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Abstract

The behavioral correctness of parallel programs has a
pivotal role in computational sciences and engineering ap-
plications as researchers draw scientific conclusions from
the results generated by parallel applications. Moreover,
with the advent of multicore processors, the development
of parallel programs should be facilitated for the main-
stream developers. While numerous programming models
and APIs exist for parallel programming, we pose the view
that more emphasis should be placed on designing the syn-
chronization mechanisms of parallel programs independent
from the design of their functional behaviors. More im-
portantly, programs’ behaviors evolve (due to new require-
ments and change of configuration), thereby creating a need
for techniques and tools that enable developers to reason
about the behavioral evolution of parallel programs. With
such motivations, we introduce a framework for automated
design/evolution of the synchronization mechanisms of par-
allel programs.

1 Introduction

Developing applications for parallel platforms is one of
the major challenges for mainstream developers and the
software engineering community in the coming decade.
While numerous programming models, Application Pro-
gramming Interfaces (APIs) and parallel design patterns ex-
ist for parallel programming and parallelization of sequen-
tial programs, the complexity of designingcorrectparallel
programs has continuously been underestimated; existing
programming models/APIs lack the necessary machinery
that enables developers to reason about the behaviors of the
systems they produce. In this paper, we present a platform-
independent framework for automated design of thesyn-
chronization skeletonof parallel programs, where the syn-
chronization skeleton of a program includes only the parts

of its functionalities related to inter-thread1 synchroniza-
tion. More importantly, upon the detection of new require-
ments, our framework automatically determines whether or
not an existing synchronization skeleton can be revised so
it captures the new requirements.

Numerous approaches exist for parallel programming
most of which provide programming models and linguis-
tic structures [25, 13, 36, 22, 37, 24, 7, 15], function li-
braries and run-time systems [11, 44] and programming pat-
terns [38, 1] to enable developers increatingparallel pro-
grams while lacking the necessary infrastructure to facili-
tatereasoningabout behavioral correctness of parallel pro-
grams. For example, Pthreads [24] provides necessary data
structures and function libraries (in C/C++) to enable pro-
grammers for explicit multithreading, where programmers
have full control over creating, synchronizing and destroy-
ing concurrent threads of execution. OpenMP [37, 8] is an
API that augments C/C++ and Fortran with a set of com-
piler directives, run-time library routines and environment
variables to enable parallel programming in a shared mem-
ory model on multiple platforms. Intel Threading Building
Blocks [44] provides a task-based model for parallel pro-
gramming that abstracts away many thread management is-
sues with the help of a task manager that analyzes the un-
derlying platform to balance the work load over available
processors. Microsoft Task Parallel Library (TPL) [35] pro-
vides a class library for expressing potential parallelismand
enabling dynamic task distribution. While the aforemen-
tioned approaches facilitate the creation of parallel appli-
cations, they often lack the necessary techniques/tools for
reasoning about the behaviors of parallel programs in the
design phase.

We present our position that designing parallel programs
in an abstract computational model deserves more atten-
tion from the research community. Such a design-oriented
development method enables automated reasoning about

1In this paper, we use the termsthreadandprocessinterchangeably.



inter-thread synchronization. To further support our posi-
tion, we quote a statement from Asanovicet al. [6] (Page 7
Section 3) as follows:

“ · · · it seems unwise to let a set of existing source
code drive an investigation into parallel comput-
ing. There is a need to find a higher level of ab-
straction for reasoning about parallel application
requirements.”

In this paper, we first present an overview of our pro-
posed design method in Section 2. We then demonstrate our
proposed approach in the context of a barrier synchroniza-
tion protocol in Section 3. Subsequently, in Section 4, we
discuss related work. Finally, we make concluding remarks
in Section 5.

2 Proposed Approach: Property-Oriented
Design

Our focus is on the followingredesign problem:

when a program fails to satisfy a new global re-
quirement (i.e., property) such as mutual exclu-
sion, deadlock-freedom and progress (i.e., guar-
anteed service), how should the local synchro-
nization mechanism of each thread be revised so
the global requirement is met?

This is an important problem in developing and main-
taining parallel applications. An example of such require-
ments is a case where private data structures have to be
shared (possibly for performance improvement purposes).
In principle, such cases are instances of adding new safety
(respectively, mutual exclusion) requirements to the set of
program requirements. Another example is a case where an
existing program should meet a new progress requirement
and designers must determine what local changes should be
made in the synchronization skeleton of each thread such
that the entire program meets the new progress require-
ment while preserving its existing requirements. While in
our previous work, we have illustrated that, in general, re-
designing parallel programs for multiple progress properties
is a hard problem [19], the focus of our current research is
on (1) identifying cases where the redesign problem can be
solved efficiently, (2) providing automated support for re-
design in a high-level model of parallel computation. In this
section, we propose a property-oriented technique focused
on stepwise (re)design of the synchronization skeleton of
parallel programs, where asynchronization skeletonis an
abstraction of the parts of the program functionalities that
handle inter-thread synchronization.

In our approach, we separate the high-level design of
inter-thread synchronization mechanisms from the design
and implementation of functional requirements. Figure 1

illustrates that, in our proposed approach, we start with
an input synchronization skeleton (i.e., design) and a de-
sired property that should be captured by an evolved ver-
sion of the input design. For example, the input design may
be the synchronization skeleton of a mutual exclusion pro-
gram that guarantees mutually exclusive access to a critical
section, but does not guarantee progress for some threads,
where each thread should eventually get a chance to access
the critical section. The input design can be created man-
ually. In other words, the input design is the first educated
guess of the designer for a program that meets all its require-
ments. We specify/design synchronization skeletons in a
shared memory modeland ahigh atomicity program model
in which threads can read/write several program variables in
an atomic step. The motivation behind this abstract mem-
ory/program model is to (1) simplify the design for main-
stream developers; (2) develop efficient automated design
algorithms since the complexity of automation increases as
we consider additional constraints [16], and (3) potentially
reduce development costs by identifying the impossibility
of revising an input design towards satisfying a set of de-
sired global properties as early as possible; if a program
cannot be revised in a high atomicity program model, then
it cannot be modified under additional constraints of a more
concrete program model as well (See [31] for proof). The
third motivation is actually due to the fact that sometimes
designers spend time on fixing an existing design without
knowing that the design at hand is not fixable. We have de-
veloped sound and complete redesign algorithms [19, 17]
that enable developers to detect such impossibility of re-
design. Next, we present an overview of our redesign algo-
rithms and the way program properties should be specified.

Overview of the property-oriented (re)design algorithm.
Consider a case where a threadT of a programp does not
meet a required progress propertyL that statesit is always
the case that ifT is trying to access a shared resource, then
T will eventually get access to the shared resource. The in-
put to our redesign algorithm is a synchronization skeleton
of p in terms of Dijkstra’s guarded commands (actions) [14]
and the propertyL specified in terms of Linear Temporal
Logic (LTL) [21] properties. A guarded command is of
the formgrd → stmt, where the guardgrd is a Boolean
expression specified in terms of program variables and the
statementstmt denotes a set of assignments thatatomically
update program variables when thegrd holds. The LTL
properties can be extracted from English statements of such
properties using existing techniques [29]. For example, a
LTL expression representing the above progress property is
as follows:2 (( T is trying to access a shared resource)⇒
3 (T has access to the shared resource)), where2 denotes
the temporal operatoralways, 3 represents theeventuality
and⇒ is the propositional implication. Our objective is to
synthesize a revised version ofp, denotedpr, that meets
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Figure 1. A framework for property-oriented design and evolution of the synchronization skeleton of parallel programs.

L for T and preserves all correctness properties ofp. To
achieve this goal, the redesign algorithm performs the fol-
lowing steps on areachability graphof the input program.
The reachability graph is a state transition graph created by
exploring all possible states reachable from program initial
states by the execution of the guarded commands, where a
stateis a unique valuation to program variables. The fol-
lowing is an intuitive explanation of the redesign algorithm
presented in [19].

• Step 1: From every states, identify the length of the
shortest program computation that can reach a state
whereT has access to the shared resource. The length
of such a shortest computation froms is called therank
of s. Observe that the rank of a state whereT has ac-
cess to the shared resource is zero.

• Step 2: Identify the set of reachable states whose rank
is infinity, denotedS∞. That is, there is no program
computation from any state inS∞ that leads to a state
whereT has access to the shared resource.

• Step 3: Make thetrying statesthat belong toS∞ un-
reachable by eliminating the program transitions that
terminate in a reachable state inS∞. A trying stateis
a state in which the threadT is trying to gain access
to the shared resource. This step may result in creat-
ing states that have no outgoing transitions, called the
deadlocked states.

• Step 4: Make deadlock states unreachable using the
transition elimination technique introduced in Step 3.

• Step 5: If an initial state becomes deadlocked, then
declare that it is impossible to revisep and terminate.

• Step 6: Update the ranking of all states as Steps 3 and 4
eliminate some program transition that may affect the
length of the shortest computations to a state whereT
has access to the shared resource. Notice that the set
of statesS∞ is also updated.

• Step 7: If there still is a reachable trying state with rank
infinity, then go to Step 3. Otherwise, proceed to Step
8.

• Step 8: Eliminate any program transition that starts in
a non-zero rank state and terminates in a state with a
higher or equal rank. Such transitions participate in
a livelock (i.e., non-progress cycle) that must be re-
solved so progress can be achieved.

The above algorithm determines whether or not there ex-
ists a revised version of the input reachability graph that
meets the new progress property. While we express our
algorithm in the context of a reachability graph of the in-
put program, we have developed [18] a symbolic and dis-
tributed version of the above algorithm that analyzes each
program action in isolation and determines the nature of the



changes that should be made on each action so the entire
program captures a new progress property.

After creating acorrectsynchronization skeleton in our
high atomicity model, the abstract design is refined to a con-
crete design (e.g., message passing) under platform-specific
constraints. For instance, for the refinement of high atom-
icity actions, we implement each high atomicity action as
an atomic transaction on top of a Software Transactional
Memory [25, 46]. Moreover, developers should be able to
apply correctness-preserving refinement techniques that de-
crease the atomicity of our abstract synchronization skele-
tons. While several techniques [5] exists to support such
correctness-preserving refinements, most of them rely on
reasoning about parallel programs in the atomic model of
concurrency [43], where it is assumed that no two opera-
tions are executed simultaneously. Such an assumption does
not hold for multicore processors where multiple operations
may be executed at the same physical moment in time. The
development of efficient refinement algorithms is an open
problem for our future work.

3 Example: Barrier Synchronization

In this section, we demonstrate our proposed approach
for a Barrier Synchronization (BarSync) protocol that pro-
vides the underlying synchronization skeleton of numerous
round-based parallel applications. In BarSync,n different
threadsTi (1 ≤ i ≤ n) concurrently execute in consecutive
rounds, where in each round the execution ofTi includes
three steps ofinitialization, executionandfinalization. Due
to data dependencies, a thread can enter the next round only
if all threads have finalized the previous round. We start
with a straightforward design of BarSync that does not guar-
antee progress of threads. Then we apply our automated
redesign algorithms (represented in the previous section)to
automatically evolve the design of BarSync. The input de-
sign of BarSync is as follows:

Aj1 : pcj = init −→ pcj := execute;
Aj2 : pcj = execute −→ pcj := final;
Aj3 : pcj = final −→ pcj := init;

In this section, we present a version of BarSync that
includes three threadsT1, T2, and T3. Each threadTj ,
1 ≤ j ≤ 3, has a variablepcj that represents the program
counter ofTj . The program counterpcj can be in three
positionsinit, execute andfinal. If threadTj is in theinit po-
sition, then it changes its position toexecute. Fromexecute,
the position ofTj transitions tofinal, and then back to the
init position. Let〈pc1, pc2, pc3〉 denote a state of BarSync.
The specification of BarSync requires that, starting from the
stateallI = 〈 init, init, init 〉, all threads will eventually syn-
chronize in the stateallF = 〈 final, final, final 〉 while at
least two threads are always in the same position.

Observe that, in the input design of BarSync, one thread
could circularly transition between the positionsinit, exe-
cute, final, thereby preventing other threads to finalize; i.e.,
averting the synchronization on〈final, final, final〉. To en-
sure synchronization, we evolve the behaviors of the input
BarSync by ensuring that starting from the state〈init, init,
init〉, the state〈final, final, final〉 will eventually be reached.
The below actions represent the revised design ofT1. The
revised actions ofT2 andT3 are structurally similar to those
of T1, hence omitted.

A′

11
: (pc1 = init) ∧

(((pc2 6= final) ∧ (pc3 6= final)) ∨
((pc2 = final) ∧ (pc3 = final)) )

−→ pc1 := execute;
A′

12
: (pc1 = execute)∧

(pc2 6= init) ∧ (pc3 6= init)
−→ pc1 := final;

A′

13
: (pc1 = final) ∧

(((pc2 = init) ∧ (pc3 = init)) ∨
((pc2 = final) ∧ (pc3 = final)) )

−→ pc1 := init;

From theinit state, a thread can transition to theexecute
state if it is not the case that only one of the other two
threads has finalized its computation in the current round.
A thread can finalize from theexecute state if none of the
other two threads is in its initial state. A thread can start
a new round of computation if either the other two threads
have already transitioned to a new round or both have final-
ized the current round.

We would like to mention that, in addition to the BarSync
presented in this section, we have automatically designed a
version of BarSync with 18 threads using our distributed
synthesis algorithm [18] on a cluster of 5 regular PCs
(see [18] for our experimental results). Moreover, we have
automatically redesigned the synchronization skeleton of
several parallel/distributed programs such as mutual exclu-
sion, readers/writers, agreement in the presence of faults
and diffusing computation [19, 16]. In the next section, we
investigate how existing parallel programming paradigms
and software design methods address the issues of simplic-
ity, generality, behavioral evolution and automated tool sup-
port.

4 Related Work

In this section, we discuss related work from two stand-
points; models and paradigms for parallel programming and
software engineering techniques for the design of concur-
rent systems.

4.1 Programming Models/Environments

We study explicit/raw threading (Pthreads and Win32
threads) [24], OpenMP [8, 37], Intel Threading Build-



ing Blocks (TBB) [44], Cilk [11], Microsoft Task Par-
allel Library (TPL) [35], and Message Passing Interface
(MPI) [26], with respect to the simplicity of programming,
generality of the computing model, support for behavioral
evolution and tool support.

4.1.1 Simplicity of Design/Programming
Explicit threading [24] provides a set of data types and func-
tion calls to enable multithreaded programming. While de-
velopers have full control over thread creation and synchro-
nization, raw threading combines functional and low-level
synchronization code, thereby increasing the complexity of
parallel program design. Developing parallel programs in
OpenMP [8, 37] is relatively easier compared with explicit
threading in that programmers only specify the parts of their
sequential code that can be executed in parallel, calledpar-
allel regions. Each parallel region has its own private vari-
ables and some shared variables. OpenMP simplifies some
of the tasks such as thread creation/destruction, load bal-
ancing and loop parallelization. Intel TBB library [44] sup-
ports two main abstractions to simplify parallel program-
ming, namelytasksand templates. Developers have to
specify their parallel tasks instead of explicit thread cre-
ation; TBB creates, manages and destroys threads implic-
itly. Moreover, TBB provides templates for loop paral-
lelization. Cilk [11] extends the C programming language
in order to enable multithreading in the shared memory
model. Cilk also includes a run-time system that provides a
processor-oblivious view for parallel execution of threads,
where threads are scheduled on the available processors
in a transparent fashion. Microsoft Task Parallel Library
(TPL) provides a set of abstractions in object-oriented pro-
gramming for loop/task parallelization while leaving the de-
sign of synchronization for developers. The Message Pass-
ing Interface provides a library for programming over mas-
sively parallel/distributed machines, where processes com-
municate by exchanging messages either individually or in
a group. The ready-to-use functions in the MPI library sim-
plify the task of programming.

4.1.2 Generality of Computing Model
In this section, we discuss the generality of each program-
ming paradigm in terms of the abstractions it provides and
its computation/communication model. The basic unit of
abstraction in explicit threading is a thread of execution and
the execution semantics is based on the non-deterministic
interleaving of all threads. The program model is based on
non-atomic instructions, and shared variables are used for
inter-thread communication. The fork-join model of paral-
lel computation is the core of some important programming
environments such as OpenMP and Cilk. In the fork-join
model a master thread creates a set of slave threads that
compute in parallel, and upon finalization, the slave threads

synchronize. The fork-join model is mostly appropriate
for symmetric multithreading, where the synchronization
skeleton of threads are similar; in some cases, the same
piece of code is exactly replicated in separate threads and
executed in parallel. As such, it is difficult to develop paral-
lel applications in which threads may have different control
structures.2 In the task-based paradigms, tasks are the basic
units of abstraction. For instance, in Intel TBB, indepen-
dent units of computation are realized as parallel tasks with
the support of a function library and a run-time system. The
Microsoft TPL also supports a task-based model of parallel
computation in object-oriented programming, where a class
library provides the necessary data abstractions for task cre-
ation and synchronization.

4.1.3 Behavioral Evolution (Change Management)
To the best of our knowledge, almost all the programming
models/paradigms that we have considered in this section
lack a systematic way for program redesign and behavioral
evolution. While these approaches facilitate thecreationof
parallel application and the detection of behavioral errors,
most of them lack a systematic/automatic method for rea-
soning about the global temporal behaviors (e.g., deadlock-
freedom, data race avoidance and progress) in terms of local
synchronization mechanisms in each thread. As such, de-
velopers have to manually get involved in (re)design of the
synchronization skeleton of programs after detecting behav-
ioral errors.

4.1.4 Tool Support
The existing tool support for parallel programming
paradigms is mostly focused ondetectingbehavioral er-
rors of an implementation that includes both functional
and synchronization code; less attention has been paid to
automatic revision of synchronization skeletons. For ex-
ample, there exist a variety of debugging tools for raw
threading such asAssure, Ladebug, TotalView, Microsoft
Visual Studio [4, 30], Cilk’sNondeterminator[2] and In-
tel Thread Checker [44] that mostly enable developers to
(i) detect data races and deadlocks, and (ii) analyze perfor-
mance. TheAllinea Distributed Debugging Tool[3] pro-
vides support for detecting and visualizing behavioral er-
rors in MPI programs. Additionally, several model check-
ing tools [47, 23, 42] exist that verify whether or not parallel
programs meet global temporal properties.

4.2 Software Design Methods

In this section, we briefly study four major software de-
sign techniques, namely Design-By-Contract (DBC) [40,
41], Aspect-Oriented Programming (AOP) [27, 28], the

2For simplicity, we selected a symmetric example in Section 3,
nonetheless, our approach is general and we have automatically designed
parallel programs with asymmetric threads [19, 16].



Universe Model (UM) [9, 10] and UNITY [12], with re-
spect to simplicity of design in each approach, generality of
design model in each method, support for behavioral evolu-
tion and tool support.

4.2.1 Simplicity of Design
In the DBC method [40, 41], each software com-
ponent/module has acontract that specify its rights
and responsibilities in interaction with other compo-
nents/modules. More precisely, a component requires its
environment to meet apreconditionso it can provide a
service. The component is responsible for (i) satisfying a
postconditionif its precondition is satisfied, and (ii) hon-
oring an invariant constraint while executing. For in-
stance, in Systematic Concurrent Object-Oriented Program-
ming (SCOOP) [41], developers need not be concerned
about low-level concepts such as locks and semaphores
for synchronization. Instead, they implement their system
in the same way as sequential object-oriented programs.
The SCOOP terminology provides a new modifier key-
word, calledseparate, that means an object (respectively,
a method) is executed on a separate processor. Inter-object
synchronization is performed by argument passing and pre-
conditions. That is, a routiner() can call aseparate entity if
that entity is an argument ofr(). A call on a routine waits un-
til all separate objects used in its precondition are available
and its precondition holds.

The aspect-oriented methodology [27, 28] provides a
method for design and implementation of the aspects that
crosscut all components of a program. For example, in
a multithreaded program, the aspect of synchronization is
considered in all threads. To capture an aspect in an individ-
ual component, several pieces of code, calledadvices, are
woven at specific places in the code of an exiting program,
called thejoinpoints. For concurrency, developers have to
identify the joinpoints and the necessary code for synchro-
nization in each thread. While AOP provides a powerful ab-
straction for modular implementation of crosscutting con-
cerns, it is often difficult to identify the correct joinpoints
and the advices that do not interfere with program’s func-
tional code.

The Universe Model (UM) [9, 10] provides a method for
concurrent object-oriented programming, where an object
can execute if it has exclusive access to all the objects it
needs, called theobject universeor theobject realm. The
universe of an object dynamically changes when an object
is removed/added from/to its universe. Developers specify
the needs and responsibilities of individual objects, called
contracts, in a declarative language. The run-time system
of the UM dynamically resolves the dependencies between
the needs of objects to provide concurrency.

UNITY [12] provides a formal program logic along with
a proof system for the design of parallel and distributed

programs. A program comprises a set of variables and
a set of guarded commands [14] that are executed non-
deterministically. UNITY’s program logic enables devel-
opers to first specify program behaviors and then use the
rules of the proof system to refine specifications to pro-
grams in a stepwise fashion. While UNITY provides a fun-
damental theory for designing parallel programs, it is diffi-
cult for mainstream developers to design and reason about
programs in UNITY due to the high level of formalism. By
contrast, while our design language is similar to UNITY,
we provide automated support for refinement and behav-
ioral evolution.

4.2.2 Generality of Design Model
In DBC, the main unit of abstraction is a component along
with its contracts, and designers should reason about pro-
gram behaviors in terms of pre-postconditions. It is often
the case that a run-time library (e.g., in SCOOPLI [41])
handles low-level concurrency issues such as deadlock pre-
vention. As a result, DBC provides a straightforward and
abstract model for concurrent computations, which is easy
to learn and to refine to other models of computations such
as raw multithreading.

In AOP, developers design programs by composing an
aspect with abase programin a modular fashion. However,
identifying the right joinpoints and the respective advices
is difficult. For example, we have shown that adding fault
tolerance aspects to parallel/distributed programs is a hard
problem [32]. Since the AOP paradigm has been mostly re-
alized in object-oriented languages, the basic unit of com-
putation is often an object and the communication model is
often based on method calls (e.g., AspectJ [28]). As such,
aspect-oriented programs can easily be refined to message-
passing parallel programs.

The basic unit of abstraction in the UM [9, 10] is the
concept of the object universe in an object-oriented setting.
While the UM is based on DBC, the contracts specified in
the UM are in a higher level of abstraction in that they spec-
ify objects realms.

The basic units of abstraction in UNITY are specifica-
tions and programs. UNITY provides a fundamental change
in mindset for the designers of parallel program as they have
to think parallel from the outset. Moreover, UNITY pro-
grams are platform-independent and designers can refine
programs further when new platform-specific constraints
are introduced.

4.2.3 Behavioral Evolution (Change Management)
In DBC, given a new functionality, designers should
determine what changes they should make in the pre-
postconditions and the invariants of the existing compo-
nents in order to capture the new functionality. Moreover,
they should determine whether or not new components have



to be introduced. Depending on the nature of the new func-
tionality, this may be a difficult task. For example, if the
new functionality is a new progress property that requires
every component to eventually have access to some shared
resource, then it is difficult to identify the local changes that
should be made in each component and its contracts so the
overall behaviors of the revised program captures the new
progress requirement.

One of the most important problems targeted by AOP is
the incremental addition of crosscutting functionalities. In
this regard, AOP provides a method for architectural de-
composition of distinct concerns across different compo-
nents of a program. However, reasoning about the impact
of different crosscutting concerns (e.g., fault toleranceand
security) on each other remains a challenge. The program
logic of UNITY [12] enables designers to formally specify
new behaviors that should be added to an existing program.
Moreover, the refinement rules of UNITY provide a system-
atic method for capturing new behaviors while preserving
program correctness with respect to its specification.

4.2.4 Tool Support
Most existing DBC tools/languages [39, 34, 33] that facil-
itate the design of robust programs rely on run-time asser-
tion checking without enabling reasoning about the global
properties of programs in terms of contracts. For instance,
the Eiffel [39] programming environment supports DBC
by providing necessary abstractions, diagrams, function li-
braries, a compiler and a debugger. The Java Modeling Lan-
guage [34] augments Java with a interface specification lan-
guage for contracts. Aspect-oriented design techniques [48]
provide tool support for high-level design of programs in
visual modeling languages. For example, Steinet al. [48]
present a visual modeling language for specifying the de-
sign of aspect-oriented programs in the Unified Modeling
Language (UML) [45]. To the best of our knowledge, the
UM lacks a systematic approach for helping designers spec-
ify the changes in the universe of each object in such a way
that a new global functionality is captured. The existing
tool support for UNITY mostly relies on the use of theo-
rem provers [20], which is difficult to use by mainstream
developers.

5 Concluding Remarks and Future Work

We proposed a platform-independent framework for de-
veloping parallel applications, where more energy and re-
sources are spent in design in order to potentially reduce
development costs. Our framework comprises two lay-
ers, namely theproperty-orienteddesign layer and there-
finementlayer. The property-oriented design layer enables
incremental evolution of the synchronization mechanisms
of parallel programs upon detecting new global properties
such as mutual exclusion, deadlock-freedom and progress

(e.g., guaranteed service). We perform the property-
oriented design in the shared memory model with a high
atomicity program model, where threads can read/write pro-
gram variables in an atomic step. In the refinement layer,
we transform our high level design to more concrete de-
sign artifacts. Automating such correctness-preserving re-
finements is the subject of our future work. Compared with
existing paradigms, our approach has a simpler and more
general design language, and provides automated assistance
for behavioral debugging.

While we have developed algorithms for the property-
oriented design of fault tolerance, safety and progress prop-
erties [16, 19, 18], our future work will mostly be focused
on (1) developing automated (re)design algorithms for a
combination of global properties, (2) refining abstract syn-
chronization skeletons for multicore systems, and (3) ex-
tending tool support for transforming our high-level design
to common programming languages.
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