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Abstract—We focus on the problem of synthesizing failsafe fault-tolerance where fault-tolerance is added to an existing (fault-

intolerant) program. A failsafe fault-tolerant program satisfies its specification (including safety and liveness) in the absence of faults.

However, in the presence of faults, it satisfies its safety specification. We present a somewhat unexpected result that, in general, the

problem of synthesizing failsafe fault-tolerant distributed programs from their fault-intolerant version is NP-complete in the state space

of the program. We also identify a class of specifications, monotonic specifications, and a class of programs, monotonic programs, for

which the synthesis of failsafe fault-tolerance can be done in polynomial time (in program state space). As an illustration, we show that

the monotonicity restrictions are met for commonly encountered problems, such as Byzantine agreement, distributed consensus, and

atomic commitment. Furthermore, we evaluate the role of these restrictions in the complexity of synthesizing failsafe fault-tolerance.

Specifically, we prove that if only one of these conditions is satisfied, the synthesis of failsafe fault-tolerance is still NP-complete.

Finally, we demonstrate the application of monotonicity property in enhancing the fault-tolerance of (distributed) nonmasking fault-

tolerant programs to masking.

Index Terms—Fault-tolerance, automatic addition of fault-tolerance, formal methods, program synthesis, distributed programs.
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1 INTRODUCTION

WE focus on the automated synthesis of failsafe fault-
tolerant programs, i.e., programs that satisfy their

safety specification if faults occur. We begin with a fault-
intolerant program and systematically add fault-tolerance
to it. The resulting program, thus, guarantees that if no
faults occur then the specification is satisfied. However, if
faults do occur, then at least the safety specification is
satisfied.

There are several advantages of such automation. For
one, the synthesized program is correct by construction
and, hence, there is no need for its correctness proof.
Second, since we begin with an existing fault-intolerant
program, the derived fault-tolerant program reuses it.
Third, in this approach, the concerns of the functionality
of a program and its fault-tolerance are separated. This
separation is known to help [14] in simplifying the reuse of
the techniques used in the manual addition of fault-
tolerance. We expect that the same advantage will apply
in the automated addition of fault-tolerance.

The main difficulty in automating the addition of fault-
tolerance, however, is the complexity involved in this
process. In [16], Kulkarni and Arora showed that the
problem of adding masking fault-tolerance (where both
safety and liveness are satisfied in the presence of faults) to
distributed programs is NP-complete (in program state
space). We find that there exist three possible options to
deal with this complexity: 1) developing heuristics under

which the synthesis algorithm takes polynomial time in
program state space, 2) considering a weaker form of fault-
tolerance such as failsafe, where only safety is satisfied in
the presence of faults, or nonmasking, where the nonmask-
ing program recovers to state from where it satisfies its
specification, however, safety may be violated during
recovery, or 3) identifying a class of specifications and
programs for which the addition of fault-tolerance can be
performed in polynomial time (in program state space).

Kulkarni et al. [17] focused on the first approach and
presented heuristics that are applicable to several problems
including Byzantine agreement. When the heuristics are
applicable, the algorithm in [17] obtains a masking fault-
tolerant program in polynomial time in the state space of
the fault-intolerant program. However, it fails to find a
fault-tolerant program (even if one exists) if the heuristics
are not applicable.

By adding failsafe fault-tolerance in an automated
fashion, we potentially simplify, and partly automate, the
design of masking fault-tolerant programs. More specifi-
cally, the algorithm that automates the addition of failsafe
fault-tolerance and the stepwise method for designing
masking fault-tolerance [14] can be combined to partially
automate the design of masking fault-tolerant programs.
The algorithm in [14] shows how we can design a masking
fault-tolerant program by first designing a failsafe (respec-
tively, nonmasking) fault-tolerant program and then adding
nonmasking (respectively, failsafe) fault-tolerance to it.
Thus, given an algorithm that automates the addition of
fault-tolerance, one could begin with a fault-intolerant
program, automate the addition of failsafe fault-tolerance,
and then manually add nonmasking fault-tolerance. Like-
wise, one could begin with a nonmasking fault-tolerant
program and obtain a masking fault-tolerant program by
automating the addition of failsafe fault-tolerance. Thus,

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 2, NO. 3, JULY-SEPTEMBER 2005 1

. The authors are with the Software Engineering and Network Systems
Laboratory, Department of Computer Science and Engineering, Michigan
State University, East Lansing, MI 48824.
E-mail: {sandeep, ebnenasi}@cse.msu.edu.

Manuscript received 14 May 2004; revised 25 May 2005; accepted 20 June
2005; published online 2 Sept. 2005.
For information on obtaining reprints of this article, please send e-mail to:
tdsc@computer.org, and reference IEEECS Log Number TDSC-0070-0504.

1545-5971/05/$20.00 � 2005 IEEE Published by the IEEE Computer Society



one step in designing masking fault-tolerance could be
automated and, hence, the designer will not need prove the
correctness of that step.

In this paper, we focus on the other two approaches.
Regarding the second approach, we focus our attention on
the synthesis of failsafe fault-tolerance. In our investigation,
we find a somewhat unexpected result that the design
of distributed failsafe fault-tolerant programs is also
NP-complete (in program state space). (In [16], it was
conjectured that the addition of failsafe fault-tolerance to
distributed programs would be easy as it was expected that
satisfying safety alone if faults occur would be simple
whereas adding recovery would be difficult.) To show this,
we provide a reduction from 3-SAT to the problem of
adding failsafe fault-tolerance.

To deal with the complexity involved in automating the
addition of failsafe fault-tolerance, we follow the third
approach considered above. Specifically, we identify the
restrictions that can be imposed on specifications and fault-
intolerant programs in order to ensure that failsafe fault-
tolerance can be added in polynomial time (in program
state space). Toward this end, we identify a class of
specifications, namely, monotonic specifications, and a class
of programs, namely monotonic programs. We show that
failsafe fault-tolerance can be synthesized in polynomial
time (in program state space) if monotonicity restrictions on
the program and the specification are met.

Using monotonicity property, we will be able to extend
the scope of programs for which the addition of failsafe
fault-tolerance can be done in polynomial time. More
specifically, one can design heuristics that convert non-
monotonic programs (respectively, specifications) to mono-
tonic programs so that polynomial synthesis of failsafe
fault-tolerance becomes possible [9].

As another important contribution of this paper, we
evaluate the role of restrictions imposed on specification
and fault-intolerant program. In this context, we show that
if monotonicity restrictions are imposed only on the
specification (respectively, the fault-intolerant program)
then the problem of adding failsafe fault-tolerance to
distributed programs will remain NP-complete. Also, we
demonstrate that the class of monotonic specifications
contains well-recognized problems [5], [7], [19], [13], [20]
of distributed consensus, atomic commitment and Byzan-
tine agreement. Finally, we show how the monotonicity
property may be used to enhance the fault-tolerance of
distributed nonmasking programs to masking.

Remark. Adding failsafe fault-tolerance only requires the
safety of the distributed consensus and atomic commit in
the presence of crash faults; i.e., if the processes reach an
agreed decision, then their decision is valid. As a result,
the termination condition (the liveness) of these pro-
blems may not be met in the presence of faults; i.e., the
processes may never reach an agreement. For this reason,
the results of this paper do not contradict with the
impossibility result of [10].

Failsafe fault-tolerance to crash faults only requires the
validity of the consensus, i.e., if all processes reach an
agreement on a vote then that vote is valid in that it is

the vote of all nonfaulty processes. Since failsafe fault-
tolerance does not require the liveness condition of the
consensus problem in the presence of faults, the impos-
sibility result of [10] becomes irrelevant in the context of
failsafe fault-tolerance.

Organization of the paper. This paper is organized as
follows: In Section 2, we provide the basic concepts such
as programs, computations, specifications, faults and
fault-tolerance. In Section 3, we state the problem of
adding failsafe fault-tolerance. In Section 4, we prove the
NP-completeness of the problem of adding failsafe fault-
tolerance to distributed programs. In Section 5, we
precisely define the notion of monotonic specifications
and monotonic programs, and identify their role in the
complexity of synthesizing failsafe fault-tolerance. We
give examples of monotonic specifications and monotonic
programs in Section 6. Then, in Section 7, we illustrate
how we use the monotonicity property for enhancing the
fault-tolerance of nonmasking distributed programs to
masking fault-tolerance in polynomial time (in program
state space). Finally, in Section 8, we make concluding
remarks and identify future research directions.

2 PRELIMINARIES

In this section, we give formal definitions of programs,
problem specifications, faults, and fault-tolerance. The
programs are specified in terms of their state space and
their transitions. The definition of specifications is adapted
from Alpern and Schneider [1]. The definition of faults and
fault-tolerance is adapted from Arora and Gouda [2] and
Arora and Kulkarni [3]. The issues of modeling distributed
programs is adapted from Kulkarni and Arora [16], and
Attie and Emerson [4]. To illustrate our modeling approach,
we use the Byzantine Generals problem [19] as a running
example throughout this section.

2.1 Program

A program p is specified by a finite set of variables, say
V ¼ fv1; ::; vug, and a finite set of processes, say
P ¼ fP1; � � � ; Png, where u and n are positive integers.
Each variable is associated with a finite domain of values.
Let v1; v2; ::; vu be variables of p, and let D1; D2; ::; Du be
their respective domains. A state of p is obtained by
assigning each variable a value from its respective
domain. Thus, a state s of p has the form: hl1; l2; ::; lui
where 8i : 1 � i � u : li 2 Di. The state space of p, Sp, is
the set of all possible states of p.

A process, say Pj (0 � j � n), in p is associated with a set
of program variables, say rj, that Pj can read and a set of
variables, say wj, that Pj can write. We assume that wj � rj,
i.e., Pj cannot blindly write any variable. Also, process Pj

consists of a set of transitions �j; each transition is of the
form ðs0; s1Þ where s0; s1 2 Sp. We address the effect of
read/write restrictions on �j in Section 2.2. The transitions
of p, �p, is the union of the transitions of its processes.

In this paper, in most situations, we are interested in the
state space of p and all its transitions. For the examples
considered in this paper, it is straightforward to determine
which transition belongs to which process. Hence, unless
we need to expose the transitions of a particular process or
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the values of particular variables, we simply represent a
program p by the tuple hSp; �pi. A state predicate of p is any
subset of Sp. A state predicate S is closed in the program p

(respectively, �p) iff (if and only if) the following condition
holds: 8s0; s1 :: ðððs0; s1Þ 2 �pÞ ^ ðs0 2 SÞÞ ) ðs1 2 SÞ.

A sequence of states, � ¼ hs0; s1; . . .i, is a computation of p
iff the following two conditions are satisfied: 1) if � is
infinite then 8j : j > 0 : ðsj�1; sjÞ 2 �p, and 2) if � is finite and
terminates in state sl then there does not exist state s such
that ðsl; sÞ 2 �p. A sequence of states, hs0; s1; . . . ; ski, is a
computation prefix of p iff 8j : 0 < j � k : ðsj�1; sjÞ 2 �p ,
where k is a positive integer.

The projection of program p on a state predicate S,
denoted as pjS, is the set of transitions

fðs0; s1Þ : ðs0; s1Þ 2 �p ^ s0; s1 2 Sg;

i.e., pjS consists of transitions of p that start in S and end in
S. Given two programs, p and p0, we say p0 � p iff S0

p ¼ Sp

and �0p � �p.
Notation. When it is clear from context, we use p and �p

interchangeably. Also, we say that a state predicate S is true
in a state s iff s 2 S.

Byzantine generals example. We consider the canonical
version of the Byzantine generals problem [19] where there
are 4 distributed processes Pg; Pj; Pk, and Pl such that Pg is
the general and Pj, Pk, and Pl are the nongenerals. (An
identical explanation is applicable if we consider arbitrary
number of nongenerals.) In the Byzantine generals pro-
gram, the general sends its decision to nongenerals and
subsequently nongenerals output their decisions. Thus,
each process has a variable d to represent its decision, a
Boolean variable b to represent if that process is Byzantine,
and a variable f to represent if that process has finalized
(output) its decision. The program variables and their
domains are as follows:

d:g : f0; 1g
d:j; d:k; d:l : f0; 1;?g

// ? denotes uninitialized decision

b:g; b:j; b:k; b:l : ftrue; falseg
// b:j ¼ true iff Pj is Byzantine

f:j; f:k; f:l : f0; 1g
// f:j ¼ 1 iff Pj has finalized its decision

The fault-intolerant Byzantine generals program, IB.
We use Dijkstra’s guarded commands [6] as a shorthand for
representing the set of program transitions. A guarded
command (action) is of the form grd ! st, where grd is a
state predicate and st is a statement that updates the
program variables. The guarded command grd ! st in-
cludes all program transitions fðs0; s1Þ : grd holds at s0 and
the atomic execution of st at s0 takes the program to state
s1g. We represent the actions of the nongeneral process Pj

as follows (the actions of other nongenerals are similar):

IB1 : d:j ¼ ? ^ f:j ¼ 0 �! d:j :¼ d:g;

IB2 : d:j 6¼ ? ^ f:j ¼ 0 �! f:j :¼ 1:

A nongeneral process that has not yet decided copies the
decision of the general. When a nongeneral process decides,
it can finalize its decision.

2.2 Distribution Issues

Now, we present the issues that distribution introduces
during the addition of fault-tolerance. More specifically, we
identify how read/write restrictions on a process affect its
transitions.

Write restrictions. Given a transition ðs0; s1Þ, it is
straightforward to determine the variables that need to be
changed in order to modify the state from s0 to s1.
Specifically, if xðs0Þ denotes the value of x in state s0 and
xðs1Þ denotes the value of x in state s1 then we say that
ðs0; s1Þwrites the value of x iff xðs0Þ 6¼ xðs1Þ. Thus, the write
restrictions amount to ensuring that the transitions of a
process only modify those variables that it can write.

More specifically, if process Pj can only write the
variables in wj and the value of a variable other than that
in wj is changed in the transition ðs0; s1Þ then that transition
cannot be used in obtaining the transitions of Pj. In other
words, if Pj can only write variables in wj, then Pj cannot
use the transitions in nwðwjÞ, where

nwðwjÞ ¼ fðs0; s1Þ : ð9x : x 62 wj : xðs0Þ 6¼ xðs1ÞÞg:

Read restrictions. Read restrictions require us to group
transitions and ensure that the entire group is included or
the entire group is excluded. As an example, consider a
program consisting of two variables a and b, and let their
domain be f0; 1g. Suppose that we have a process Pj that
cannot read b. Now, observe that the transition from the
state ha ¼ 0; b ¼ 0i to ha ¼ 1; b ¼ 0i can be included in the
set of transitions of Pj iff the transition from ha ¼ 0; b ¼ 1i to
ha ¼ 1; b ¼ 1i is also included in the set of transitions of Pj.
If we were to include only one of these transitions, both a
and b must be read. However, when these two transitions
are grouped, the value of b is irrelevant and, hence, it need
not be read.

More generally, consider the case where rj is the set of
variables that Pj can read, wj is the set of variables that Pj

can write, and wj � rj. Now, process Pj can include the
transition ðs0; s1Þ iff Pj also includes the transition ðs00; s01Þ,
where s0 (respectively, s1) and s00 (respectively, s01) are
identical as far as the variables in rj are considered, and s0
(respectively, s00) and s1 (respectively, s

0
1) are identical as far

as the variables not in rj are considered. We define these
transitions as groupðrjÞðs0; s1Þ for the case wj � rj, where

groupðrjÞðs0; s1Þ ¼ fðs00; s01Þ : ð8x : x 2 rj : xðs0Þ ¼ xðs00Þ
^ xðs1Þ ¼ xðs01ÞÞ ^ ð8x : x 62 rj : xðs00Þ

¼ xðs01Þ ^ xðs0Þ ¼ xðs1ÞÞg:

In Section 4, we use the grouping of transitions, caused by
the inability to read, to show that the problem of
synthesizing failsafe fault-tolerance is NP-complete.

The read/write restrictions in the IB program. Each
nongeneral non-Byzantine process Pj is allowed to only
read rj ¼ fb:j; d:j; f:j; d:k; d:l; d:gg and it can only write
wj ¼ fd:j; f:jg. Hence, in this case, wj � rj.

2.3 Specification

A specification is a set of infinite sequences of states that is
suffix-closed and fusion-closed. Suffix closure of the set
means that if a state sequence � is in that set then so are all
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the suffixes of �. Fusion closure of the set means that if state
sequences h�; s; �i and h�; s; �i are in that set then so are the
state sequences h�; s; �i and h�; s; �i, where � and � are
finite prefixes of state sequences, � and � are suffixes of state
sequences, and s is a program state. We refer the reader to
[14], [12] where it is shown that it is possible to refine the
specification, spec, of a program, p, that is not suffix-closed
and/or fusion-closed into a specification spec0 by adding
history variables where spec0 is both suffix and fusion-
closed. In such refinement, p satisfies spec from an initial
state si iff the program p0 satisfies spec0 from s0i, where p0

(respectively, s0i) is the program (respectively, initial state)
obtained after adding history variables to p.

Following Alpern and Schneider [1], we rewrite a
specification as a conjunction of a safety specification and
a liveness specification. Since the specification is suffix-
closed, it is possible to represent the safety specification of a
program as a set of bad transitions that the program is not
allowed to execute. For reasons of space, we refer the reader
to [14] (see p. 26, Lemma 3.6 of [14]) for the proof of this
claim. Thus, for program p, its safety specification is a
subset of Sp � Sp. We do not explicitly specify the liveness
specification as we show that the fault-tolerant program
satisfies the liveness specification (in the absence of faults)
iff the fault-intolerant program satisfies the liveness
specification. Moreover, in the problem of synthesizing
fault-tolerance, the initial fault-intolerant program satisfies
its specification (including the liveness specification). Thus,
the liveness specification need not be specified explicitly.

Given a program p, a state predicate S, and a specifica-
tion spec, we say that p satisfies spec from S iff 1) S is closed
in p and 2) every computation of p that starts in a state
where S is true is in spec. If p satisfies spec from S and
S 6¼ fg, we say that S is an invariant of p for spec. For a finite
sequence (of states) �, we say that � maintains (does not
violate) spec iff there exists an infinite sequence of states �
such that �� 2 spec. We say that p maintains (does not
violate) spec from S iff 1) S is closed in p and 2) every
computation prefix of p that starts in a state in S maintains
spec. Note that the definition of maintains focuses on finite
sequences of states, whereas the definition of satisfies
concentrates on infinite sequences of states.

Also, note that a specification is a set of infinite
sequences of states. Hence, if p satisfies spec from S, then
all computations of p that start in S must be infinite.
However, p may deadlock if it starts in a state that is not in
S. Also, note that p is allowed to contain a self-loop of the
form ðs0; s0Þ; i.e., it is permissible for p to reach s0 and
remain there forever.

Notation. Let spec be a specification. We use the term
safety of spec to mean the smallest safety specification that
includes spec. Also, whenever the specification is clear from
the context, we will omit it; thus, S is an invariant of p
abbreviates S is an invariant of p for spec.

The safety specification of the IB program. The safety
specification of IB requires that Validity and Agreement be
satisfied. Validity stipulates that if the general is not
Byzantine and a non-Byzantine nongeneral has finalized
its decision, then the decision of that nongeneral process is
the same as that of the general. An agreement requires that

if two non-Byzantine nongenerals have finalized their
decisions then their decisions are identical. Hence, the
program should not reach a state in Ssf , where

Ssf ¼ ð9p; q :: :b:p ^ :b:q ^ d:p 6¼ ? ^ d:q 6¼ ? ^ d:p 6¼ d:q ^ f:p ^ f:

ð9p :: :b:g ^ :b:p ^ d:p 6¼ ? ^ d:p 6¼ d:g ^ f:pÞ:

Notation. In this section, we use process variables p and q

to represent nongeneral processes in the quantifications.
In addition, when a non-Byzantine process finalizes, it is

not allowed to change its decision. Therefore, the set of
transitions that should not be executed is as follows:

tsf ¼fðs0; s1Þ : s1 2 Ssfg [ fðs0; s1Þ : :b:jðs0Þ
^ :b:jðs1Þ ^ f:jðs0Þ ¼ 1

^ ðd:jðs0Þ 6¼ d:jðs1Þ _ f:jðs0Þ 6¼ f:jðs1ÞÞg:

Invariant of IB. In the absence of faults, no process is
Byzantine. Also, a nongeneral is either undecided or has
copied the decision of the general. If a nongeneral process
has finalized then it must have decided. Thus, the invariant
of program IB is SIB, where

SIB ¼ ð8p :: :b:p ^ ðd:p ¼ ? _ d:p ¼ d:gÞ
^ ðf:p ) d:p 6¼ ?ÞÞ ^ :b:g:

2.4 Faults

We systematically represent the faults that a program is
subject to by a set of transitions. Thus, a class of fault f for
program p is a subset of the set Sp � Sp. We use p½�f to
denote the transitions obtained by taking the union of the
transitions in p and the transitions in f . We say that a state
predicate T is an f-span (read as fault-span) of p from S iff
the following two conditions are satisfied: 1) S � T

(equivalently, S ) T ) and 2) T is closed in p½�f . Thus, at
each state where an invariant S of p is true, an f-span T of p
from S is also true. Also, T , similar to S, is closed in p.
Moreover, if any transition in f is executed in a state where
T is true, then T is also true in the resulting state. It follows
that for all computations of p that start at states where S is
true, T is a boundary in the state space of p up to which (but
not beyond which) the state of p may be perturbed by the
occurrence of the transitions in f .

As we defined a computation of p, we say that a sequence
of states, � ¼ hs0; s1; . . .i, is a computation of p in the presence

of f iff the following three conditions are satisfied: 1) if � is
infinite, then 8j : j>0 : ðsj�1; sjÞ2 ð�p [ fÞ; 2) if � is finite and
terminates in state sl, then there does not exist state s such
that ðsl; sÞ 2 �p; and 3) 9n : n�0 : ð8j : j>n : ðsj�1; sjÞ2�pÞ.
The first requirement captures that in each step, either a
program transition or a fault transition is executed. The
second requirement captures that faults do not have to
execute, i.e., if the program reaches a state where only a fault
transition can be executed, it is not required that the fault
transition be executed. It follows that fault transitions cannot
be used to deal with deadlocked states. Finally, the third
requirement captures that the number of fault occurrences in
a computation is finite. Although we assume that the
number of fault occurrences is finite, our model permits
unbounded occurrences of faults [15].
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Byzantine faults. The Byzantine faults, fB, can affect at
most one process. A Byzantine process permanently
remains Byzantine, and can change its decision arbitrarily.
To model the effect of permanent faults—faults that
permanently perturb the state of a program (e.g., Byzan-
tine), we add new variables to a fault-intolerant program
before synthesizing its fault-tolerant version. For example,
we have added a local Boolean variable b to each process of
the fault-intolerant program IB to represent whether or not
that process is Byzantine. The following guarded command
illustrates how we model the way a process becomes
Byzantine.

F1 : :b:g ^ :b:j ^ :b:k ^ :b:l �! b:j :¼ true:

After a process becomes Byzantine (e.g., Pj), it may
arbitrarily change the value of its decision and finalization
variables.

F2 : b:j �! d:j; f:j :¼ 0j1; 0j1:

Although for the case of Byzantine faults we add new
variables to model the effect of faults, there exist cases (e.g.,
transient faults) where we do not need add new variables.

2.5 Fault-Tolerance

In this section, we define what it means for a program to be
failsafe/nonmasking/masking fault-tolerant. We have
adapted the following definitions from [16].

Failsafe fault-tolerance. We say that p is failsafe
f-tolerant (read as fault-tolerant) to spec from S iff the
following two conditions hold: 1) p satisfies spec from S and
2) there exists T such that T is an f-span of p from S and p½�f
maintains spec from T .

Nonmasking fault-tolerance. We say that p is nonmask-
ing f-tolerant to spec from S iff the following two conditions
hold: 1) p satisfies spec from S and 2) there exists T such
that T is an f-span of p from S and every computation of
p½�f that starts from a state in T has a state in S.

Masking fault-tolerance. We say that p is masking
f-tolerant to spec from S iff the following two conditions
hold: 1) p satisfies spec from S and 2) there exists T such
that T is an f-span of p from S, p½�f maintains spec from T ,
and every computation of p½�f that starts from a state in T
has a state in S.

Notation. Henceforth, whenever the program p is clear
from the context, we will omit it; thus, “S is an invariant”
abbreviates “S is an invariant of p” and “f is a fault”
abbreviates “f is a fault for p.” Also, whenever the

specification spec and the invariant S are clear from the
context, we omit them; thus, “f-tolerant” abbreviates
“f-tolerant to spec from S,” and so on.

3 PROBLEM STATEMENT

In this section, we focus on the definition of synthesizing
failsafe fault-tolerant programs from their fault-intolerant
version. First, in Section 3.1, we formally state the synthesis
problem. Then, in Section 3.2, we reiterate the result showed
in [16] that the problem of synthesizing failsafe fault-
tolerance is in NP. We reuse this result in Section 4 to show
theNP-Completeness of synthesizing failsafe fault-tolerance.

3.1 Problem of Synthesizing Failsafe
Fault-Tolerance

In this section, we formally state the problem of
synthesizing failsafe fault-tolerance. Our goal is to only

add failsafe fault-tolerance to generate a program that
reuses a given fault-intolerant program. In other words, we
require that any new computations that are added in the
fault-tolerant program are solely for the purpose of
dealing with faults; no new computations are introduced
when faults do not occur.

Now, consider the case where we begin with the fault-
intolerant program p, its invariant S, its specification spec,
and faults f . Let p0 be the fault-tolerant program derived
from p, and let S0 be an invariant of p0. Since S is an
invariant of p, all the computations of p that start from a
state in S satisfy the specification, spec. Since we have no
knowledge about the computations of p that start outside
S and we are interested in deriving p0 such that the
correctness of p0 in the absence of faults is derived from
the correctness of p, we must ensure that p0 begins in a
state in S; i.e., the invariant of p0, say S0, must be a subset
of S (cf. Fig. 1).

Likewise, to show that p0 is correct in the absence of
faults, we need to show that the computations of p0 that start
in states in S0 are in spec. We only have knowledge about
the computations of p that start in a state in S (cf. Fig. 1).
Hence, we must not introduce new transitions in the
absence of faults. Thus, we define the problem (recalled
from [16]) of synthesizing failsafe fault-tolerance as follows:

The Problem of Synthesizing Failsafe Fault-Tolerance

Given p, S, spec, and f such that p satisfies spec from S

Identify p0 and S0 such that
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S0 � S,

p0jS0 � pjS0, and

p0 is failsafe fault-tolerant to spec from S0.

Also, to show that the problem of synthesizing failsafe
fault-tolerance is NP-complete, we state the corresponding
decision problem: for a given fault-intolerant program p, its
invariant S, the specification spec, and faults f , does there exist a
failsafe fault-tolerant program p0 and the invariant S0 that satisfy
the three conditions of the synthesis problem?

Notation. Given a fault-intolerant program p, specifica-
tion spec, invariant S and faults f , we say that program p0

and predicate S0 solve the synthesis problem for a given
input iff p0 and S0 satisfy the three conditions of the
synthesis problem. We say p0 (respectively, S0) solves the
synthesis problem iff there exists S0 (respectively, p0) such
that p0; S0 solve the synthesis problem.

Synthesizing failsafe fault-tolerant Byzantine generals.

The problem of synthesizing a failsafe fault-tolerant version

of the Byzantine generals program (presented in Section 2)

amounts to finding a new invariant S0
IB, and calculating the

set of transitions of a program FSB such that 1) S0
IB � SIB,

2) ðFSBjS0
IBÞ � ðIBjS0

IBÞ, and 3) FSB is failsafe fB-tolerant

to tsf from S0
IB. In Section 6, we illustrate how we synthesize

such a program.

3.2 Nondeterministic Algorithm

In this section, we reiterate the result presented in [16] that
the problem of synthesizing failsafe fault-tolerant distrib-
uted programs is in NP. Since in Section 4 we use this result
to show that indeed this problem is NP-complete, we
represent a nondeterministic polynomial algorithm (Fig. 2)
adapted from [16].

The algorithm Add_Failsafe_FT from [16] takes the
transition groups g0; � � � ; gmax that represent a fault-intoler-
ant distributed program p, its invariant S, its specification
spec, and a class of faults f . Then, Add_Failsafe_FT
calculates the set of ms states from where safety can be
violated by the execution of fault transitions alone. Also, it
computes the set of transitionsmt that violate safety or reach
a state in ms. Afterward, it nondeterministically guesses the
fault-tolerant program, p0, its invariant, S0 and its fault-span,
T 0. Subsequently, it verifies that the synthesized (guessed)

failsafe fault-tolerant program satisfies the three conditions
of the synthesis problem (cf. Section 3.1).

Theorem 1. The problem of synthesizing failsafe fault-tolerant
distributed programs from their fault-intolerant version is in
NP [16].

4 NP-COMPLETENESS PROOF

In this section, we prove that the problem of synthesizing
failsafe fault-tolerant distributed programs from their
fault-intolerant version is NP-complete in program state
space. Toward this end, we reduce the 3-SAT problem to
the problem of synthesizing failsafe fault-tolerance. In
Section 4.1, we present the mapping of the given 3-SAT
formula into an instance of the synthesis problem. After-
ward, in Section 4.2, we show that the 3-SAT formula is
satisfiable iff a failsafe fault-tolerant program can be
synthesized from this instance of the synthesis problem.
Before presenting the mapping, we recall the 3-SAT
problem [11].

Proof The 3-SAT Problem. Given is a set of propositional
variables, b1; b2; . . . ; bn, and a Boolean formula c ¼ c1 ^
c2 ^ . . . ^ cM , where each cj is a disjunction of exactly
three literals.

Does there exist an assignment of truth values to
b1; b2; . . . ; bn such that c is satisfiable?

4.1 Mapping 3-SAT to an Instance of the
Synthesis Problem

The instance of the synthesis problem includes the fault-
intolerant program, its specification, its invariant, and a
class of faults. Corresponding to each propositional variable
and each disjunction in the 3-SAT formula, we specify the
states and the set of transitions of the fault-intolerant
program. Then, we identify the fault transitions of this
instance. Subsequently, we identify the safety specification
and the invariant of the fault-intolerant program and
determine the value of each program variable in every state.

The states of the fault-intolerant program. Correspond-
ing to each propositional variable bi and its complement :bi,
we introduce the following states (see Fig. 3): xi, x

0
i, ai, yi, y

0
i,

zi, and z0i.
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For each disjunction, cj ¼ bm _ :bk _ bl (cf. Fig. 4), we
introduce the following states (k 6¼ m): c0jm, d

0
jm, cjk; djk, c

0
jl,

and d0jl.
The transitions of the fault-intolerant program. In the

fault-intolerant program, corresponding to each proposi-
tional variable bi and its complement :bi, we introduce the
following transitions (cf. Fig. 3): ðai�1; xiÞ, ðxi; aiÞ, ðy0i; z0iÞ,
ðai�1; x

0
iÞ, ðx0

i; aiÞ, and ðyi; ziÞ.
Also, we introduce a transition from an to a0 in the fault-

intolerant program. Corresponding to each cj¼bm_ :bk _ bl,
we introduce the following program transitions (cf. Fig. 4):
ðc0jm; d0jmÞ, ðcjk; djkÞ, and ðc0jl; d0jlÞ.

Fault transitions. We introduce the following fault
transitions: From state xi, the fault-intolerant program can

reach yi by the execution of faults. From state x0i, the faults

can perturb the program to state y0i. Thus, for each
propositional variable bi and its complement :bi, we
introduce the following fault transitions: ðxi; yiÞ, and ðx0i; y0iÞ.

In addition, for each disjunction cj ¼ ðbm _ :bk _ blÞ, we
introduce a fault transition that perturbs the program from
state ai, 0 � i < n, to c0jm. We also introduce the fault
transition that perturbs the program from d0jm to cjk, and the
transition that perturbs the program from djk to c0jl. Thus,
the fault transitions for cj are as follows: ðai; c0jmÞ, ðd0jm; cjkÞ,
and ðdjk; c0jlÞ. (Note that the fault transitions can perturb the
program from state ai only to the first state introduced for
cj; i.e., c

0
jm.)

The invariant of the fault-intolerant program. The
invariant of the fault-intolerant program consists of the
following set of states:

fx1; � � � ; xng [ fx0
1; � � � ; x0

ng [ fa0; � � � ; ang:

Safety specification of the fault-intolerant program. For
each propositional variable bi and its complement :bi, the
following two transitions violate the safety specification:
ðyi; ziÞ and ðy0i; z0iÞ. Observe that in state xi (respectively, x

0
i)

safety may be violated if the fault perturbs the program to yi
(respectively, y0i) and then the program executes the
transition ðyi; ziÞ (respectively, ðy0i; z0iÞ) (cf. Fig. 4). For each
disjunction cj ¼ bm _ :bk _ bl, only the last program transi-
tion ðc0jl; d0jlÞ added for cj violates the safety of specification.
Now, if all three program transitions corresponding to cj
are included, then safety may be violated by the execution
of program and fault transitions (cf. Fig. 4).
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Variables. Now, we specify the variables used in the
fault-intolerant program and their respective domains.
These variables are assigned in such a way that allows us
to group transitions appropriately. The fault-intolerant
program has four variables: e, f , g, and h. The domains of
these variables are respectively as follows: f0; � � � ; ng,
f�1; 0; 1g, f0; � � � ; ng, and f0; � � � ;M þ nþ 1g.

Value assignments. We have shown the value assign-
ments in Fig. 5.

Processes and read/write restrictions. The fault-intoler-
ant program consists of five processes, P1, P2, P3, P4, and P5.
The read/write restrictions on these processes are as
follows:

. Processes P1 and P2 can read and write variables f
and g. They can only read variable e and they cannot
read or write h.

. Processes P3 and P4 can read and write variables e
and f . They can only read variable g and they cannot
read or write h.

. Process P5 can read all program variables and it can
only write e and g.

Remark. We could have used one process for transitions
of P1 and P2 (respectively, P3 and P4); however, we have
separated them in two processes in order to simplify the
presentation.

Grouping of Transitions. Based on the above read/write
restrictions, we identify the transitions that are grouped
together. We illustrate the grouping of the program
transitions and the values assigned to the program variables
in Fig. 4.

Observation 1. Based on the inability of P3 and P4 to write
g, the transitions ðxi; aiÞ, ðx0

i; aiÞ, ðyi; ziÞ, and ðy0i; z0iÞ can
only be executed by P1 or P2.

Observation 2. Based on the inability of P1 and P2 to write
e, the transitions ðai�1; xiÞ and ðai�1; x

0
iÞ can only be

executed by P3 or P4.

Observation 3. Based on the inability of P1 to read h, the
transitions ðxi; aiÞ and ðy0i; z0iÞ are grouped in P1. More-
over, this group also includes the transition ðcji; djiÞ for
each cj that includes :bi.

Observation 4. Based on the inability of P2 to read h, the
transitions ðx0

i; aiÞ and ðyi; ziÞ are grouped in P2. More-
over, this group also includes the transition ðc0ji; d0jiÞ for
each cj that includes bi.

Observation 5. ðai�1; xiÞ is grouped in P3.

Observation 6. ðai�1; x
0
iÞ is grouped in P4.

Observation 7. Since process P5 cannot write f , it cannot
execute the following transitions: ðai�1; xiÞ, ðai�1; x

0
iÞ,

ðxi; aiÞ, ðx0
i; aiÞ, ðyi; ziÞ, and ðy0i; z0iÞ, for 1 � i � n. Process

P5 can only execute transition ðan; a0Þ.

The set of transitions for each process is the union of the
transitions mentioned above, for 1 � i � n.

4.2 The Reduction of 3-SAT

In this section, we show that 3-SAT has a satisfying truth
value assignment if and only if there exists a failsafe fault-
tolerant program derived from the instance introduced in
Section 4.1. Toward this end, we prove the following
lemmas:

Lemma 1. If the given 3-SAT formula is satisfiable, then there
exists a failsafe fault-tolerant program that solves the instance
of the synthesis problem identified in Section 4.1

Proof. Since the 3-SAT formula is satisfiable, there exists an
assignment of truth values to the propositional variables
bi, 1 � i � n, such that each cj, 1 � j � M, is true. Now,
we identify a fault-tolerant program, p0, that is obtained
by adding failsafe fault-tolerance to the fault-intolerant
program, p, identified earlier in this section. The
invariant of p0 is:

S0 ¼
fa0; ::; ang [ fxi jpropositional variable bi is true in 3-SATg
[ fx0

i j propositional variable bi is false in 3-SATg:

The transitions of the fault-tolerant program p0 are
obtained as follows:

. For each propositional variable bi, 1 � i � n, if bi
is true, we include the transition ðai�1; xiÞ that is
grouped in process P3. We also include the
transition ðxi; aiÞ. Based on Observation 3, as we
include ðxi; aiÞ, we have to include ðy0i; z0iÞ. Also,
based on Observation 3, for each disjunction cj
that includes :bi, we have to include the transi-
tion ðcji; djiÞ.

. For each propositional variable bi, 1 � i � n, if bi
is false, we include the transition ðai�1; x

0
iÞ that is

grouped in process P4. We also include the
transition ðx0

i; aiÞ. Based on Observation 4, as we
include ðx0

i; aiÞ, we have to include ðyi; ziÞ. Also,
for each disjunction cj that includes bi, we have to
include the transition ðc0ji; d0jiÞ.

. We include the transition ðan; a0Þ to ensure that p0

has infinite computations in its invariant.
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Now, we show that p0 does not violate safety even if

faults occur. Note that we introduced safety-violating

transitions for each propositional variable and for each

disjunction. We show that none of these can be executed

by p0.

. Safety-violating transitions related to propositional
variable bi. If the value of propositional variable bi
is true then the safety-violating transition ðy0i; z0iÞ is
included in p0. However, in this case, we have
removed the state x0

i from the invariant of p0 and,
hence, p0 cannot reach state y0i. It follows that p0

cannot execute the transition ðy0i; z0iÞ. By the same
argument, p0 cannot execute transition ðyi; ziÞ
when bi is false.

. Safety-violating transitions related to disjunction cj.
Since the 3-SAT formula is satisfiable, every
disjunction in the formula is true. Let cj ¼ bm _
:bk _ bl. Without loss of generality, let bm be true
in cj. Therefore, the transition ðc0jm; d0jmÞ is not
included in p0. It follows that p0 cannot reach the
state c0jl and, hence, it cannot violate safety by
executing the transition ðc0jl; d0jlÞ.

Since S0 � S, p0 j S0 � p j S0, p0 does not deadlock in the

absence of faults, and p0 does not violate safety in the

presence of faults, p0 and S0 solve the synthesis

problem. tu

Lemma 2. If there exists a failsafe fault-tolerant program that

solves the instance of the synthesis problem identified in

Section 4.1, then the given 3-SAT formula is satisfiable.

Proof. Suppose that there exists a failsafe fault-tolerant

program p0 derived from the fault-intolerant program, p,

identified in Section 4.1. Since the invariant of p0; S0 is not

empty and S0 � S, S0 must have at least one state in S.

Since the computations of the fault-tolerant program in S0

should not deadlock, for 0 � i � n, every ai must be

included in S0. For the same reason, since P5 cannot

execute from ai�1 (cf. Observation 7, one of the transitions

ðai�1; xiÞ or ðai�1; x
0
iÞ should be in p0 (1 � i � n). If p0

includes ðai�1; xiÞ, then we will set bi ¼ true in the 3-SAT

formula. If p0 contains the transition ðai�1; x
0
iÞ, then we set

bi ¼ false. Hence, each propositional variable will be

assigned a truth value. Now, we show that it is not the

case that bi is assigned true and false simultaneously, and

that each disjunction is true.

. Each propositional variable gets a unique truth
assignment. We prove this by contradiction.
Suppose that there exists a propositional vari-
able bi, which is assigned both true and false;
i.e., both ðai�1; xiÞ and ðai�1; x

0
iÞ are included in

p0. Based on the Observations 1 and 3, the
transitions ðai�1; xiÞ; ðxi; aiÞ and ðy0i; z0iÞ must be
included in p0. Likewise, based on the Observa-
tions 2 and 4, the transitions ðai�1; x

0
iÞ; ðx0

i; aiÞ
and ðyi; ziÞ must also be included in p0. Hence,
in the presence of faults, p0 may reach yi and
violate safety by executing the transition ðyi; ziÞ.

This is a contradiction since we assumed that p0

is failsafe fault-tolerant.
. Each disjunction is true. Suppose that there exists

a cj ¼ bm _ :bk _ bl, which is not true. Therefore,
bm ¼ false, bk ¼ true, and bl ¼ false. Based on
the grouping discussed earlier, the transitions
ðc0jm; d0jmÞ, ðcjk; djkÞ, and ðc0jl; d0jlÞ are included in
p0. Thus, in the presence of faults, p0 can reach
c0jl and violate safety specification by executing
the transition ðc0jl; d0jlÞ. Since this is a contra-
diction, it follows that each disjunction in the 3-
SAT formula is true. tu

Theorem 2. The problem of synthesizing failsafe fault-tolerant
distributed programs from their fault-intolerant version is
NP-complete in program state space.

5 MONOTONIC SPECIFICATIONS AND PROGRAMS

Since the synthesis of failsafe fault-tolerance is NP-complete,
as discussed in the Introduction, we focus on this question:
What restrictions can be imposed on specifications, programs and
faults in order to guarantee that the addition of failsafe fault-
tolerance can be done in polynomial time?

As seen in Section 4, one of the reasons behind the
complexity involved in the synthesis of failsafe fault-
tolerance is the inability of the fault-intolerant program to
execute certain transitions even when no faults have
occurred. More specifically, if a group of transitions
includes a transition within the invariant of the fault-
intolerant program and a transition that violates safety, then
it is difficult to determine whether that group should be
included in the failsafe fault-tolerant program.

To identify the restrictions that need to be imposed on
the specification, the fault-intolerant program and the
faults, we begin with the following question: Given a
program p with invariant S, under what conditions, can we
design a failsafe fault-tolerant program, say p0, that includes all
transitions in pjS?

If all transitions in pjS are included then it follows that p0

will not deadlock in any state in S. Moreover, p0 will satisfy
its specification from S; if a computation of p0 begins in S,
then it is also a computation of p. Now, we need to ensure
that safety will not be violated due to fault transitions and
the transitions that are grouped with those in pjS.

We proceed as follows: In Section 5.1, we define the class
of monotonic specifications, and the class of monotonic
programs. The intent of these definitions is to identify
conditions under which a process can make safe estimates of
variables that it cannot read. Also, we introduce the concept
of fault-safe specifications. Subsequently, in Section 5.2, we
show the role of monotonicity restrictions imposed on
specifications and programs in adding failsafe fault-
tolerance. When these restrictions are satisfied, we show
that the transitions in pjS and the transitions grouped with
them form the failsafe fault-tolerant program.

5.1 Sufficiency of Monotonicity

In this section, we identify sufficient conditions for poly-
nomial-time synthesis of failsafe fault-tolerant distributed
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programs from their fault-intolerant version. In a program
with a set of processes fP0; � � � ; Png, consider the case where
process Pj (0 � j � n) cannot read the value of a Boolean
variable x. The definition of (positive) monotonicity captures
the casewherePj can safely assume that x is false and, even if
x were true when Pj executes, the corresponding transition
would not violate safety. Thus, we define monotonic
specification as follows:

Definition. A specification spec is positive monotonic on a state
predicate Y with respect to a Boolean variable x iff the
following condition is satisfied:

8s0; s1; s00; s01 ::
xðs0Þ ¼ false ^ xðs1Þ ¼ false ^ xðs00Þ ¼ true ^ xðs01Þ ¼ true

^ the value of all other variables in s0 and s00 are the same

^ the value of all other variables in s1 and s01 are the same

^ ðs0; s1Þ does not violate spec ^ s0 2 Y ^ s1 2 Y

)
ðs00; s01Þ does not violate spec:

Likewise, we define monotonicity for programs by con-
sidering transitions within a state predicate, and define
monotonic programs as follows:

Definition. A program p is positive monotonic on a state
predicate Y with respect to a Boolean variable x iff the
following condition is satisfied.

8s0; s1; s00; s01 ::
xðs0Þ ¼ false ^ xðs1Þ ¼ false ^ xðs00Þ ¼ true ^ xðs01Þ ¼ true

^ the value of all other variables in s0 and s00 are the same

^ the value of all other variables in s1 and s01 are the same

^ ðs0; s1Þ 2 pjY
)
ðs00; s01Þ 2 pjY :

Negative monotonicity and monotonicity with respect

to Non-Boolean variables. We define negative monotoni-
city by swapping the words false and true in the above
definitions. Also, although we defined monotonicity with
respect to Boolean variables, it can be extended to deal with
nonBoolean variables. One approach is to replace x ¼ false

with x ¼ 0 and x ¼ true with x 6¼ 0 in the above definition.
In this case, the estimate for x is 0. We use this definition
later in Section 5.2, where we identify the role of
monotonicity in the complexity of synthesis.

Definition. Given a specification spec and faults f , we say that
spec is f-safe iff the following condition is satisfied.

8s0; s1 :: ððs0; s1Þ 2 f ^ ðs0; s1Þ violates specÞ )
ð8s�1 :: ðs�1; s0Þ violates specÞ:

The above definition states that, if a fault transition ðs0; s1Þ
violates spec, then all transitions that reach state s0 violate
spec. The goal of this definition is to capture the require-
ment that if a computation prefix violates safety and the last
transition in that prefix is a fault transition, then the safety is
violated even before the fault transition is executed.

Another interpretation of this definition is that if a
computation prefix maintains safety then the execution of
a fault action cannot violate safety. Yet another interpreta-
tion is that the first transition that causes safety to be
violated is a program transition.

We would like to note that for most problems, the
specifications being considered are fault-safe. To under-
stand this, consider the problem of mutual exclusion where
a fault may cause a process to fail. In this problem, failure of
a process does not violate the safety; safety is violated if
some process subsequently accesses its critical section even
though some other process is already in the critical section.
Thus, the first transition that causes safety to be violated is a
program transition. We also note that the specifications for
Byzantine agreement, consensus and commit are f-safe for
the corresponding faults (cf. Section 6). In fact, given a
specification spec and a class of fault f , we can obtain an
equivalent specification specf that prohibits the execution of
the following transitions:

fðs0; s1Þ : ðs0; s1Þ violates spec
_ ð9s2 :: ðs1; s2Þ 2 f ^ ðs1; s2Þ violates specÞg:

We leave it to the reader to verify that “p is failsafe
f-tolerant to spec from S” iff “p is failsafe f-tolerant to specf
from S.” With this observation, in the rest of this section, we
assume that the given specification, spec, is f-safe. If this is
not the case, Theorem 3 and Corollary 1 can be used if one
replaces spec with specf .

Using monotonicity of specifications/programs for

polynomial time synthesis. We use the monotonicity of
specifications and programs to show that even if the fault-
intolerant program executes after faults occur, safety will
not be violated. More specifically, we prove the following
theorem:

Theorem 3. Given is a fault-intolerant program p, its invariant

S, faults f and an f-safe specification spec,
If

8Pj; x : Pj is a process in p; x is a Boolean variable such that

Pj cannot read x : spec is positive monotonic on S

with respect to x

^ The program consisting of the transitions of Pj

is negative monotonic on S with respect to x:

Then

Failsafe fault-tolerant program that solves the synthesis

problem can be obtained in polynomial time

in the state space of p:

Proof. Let ðs0; s1Þ be a transition of process Pj and let ðs0; s1Þ
be in pjS. Let x be a Boolean variable that Pj cannot read.
Since we are considering programs where a process
cannot blindly write a variable, it follows that xðs0Þ
equals xðs1Þ. Now, we consider the transition ðs00; s01Þ
where s00 (respectively, s

0
1) is identical to s0 (respectively,

s1) except for the value of x. We show that ðs00; s01Þ does
not violate spec by considering the value of xðs0Þ.
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. xðs0Þ ¼ false. Since ðs0; s1Þ 2 pjS, it follows that
ðs0; s1Þ does not violate safety. Hence, from the
positive monotonicity of spec on S, it follows that
ðs00; s01Þ does not violate spec.

. xðs0Þ ¼ true. From the negative monotonicity of p
on S, ðs00; s01Þ is in pjS. Hence, ðs00; s01Þ does not
violate spec.

The above discussion leads to a special case of solving
the synthesis problem where the transitions in pjS and
the transitions grouped with them can be included in the
failsafe fault-tolerant program. Since p0jS equals pjS and
p satisfies spec from S, it follows that p0 satisfies spec
from S. Moreover, as shown above, no transition in p0

violates spec. And, since spec is f-safe, execution of fault
actions alone cannot violate spec. It follows that p0 is
failsafe f-tolerant to spec from S. tu

We generalize Theorem 3 as follows:

Corollary 1. Given is a fault-intolerant program p, its invariant

S, faults f and an f-safe specification spec,

If

8Pj;x : Pj is a process in p; x is a Boolean variable such

that Pj cannot read x : ðspec is positive monotonic

on S with respect to x

^ The program consisting of the transitions of Pj

is negative monotonic on Swith respect to xÞ
_

ðspec is negative monotonic on S with respect to x

^ The program consisting of the transitions of Pj

is positive monotonic on S

with respect to xÞ:

Then,

Failsafe fault-tolerant program that solves the synthesis

problem can be obtained in polynomial time in the

state space of p:

5.2 The Role of Monotonicity in the Complexity of
Synthesis

In Section 5.1, we showed that if the given specification is

positive (respectively, negative) monotonic and the fault-

intolerant program is negative (respectively, positive)

monotonic, then the problem of adding failsafe fault-

tolerance can be solved in polynomial time. In this section,

we consider the question: What can we say about the

complexity of adding failsafe fault-tolerance if only one of these

conditions is satisfied? Specifically, in Observations 5 and 6,

we show that if only one of these conditions is satisfied then

the problem remains NP-complete.

Observation 5. Given is a fault-intolerant program p, its

invariant S, faults f and an f-safe specification spec. If the

monotonicity restrictions (from Corollary 1) are satisfied

for p and no restrictions are imposed on the monotonicity

of spec on S, then the problem of adding failsafe fault-

tolerance to p remains NP-complete.

Proof. This proof follows from the fact that the program
obtained by mapping the 3-SAT problem in Section 4 is
negative monotonic with respect to h. Moreover, all
processes can read all variables except h (i.e., e, f , and g).
It follows that the proof in Section 4 maps an instance of
the 3-SAT problem to an instance of the problem of
adding failsafe fault-tolerance where the monotonicity
restrictions from Corollary 1 holds for the program and
no assumption is made about the monotonicity of the
specification. Therefore, based on Lemmas 1 and 2, the
proof follows. tu

Furthermore, the specification obtained by mapping the
3-SAT problem in Section 4 is negative monotonic with
respect to h. Hence, similar to Observation 5, we have:

Observation 6. Given is a fault-intolerant program p, its
invariant S, faults f , and an f-safe specification spec. If
the monotonicity restrictions (from Corollary 1) are
satisfied for spec and no restrictions are imposed on
the monotonicity of p on S then the problem of adding
failsafe fault-tolerance to p remains NP-complete.

Proof. The proof is similar to the proof of Observation 5.tu

Based on the above discussion, it follows that the
monotonicity of both programs and specifications is
necessary in the proof of Theorem 3.

Comment on the monotonicity property. The monotonicity
requirements are simple and if a program and its specifica-
tion meet the monotonicity requirements then the synthesis
of failsafe fault-tolerance will be simple as well. Never-
theless, the significance of such sufficient conditions lies in
developing heuristics by which we transform specifications
(respectively, programs) to monotonic specifications
(respectively, programs) so that polynomial-time addition
of failsafe fault-tolerance becomes possible. While the issue
of designing such heuristics is outside the scope of this
paper, we note that we have developed such heuristics in
[9], where we automatically transform specifications (re-
spectively, programs) to monotonic specifications (respec-
tively, programs) for the sake of polynomial-time addition
of failsafe fault-tolerance to distributed programs.

6 EXAMPLES OF MONOTONIC SPECIFICATIONS

In this section, we present an example of the application of
the monotonicity theorem (Theorem 3) for adding failsafe
fault-tolerance to the Byzantine generals problem presented
in Section 2. Specifically, we show the monotonicity
property of the Byzantine generals program and its
specification with respect to appropriate variables. We have
also shown in [18] that the consensus and atomic commit
programs and their specifications meet the monotonicity
requirements. Thus, failsafe fault-tolerance to fail-stop
faults can be added to these programs in polynomial time.
Now, we make the following observations about the
monotonicity of the specification and the program of the
Byzantine generals problem.

Observation 7. The specification of Byzantine generals is
positive monotonic on SIB with respect to b:k (respec-
tively, b:j and b:l).
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Proof. Consider a transition ðs0; s1Þ of some non-general
process, say Pj, where validity and agreement are not
violated even though Pk is not Byzantine. Let ðs00; s01Þ be
the corresponding transition where Pk is Byzantine. Since
validity and agreement impose no restrictions on what a
Byzantine process may do, it follows that ðs00; s01Þ does not
violate validity and agreement. tu

Likewise, we can make the following observations:

1. the specification of Byzantine generals problem is
negative monotonic on SIB with respect to f:k
(respectively, f:j and f:l);

2. the program IBj, consisting of the transitions of Pj,
with invariant SIB is negative monotonic on SIB with
respect to b:k (respectively, b:j and b:l);

3. the program IBj, consisting of the transitions of Pj,
with invariant SIB is positive monotonic on SIB with
respect to f:k (respectively, f:j and f:l), and

4. the specification of Byzantine generals problem is
fB-safe.

Theorem 4. Failsafe fault-tolerant Byzantine generals program

can be obtained in polynomial time in the state space of the IB
program.

To obtain the failsafe fault-tolerant program, based on
Theorem 3, we calculate the transitions of the fault-tolerant
program inside the invariant SIB. The groups of transitions
associated with them form the failsafe fault-tolerant
program, FSB. Thus, the actions of a nongeneral process
Pj in the fault-tolerant program are as follows:

FSB1 : d:j¼?^f:j ¼ 0 �! d:j :¼ d:g

FSB2 : ðd:j ¼ 0Þ^ððd:k 6¼1Þ^ðd:l 6¼1ÞÞ^f:j¼0 �! f:j :¼1

FSB3 : ðd:j ¼ 1Þ^ððd:k 6¼0Þ^ðd:l 6¼0ÞÞ^f:j¼0 �! f:j :¼1:

The first action remains unchanged, and the second and the
third actions determine when a process can safely finalize
its decision so that validity and agreement are preserved.
Note that, if the general is Byzantine and casts two different
decisions to two nongeneral processes, then the nongeneral
processes may never finalize their decisions. Nonetheless,
the program FSB will never violate the safety of specifica-
tion (i.e., FSB is failsafe fault-tolerant).

7 EXTENSION: ENHANCEMENT OF

FAULT-TOLERANCE

In this section, we illustrate how we use monotonicity of
programs and specifications to enhance the fault-tolerance
of nonmasking fault-tolerant distributed programs to
masking fault-tolerance in polynomial-time (in the state
space of the nonmasking program). Toward this end, first,
we state the enhancement problem in Section 7.1. Then, in
Section 7.2, we present a theorem that identifies the
sufficient conditions for enhancing the fault-tolerance of
nonmasking programs in polynomial time. Finally, in
Section 7.3, we present an example to illustrate the
application of the theorem presented in Section 7.2.

7.1 The Enhancement Problem

In this section, we formally define the problem of enhancing

fault-tolerance from nonmasking to masking. The input to

the enhancement problem includes the (transitions of)

nonmasking fault-tolerant program, p, its invariant, S,

faults, f , and specification, spec. Given p, S, and f , we

calculate an f-span, say T , of p by starting at a state in S and

identifying states reached in the computations of p½�f .
Hence, we include fault-span T in the inputs of the

enhancement problem. The output of the enhancement

problem is a masking fault-tolerant program, p0, its

invariant, S0, and its f-span, T 0.
Since p is nonmasking fault-tolerant, in the presence of

faults, p may violate safety. More specifically, faults may

perturb p to a state in T � S. After faults stop occurring, p

will eventually reach a state in S. However, p may violate

spec while it is in T � S. By contrast, a masking fault-

tolerant program p0 needs to satisfy both its safety and

liveness specification in the absence and in the presence of

faults.
The enhancement problem deals only with adding safety

to a nonmasking fault-tolerant program. With this intuition,

we define the enhancement problem in such a way that only

safety is added while adding masking fault-tolerance. In

other words, we require that during the enhancement, no

new transitions are added to deal with functionality or to

deal with recovery. Toward this end, we identify the

relation between state predicates T and T 0, and the relation

between the transitions of p and p0.
If p0½�f reaches a state that is outside T , then new recovery

transitions must be added while obtaining the masking

fault-tolerant program. Hence, we require that the fault-

span of the masking fault-tolerant program, T 0, be a subset

of T . Likewise, if p0 does not introduce new recovery

transitions then all the transitions included in p0jT 0 must be

a subset of pjT 0. Thus, this is the second requirement of the

enhancement problem. We state the enhancement problem

as follows:

The Enhancement Problem

Given p, S, spec, f , and T such that p satisfies spec from S

and T is an f-span used to show that p is nonmasking

fault-tolerant for spec from S,
Identify p0 and T 0 such that

T 0 � T , p0jT 0 � pjT 0, and

p0 is masking f-tolerant to spec from T 0.

7.2 Monotonicity of Nonmasking Programs

In this section, our goal is to identify properties of programs

and specifications where enhancing the fault-tolerance of

nonmasking fault-tolerant programs can be done in poly-

nomial time in program state space. Specifically, we focus

on the following question:

Given is a nonmasking program, p, its specification, spec,

its invariant, S, a class of faults f , and its fault-span, T :

Under what conditions can one derive a masking

fault-tolerant program p0 from anonmasking fault-tolerant

program p in polynomial time?
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To address the above question, we sketch a simple scenario

where we can easily derive a masking fault-tolerant

program from p. Specifically, we investigate the case where

we only remove groups of transitions of p that include

safety-violating transitions and the remaining groups of

transitions construct the set of transitions of the masking

fault-tolerant program p0. However, removing a group of

transitions may result in creating states with no outgoing

transitions (i.e., deadlock states) in the fault-span T or the

invariant S. In order to resolve deadlock states, we need to

add recovery transitions, and as a result, adding recovery

transitions may create nonprogress cycles in ðT � SÞ. When

we remove a nonprogress cycle, we may create more

deadlock states. Thus, removing a group of safety-violating

transitions may lead us to a cycle of complex actions of

adding and removing (groups of) transitions.
To address the above problem, we require the set of

transitions of p to be structured in such a way that removing
safety-violating transitions (and their associated group of
transitions) does not create deadlock states. Towards this
end, we define potentially safe nonmasking programs as
follows:

Definition. A nonmasking program p with the invariant S and

the specification spec is potentially safe iff the following

condition is satisfied.

8s0; s1 :: ððs0; s1Þ=2pjS ^ ððs0; s1Þ violates specÞÞ
) ð9s2 :: ððs0; s2Þ 2 pÞ ^ ðs0; s2Þ does not violate specÞ:

Moreover, we require that the removal of a safety-

violating transition and its associated group of transitions

does not remove good transitions that are useful for the

purpose of recovery. To achieve this goal, we use the

monotonicity property to define independent programs and

specifications as follows:

Definition. A nonmasking program p is independent of a

Boolean variable x on a predicate Y iff p is both positive and

negative monotonic on Y with respect to x.

Intuitively, the above definition captures that if there

exists a transition ðs0; s1Þ 2 pjY and ðs0; s1Þ belongs to a

group of transitions g that is created due to inability of

reading x, then for all transitions ðs00; s01Þ 2 g we will satisfy

ðs00; s01Þ 2 pjY , regardless of the value of the variable x in s00
and s01. Likewise, we define the notion of independence for

specifications.

Definition. A specification spec is independent of a Boolean

variable x on a predicate Y iff spec is both positive and

negative monotonic on Y with respect to x.

Based on the above definition, if a transition ðs0; s1Þ
belongs to a group of transitions g that is created due to

inability of reading x, and ðs0; s1Þ does not violate safety,

then no transition ðs00; s01Þ 2 g will violate safety, regardless

of the value of the variable x in s00 and s01.
Now, using the above definitions, we present the

following theorem.

Theorem 5. Given is a nonmasking fault-tolerant program p, its
invariant S, its fault-span T , faults f , and f-safe specifica-
tion spec,
If p is potentially safe, and

8Pj; x : Pj is a process in p; x is a Boolean variable such that

Pj cannot read x : spec is independent of x on T

^ The program consisting of the transitions of Pj

is independent of x on S:

Then,

A masking fault-tolerant program p0 can be derived from

p in polynomial time in the state space of p:

Proof. Let ðs0; s1Þ be a transition of process Pj. We consider
two cases where ðs0; s1Þ 2 ðpjSÞ or ðs0; s1Þ =2 ðpjSÞ.

1. Let ðs0; s1Þ 2 ðpjSÞ and x be a variable that Pj

cannot read. Since we consider programs where a
process cannot blindly write a variable, it follows
that xðs0Þ equals xðs1Þ. Now, we consider the
transition ðs00; s01Þ where s00 (respectively, s01) is
identical to s0 (respectively, s1) except for the
value of x. Since p is independent of x on S, for
every value of xðs0Þ, we will have ðs00; s01Þ 2 ðpjSÞ.
Thus, we include the group associated with
ðs0; s1Þ in the set of transitions of p0.

2. Let ðs0; s1Þ=2ðpjSÞ. Again, due to the inability of Pj

to read x, we consider the transition ðs00; s01Þ where
s00 (respectively, s

0
1) is identical to s0 (respectively,

s1) except for the value of x. By the definition of
spec independence, if ðs0; s1Þ violates spec, then
regardless of the value of x, every transition
ðs00; s01Þ in the group associated with ðs0; s1Þ
violates spec, and as a result, we exclude this
group of transitions in the set of transitions of p0.

p0 satisfies spec from S. Now, let p0 be the program that
consists of the transitions remained in pjT after exclud-
ing some groups of transitions. Since p0jS equals pjS and
p satisfies spec from S, it follows that p0 satisfies spec from
S in the absence of f .

Every computation prefix of p0½�f that starts in T
maintains spec. Since we have removed the safety-
violating transitions in pjT , when f perturbs p to T
every computation prefix of p0½�f maintains safety of
specification.

Every computation of p0½�f that starts in T has a state
in S. When we remove a safety-violating transition
ðs0; s1Þ 2 pjT , we actually remove all transitions ðs00; s01Þ,
where s00 (respectively, s

0
1) is identical to s0 (respectively,

s1) except for the value of x. Note that since spec is
independent of x, all transitions ðs00; s01Þ that are grouped
with ðs0; s1Þ violate the safety of spec if ðs0; s1Þ violates
the safety of spec. Now, since p is potentially safe, by
definition, for every removed transition ðs0; s1Þ (respec-
tively, ðs00; s01Þ) there exist at least a safe transition ðs0; s2Þ
(respectively, ðs00; s02Þ) that guarantees s0 (respectively, s00)
has at least one outgoing transition (i.e., s0 (respectively,
s00) is not a deadlock state). Thus, if we remove the safety-
violating transitions, then we will not create any dead-
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lock state in T . It follows that the recovery from T � S to
S, provided by the nonmasking program p, is preserved.

Based on the above discussion, we have shown that p0

satisfies spec from S, every computation prefix of p0½�f
maintains spec, and starting from every state in T , every
computation of p½�f will reach a state in S. Therefore, p0 is
masking f-tolerant to spec from S. tu

7.3 Example

In this section, we present an example for enhancing the

fault-tolerance of nonmasking distributed programs to

masking using the monotonicity property. Toward this

end, we first introduce the nonmasking program, its

invariant, its safety specification, and the faults that perturb

the program. Then, we synthesize the masking fault-

tolerant program using Theorem 5.
Nonmasking program. The nonmasking program p

represents an even counter. The program p consists of two

processes, namely, P0 and P1. Process P0 is responsible to

reset the least significant bit (denoted x0) whenever it is not

equal to zero. And, P1 is responsible to toggle the value of

the most significant bit (denoted x1), continuously. P0 can

only read/write x0. P1 is able to read x0 and x1, and P1 can

only write x1. The only action of P0 is as follows:

P0 : x0 6¼ 0 �! x0 :¼ 0:

The following two actions represent the transitions of P1.

ðx1 ¼ 1Þ ^ ðx0 ¼ 0Þ �! x1 :¼ 0
x1 ¼ 0 �! x1 :¼ 1:

For simplicity, we represent a state of the program by a

tuple hx1; x0i.
Invariant. Since the program simulates an even counter,

we represent the invariant of the program by the state

predicate Sctr � ðx0 ¼ 0Þ.
Faults. Fault transitions perturb the value of x0 and

arbitrarily change its value from 0 to 1 and vice versa. The

following action represents the fault transitions.

True �! x0 :¼ 0 j 1:

Fault-span. The entire state space is the fault-span for

faults that perturb x0. Thus, we represent the fault-span of

the program by the state predicate Tctr � true.
Safety specification. Intuitively, the safety specification

specifies that the counter must not count from an odd value

to another odd value. We identify the safety of specification

specctr by the following set of transitions that the program is

not allowed to execute:

specctr ¼ fðs0; s1Þ j ðx0ðs0Þ ¼ 1Þ ^ ðx0ðs1Þ ¼ 1Þ
^ ðx1ðs1Þ 6¼ x1ðs0ÞÞg:

Observe that p is potentially safe and specctr is f-safe.
The nonmasking program p is independent of x1 on

Sctr. Let ðs0; s1Þ and ðs00; s01Þ be two arbitrary transitions of P0

that are grouped due to inability of P0 to read x1. First, since

there is no transition ðs0; s1Þ in pjSctr, where ðx1ðs0Þ ¼ 1Þ and
ðx1ðs1Þ ¼ 1Þ, p is negative monotonic on Sctr with respect to

x1. A similar argument shows that p is positive monotonic

on Sctr with respect to x1. Therefore, p is independent of x1

on Sctr.
specctr is independent of x1 on Tctr. Let ðs0; s1Þ and

ðs00; s01Þ be two arbitrary transitions of P0 that are grouped
due to inability of P0 to read x1. Consider the case where
ðx1ðs0Þ ¼ 0Þ and ðx1ðs1Þ ¼ 0Þ, and ðs0; s1Þ does not violate
safety. Since ðx1ðs00Þ ¼ 1Þ and ðx1ðs01Þ ¼ 1Þ, the transition
ðs00; s01Þ preserves safety as well (because the value of x1 does
not change during this transition). Hence, specctr is positive
monotonic on Tctr with respect to x1. A similar argument
shows that specctr is negative monotonic on Tctr with respect
to x1. Therefore, specctr is independent of x1 on Tctr.

Masking fault-tolerant program. The nonmasking pro-
gram presented in this section is potentially safe. Also,
process P0 is independent of x1 on Sctr. Moreover, the
specification, specctr is f-safe and is independent of x1 on
Tctr. Therefore, using Theorem 5, we can derive a masking
fault-tolerant version of p in polynomial time. In the
synthesized masking program, the action of P0 remains as
is, and the actions of P1 are as follows:

ðx1 ¼ 1Þ ^ ðx0 ¼ 0Þ �! x1 :¼ 0;

ðx1 ¼ 0Þ ^ ðx0 ¼ 0Þ �! x1 :¼ 1:

Note that the second action of P1 can only be executed when
the program is in its invariant; i.e., ðx0 ¼ 0Þ.

8 CONCLUDING REMARKS AND FUTURE

DIRECTIONS

In this paper, we focused on the problem of synthesizing
failsafe fault-tolerant distributed programs from their fault-
intolerant version. We showed, in Section 4, a counter-
intuitive result that the problem of synthesizing failsafe
fault-tolerant distributed programs from their fault-intoler-
ant version is NP-complete in program state space. Toward
this end, we reduced the 3-SAT problem to the problem of
synthesizing failsafe fault-tolerance. Moreover, we identi-
fied monotonicity requirements (cf. Section 5) that are
sufficient for polynomial-time synthesis of failsafe fault-
tolerant distributed programs. Finally, we proved that if
only the input program (respectively, specification) is
monotonic and there exist no assumption about the
monotonicity of the specification (respectively, program)
then the synthesis of failsafe fault-tolerance remains
NP-complete (in program state space).

The results of this paper differ from [16] in three ways.
For one, the proof in [16] is for masking fault-tolerance
where both safety and liveness need to be satisfied. By
contrast, the NP-completeness in this paper applies to the
class where only safety is satisfied. Also, the proof in [16]
relies on the ability of a process to blindly write some
variables. By contrast, the proof in this paper does not rely
on such an assumption. Furthermore, in this paper, we
identified sufficient conditions (i.e., monotonicity of pro-
grams and specifications (cf. Section 5)) for polynomial-time
synthesis of failsafe fault-tolerant distributed programs.

To extend the scope of synthesis, we have developed the
extensible software framework Fault-Tolerance Synthesizer
(FTSyn) [8] where developers can automatically add 1) fault-
tolerance to distributed programs and 2) new heuristics for
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reducing the time complexity of synthesis. Using FTSyn, we

have synthesized several programs (e.g., distributed token

ring, Byzantine agreement, diffusing computation) among

which a simplified version of an aircraft altitude switch [8].

We are currently investigating the application of state space

reduction techniques (used in model checking) in dealing

with the state space explosion problem in FTSyn. Such

techniques will help FTSyn to deal with the space complex-

ity of synthesis along with the integrated heuristics that

reduce the time complexity of synthesis.
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