a witness predicate Zi for each element di.
We say di witnesses Xi iff Zi is true. The distinguished
element dindex sets the value of Z to true if all di have wit-
nessed their detection predicates.

O_1 O_n

.  .  .d_1 d_n

.  .  .
1

1

1

1

O_i

d_i

1

1

queries queries

detectX_1 detectX_i detectX_n

distinguished element

queries

.  .  .

.  .  .

Partial System Model

Distinguished element detects X
if all detectors witness

An instance of the
parallel detector

Figure 4. The structure of the parallel detector.
ACC Example:
The distinguished element should set ZACC (i.e., the wit-

ness predicate) to true if the elements dcontrol and dcar wit-
ness their detection predicates Xcontrol and Xcar, thus in-
dicating that the global detection predicate XACC has be-
come true. Such a detection functionality enables the FTS
to accelerate only if XACC does not hold.
Detection Requirements. In order to ensure that the de-
tection occurs correctly, the detector pattern should meet the
following requirements (adapted from [3]): (1) Safeness. It
is never the case that the witness predicate Z is true when
the detection predicate X is false; i.e., the detector pattern
never lies. (2) Progress. It is always the case that if X is
true then Z will eventually hold. (3) Stability. It is always
the case that once Z becomes true, it will remain true as
long as predicate X is true (i.e., Z remains stable). Each
participant di should also meet the above requirements for
Zi and Xi.

The safeness and stability are safety requirements that
can be specified in Linear Temporal Logic (LTL) [15] using
(i) the universal operator �, where �Y means that the state
predicate Y always holds, and (ii) the next state operator
©, where ©Y means that in the next state Y holds. We
respectively specify safeness and stability as �(Z ⇒ X)
and �(Z ⇒ (©(Z∨¬X))). Using the eventuality operator

�, where �Y means that the state predicate Y eventually
holds, we specify progress as �(X ⇒ �Z).5

Behavior. The state diagram of each detector element di in
Figure 4 is composed with the state diagram of each object
Oi in a concurrent fashion. The state machine of a detec-
tor element di monitors Xi by reading the state of Oi. The
distinguished element can witness if all the detector partic-
ipants di have already witnessed their detection predicates.

d_car

detectCoasting Detect
Acceleration

queries

CarControl

d_control

11

distinguishedElement
queries

Radar

1 1

11

Figure 5. Composition of a parallel detector pattern with
the ACC system.

ACC Example: Before accelerating, the Car object com-
municates with the distinguished element to check whether
the witness predicate ZACC holds (see Figure 6). Even
though in the case of the ACC system, such detection can
also be done by calling a method of the Control object to
check its mode, the use of the detector pattern separates the
concerns of fault-tolerance from functional concerns and
enables developers to easily trace and reason about fault-
tolerance. Moreover, in cases where more than two ob-
jects are involved in the detection of a global predicate, it is
difficult to use functional method calls for providing fault-
tolerance.

CalculatingRealV

if  (~Z_ACC()) then  Accelerate Decelerating

fcar

Check with the 
distinguished element

before acceleration

[RealV > setpoint]/

[RealV < setpoint]/

[RealV = setpoint]/

f car

Excerpted state machine 
of the car object

~  denotes negationLegend:

[RealV = 
setpoint]/

[RealV = setpoint]/

fcar

Figure 6. The excerpted state diagram of the Car after
applying the parallel detector pattern.

Failsafe fault-tolerance of the Detector pattern. Since
the instances of the detector pattern are also subject to

5Note that the detection requirements can also be represented in terms
of Dwyer’s specification patterns [11].



faults, we ensure that the detector pattern is itself failsafe
fault-tolerant. To this end, we verify that the composition
of the UML model M of an FIS, and an instance of the de-
tector pattern meet the following requirements: (1) In the
absence of faults, the functional requirements of M are met
(i.e., safety is not violated and no deadlock is reached), and
(2) In the presence of faults, the safeness and the stabil-
ity of the detector pattern and the safety requirements of
M are satisfied. Note that when faults occur, the only re-
quirement for a failsafe FTS is to preserve its safety require-
ments. Thus, the detector pattern need not meet its progress
requirement when faults occur. For example, in the ACC
example, if XACC holds but ZACC never becomes true,
then safety requirements are still met since the Car object
never accelerates if ZACC is false. However, the liveness of
the ACC system may be violated.
Remark. While the ACC example is small, the number of
the elements of an instance of the detector pattern cannot go
beyond the number of system components. Moreover, even
though composing an instance of the detector pattern with
the functional model of an FIS may add a layer of complex-
ity, the modularity provided by the detector pattern facili-
tates the management of such complexity. (Other pattern-
driven methods may also suffer from this additional layer
of complexity introduced by pattern instantiation.)

5 Model Analysis
In order to verify whether composing an instance of the

detector pattern with the conceptual model of a FIS gener-
ates a valid model of a failsafe system, we extend the Hydra
formalization framework [28] to generate a Promela specifi-
cation of a candidate UML model of an FTS. Subsequently,
we use the Spin model checker [21] to detect potential in-
consistencies between the instances of the detector pattern
and the functional model of the FIS. The general UML-
to-Promela formalization approach of Hydra is to map ob-
jects to processes in Spin that exchange messages via chan-
nels. Nested and concurrent states are also formalized as
processes. Additional details on the modeling and analysis
process, and the underlying formalization framework can
be found in [28]. We use the current Hydra formalization
directly to generate Promela specifications of the functional
objects of the FIS and each di element as a separate process.

We extend Hydra to include a number of new formaliza-
tion rules that treat the transitions of a fault-type f differ-
ently than other transitions. As we distinguish fault tran-
sitions from regular transitions by defining a <<Fault>>
stereotype [7], the extended Hydra integrates the transitions
of f modeled in different state diagrams in a separate pro-
cess Fault f in Promela that is concurrently run with all other
processes. Such a formalization is advantageous in that
the resulting Promela model separates faults from the func-
tional part of the Promela specifications so that the effect
of faults on system behaviors can easily be simulated and

analyzed.
We use Spin to simulate and verify the Promela specifi-

cations generated by Hydra. For example, while verifying
the UML model of a FTS against detection requirements,
we may find counterexamples that represent the inconsis-
tencies of the detector pattern and the functional objects.
To analyze such inconsistencies, we use Theseus [20] to vi-
sualize each step of the Spin simulation in UML state dia-
grams. Such a visualization of counterexamples facilitates
the analysis and refinement of the UML models.

ACC Example: In the UML model of the ACC system,
we verified the safeness of the detector pattern to ensure
that the detector pattern is itself failsafe fdetector-tolerant,
where fdetector represents the effect of fACC on dcar, which
is the resetting of Zcar. We specified the safeness require-
ments as the LTL property �(Zcar ⇒ Xcar); i.e., it is al-
ways the case that if dcar has witnessed then the Car ob-
ject is in the Accelerating state. A sample counterexam-
ple that we found was for the case where dcar witnessed
that its detection predicate Xcar holds, but the state of the
Car object had been changed to another state without reset-
ting Zcar (i.e., Xcar was no longer true). In this case, the
safeness of dcar was violated. The Theseus visualization
tool highlighted all transitions that leave the Accelerating
state of the Car object as the transitions that would vio-
late the safeness of the detector pattern. To remedy this
inconsistency, we manually revised the object model so that
any transition originating from the Accelerating state would
be accompanied with the simultaneous reset of Zcar (i.e.,
Zcar := false). Notice that, in this case, resolving the
inconsistencies of the detector pattern and the functional
model required a change in the functional model. We note
that this change does not affect the computations of the
functional UML model in the absence of faults.

6 Conclusions and Future Work

In this paper, we introduced an object analysis pattern,
called the detector pattern, for modeling and analyzing fail-
safe fault-tolerance, where instances of the detector pat-
tern are added to the UML model of a system to create the
UML model of its failsafe fault-tolerant version. The detec-
tor pattern also provides a set of constraints for verifying
the consistency of functional and fault-tolerance require-
ments and the fault-tolerance of the detector pattern itself.
We extended McUmber and Cheng’s formalization frame-
work [28] to generate formal specifications of the UML
model of fault-tolerant systems in Promela [21]. Subse-
quently, we used the Spin model checker [21] to detect the
inconsistencies between fault-tolerance and functional re-
quirements. To facilitate the automated analysis of failsafe
fault-tolerance, we employed the Theseus visualization tool
[20] that animates counterexample traces and generates cor-
responding diagrams at the UML level. As an extension of



this work, we are currently investigating the incorporation
of timing issues in the detector pattern.
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