
1 Example: Alternating Bit Protocol
In this section, we present an alternating bit protocol with a sender and a receiver processes that are subject to message

loss faults. Using the synthesis method presented in [1], we synthesize an alternating bit protocol that is nonmasking fault-
tolerant; i.e., when faults occur the program guarantees recovery to its invariant. However, during recovery, the nonmasking
fault-tolerant protocol may temporarily violate it safety specification.

The alternating bit protocol (ABP). The fault-intolerant program consists of two processes: a sender and a receiver. The
sender reads from an infinite input stream of data packets and sends the newly read packet to the receiver. The receiver copies
each received packet into an infinite output stream. When the sender sends a data packet, it waits for an acknowledgement
from the receiver before it sends the next packet. Also, when the receiver receives a new data packet, it sends an acknowledg-
ment bit back to the sender. A one-bit message header suffices to identify the data packet currently being sent since at every
moment there exists at most one unacknowledged data packet. Using this identifier bit, the sender (respectively, the receiver)
does not need count the total number of packets sent (respectively, received).

Both processes have read/write access to a send channel and a receive channel. The send channel is represented by an
integer variable cs and the variable cr models the receive channel. The domain of cs (respectively, cr) is {−1, 0, 1}, where 0
and 1 represent the value of the data bit in the channel and -1 represents an empty channel. Since we are only concerned about
the synchronization between the sender and the receiver, we do not explicitly consider the actual data being sent. Thus, we
consider the contents of cs and cr to be a single binary digit. The sender process has a Boolean variable bs that stores the data
bit that identifies the data packet currently being sent to the receiver. Correspondingly, the receiver process has a Boolean
variable br that represents the value that is supposed to be received. When the sender process transmits a data packet, it waits
for a confirmation from the receiver before it sends the next packet. To represent the mode of operation, the sender process
uses a Boolean variable rs. The value of rs is 0 iff the sender is waiting for an acknowledgement. Likewise, the receiver
process uses a Boolean variable rr such that the value of rr is 0 iff the receiver is waiting for a new packet.

We represent a state s of the ABP program by a 6-tuple 〈rs, bs, rr, br, cs, cr〉. Thus, if we start from initial state
〈1, 1, 0, 0,−1,−1〉, then the sender process begins to send a data bit 1 while the receiver waits to receive it. We represent the
transitions of the sender process in the fault-intolerant program ABP by the following actions.

Send0 : (rs = 1) −→ rs := 0; cs := bs;
Send1 : (cr 6= −1) −→ rs := 1; cr := −1; bs := (bs + 1) mod 2;

The actions of the receiver process in the fault-intolerant program ABP are as follows:
Rec0 : (cs 6= −1) −→ cs := −1; rr := 1; br := (br + 1) mod 2;
Rec1 : (rr = 1) −→ rr := 0; cr := br;

Faults. Faults can remove a data bit from either one of the communication channels causing the loss of that data bit. Hence,
we model faults by setting the value of cs (respectively, cr) to an unknown value -1.

F0 : (cs 6= −1) −→ cs := −1;
F1 : (cr 6= −1) −→ cr := −1;

We assume that the fault actions will be executed a finite number of times; i.e., eventually faults stop occurring.

Safety specification. The problem specification requires that the receiver receives no duplicate packets.

Invariant. The invariant of the ABP program is equal to the state predicate SABP , where
SABP = {s | (((rr(s) = 1) ∨ (cr(s) 6= −1)) ⇒ (br(s) = bs(s))) ∧

(((rs(s) = 1) ∨ (cs(s) 6= −1)) ⇒ (br(s) 6= bs(s))) ∧ ((cs(s) = −1) ∨ (cs(s) = bs(s))) ∧
(((cs(s) = −1) ∧ (cr(s) = −1)) ⇒ ((rr(s) + rs(s)) = 1)) ∧
(((cs(s) 6= −1) ∧ (cr(s) = −1)) ⇒ ((rr(s) + rs(s)) = 0)) ∧
(((cs(s) = −1) ∧ (cr(s) 6= −1)) ⇒ ((rr(s) + rs(s)) = 0)) }

In the state predicate SABP , the notation v(s), where v is a variable name, represents the value of v in state s.

Fault-span. The state of the ABP program may be perturbed to the state predicate TABP due to fault transitions, where
TABP = {s | ((cs(s) = −1) ∨ (cs(s) = bs(s))) ∧

(((cs(s) = −1) ∨ (cr(s) = −1)) ⇒ (((rr(s) + rs(s)) = 1) ∨ ((rr(s) + rs(s)) = 0)))}

Adding the actions of the high atomicity pseudo process. Using our synthesis method, we have identified the following
high atomicity actions that must be refined using pseudo processes that can read all program variables.
HAC0 : (rs = 0) ∧ (rr = 0) ∧ (bs = 1) ∧ (br = 0) ∧ (cs = −1) ∧ (cr = −1) −→ cs := 1;
HAC1 : (rs = 0) ∧ (rr = 0) ∧ (bs = 0) ∧ (br = 1) ∧ (cs = −1) ∧ (cr = −1) −→ cs := 0;
HAC2 : (rs = 0) ∧ (rr = 0) ∧ (bs = 1) ∧ (br = 1) ∧ (cs = −1) ∧ (cr = −1) −→ cr := 1;
HAC3 : (rs = 0) ∧ (rr = 0) ∧ (bs = 0) ∧ (br = 0) ∧ (cs = −1) ∧ (cr = −1) −→ cr := 0;



The guards of the above actions are global state predicates that we refine using linear distributed detectors. Let Gi be the
guard of the action HACi, where 0 ≤ i ≤ 3. For example, we have G0 ≡ ((rs = 0) ∧ (rr = 0) ∧ (bs = 1) ∧ (br =
0) ∧ (cs = −1) ∧ (cr = −1)). Corresponding to each global state predicate Gi, we use a distributed detector with two
elements dsi and dri, where dsi is the local detector installed in the sender side and dri is the local detector installed in the
receiver side. Next, we show how we add a linear distributed detector for the detection of G0. We omit the presentation of
the refinement of G1, G2, and G3 as the approach is similar to the refinement of G0.

Adding fault-tolerance components. To illustrate the structure of the linear detectors that we add to the ABP program, we
now describe the refinement of G0. Due to read restriction the sender (respectively, the receiver) cannot atomically detect
G0. However, the sender can detect a local condition LCs ≡ ((rs = 0) ∧ (bs = 1) ∧ (cs = −1)). Respectively, the receiver
can detect a local condition LC ′

r ≡ ((rr = 0)∧ (br = 0)∧ (cr = −1)), where G0 ≡ (LCs ∧LC ′

r). Now, we instantiate the
required distributed detector by reusing the code of the pre-synthesized linear detectors presented in [1].

DAr0 : (LC′

r) ∧ (y′

r = false) −→ y′

r := true;
DAs0 : (LCs) ∧ (ys = false) ∧ (y′

r = true) −→ ys := true;

The action DAs0 belongs to detector ds0 that is allowed to read the witness predicate y′

r of the detector element dr0 in
the receiver side. If the detector element dr0 detects its local predicate LC ′

r then it will set its witness predicate y′

r to true.
Then, if the condition LCs holds in the sender side then the detector element ds0 will detect the global state predicate G0

by setting its witness predicate ys to true. Afterwards, the synthesis algorithm adds the following write action to the sender
process.

Cs0 : (ys = true) −→ cs := 1; ys := false;

The synthesis algorithm adds similar distributed detectors to ABP in order to refine the global state predicates G1, G2, and
G3. Given the local conditions LC ′

s ≡ ((rs = 0) ∧ (bs = 0) ∧ (cs = −1)) and LCr ≡ ((rr = 0) ∧ (br = 1) ∧ (cr = −1)),
we have the following logical equivalences:

• G1 ≡ (LC ′

s ∧ LCr)

• G2 ≡ (LCs ∧ LCr)

• G3 ≡ (LC ′

s ∧ LC ′

r).

Corresponding to global detection predicates G1 · · ·G3, we respectively add the following linear distributed detectors and
also the necessary correcting action for recovery to the invariant:
Detecting G1. This linear detector refines the guard of the action HTR1 added by our synthesis algorithm.

DAr1 : (LCr) ∧ (yr = false) −→ yr := true;
DAs1 : (LC′

s) ∧ (y′

s = false) ∧ (yr = true) −→ y′

s := true;

Correcting G1. After the detection of G1, the following write action takes place.

Cs1 : (y′

s = true) −→ cs := 0; y′

s := false;

Detecting G2. We use the following linear detector to refine the guard of the action HTR2.

DAr2 : (LCr) ∧ (ur = false) ∧ (us = true) −→ ur := true;
DAs2 : (LCs) ∧ (us = false) −→ us := true;

Correcting G2. The following action recovers the state of the ABP program to the invariant SABP after the detection of the
global state predicate G2.

Cr2 : (ur = true) −→ cr := 1; ur := false;

Detecting G3. To detect the global state predicate G3, we add the following detector to ABP.

DAr3 : (LC′

r) ∧ (u′

r = false) ∧ (u′

s = true) −→ u′

r := true;
DAs3 : (LC′

s) ∧ (u′

s = false) −→ u′

s := true;

Correcting G3. This action changes the state of the ABP program to a state in SABP after the detection of G3.

Cr3 : (u′

r = true) −→ cr := 0; u′

r := false;

The fault-tolerant ABP program. Next, we present the actions of the sender process in the resulting nonmasking fault-
tolerant program.

2



Send′

0
: (rs = 1) −→ rs := 0; cs := bs; cs := bs;

ys := false; ys := false; u′

s := false; us := false;
Send′

1
: (cr 6= −1) −→ rs := 1; cr := −1; bs := (bs + 1) mod 2;

ys := false; ys := false; u′

s := false; us := false;
DAs0 : (LCs) ∧ (ys = false) ∧ (y′

r = true) −→ ys := true;
Cs0 : (ys = true) −→ cs := 1; ys := false;
DAs1 : (LC′

s) ∧ (y′

s = false) ∧ (yr = true) −→ y′

s := true;
Cs1 : (y′

s = true) −→ cs := 0; y′

s := false;
DAs2 : (LCs) ∧ (us = false) −→ us := true;
DAs3 : (LC′

s) ∧ (u′

s = false) −→ u′

s := true;

The actions of the receiver in the synthesized fault-tolerant program are as follows:

Rec0 : (cs 6= −1) −→ cs := −1; rr := 1; br := (br + 1) mod 2;
yr := true; y′

r := true; ur := true; u′

r := true;
Rec1 : (rr = 1) −→ rr := 0; cr := br;

yr := true; y′

r := true; ur := true; u′

r := true;
DAr0 : (LC′

r) ∧ (y′

r = false) −→ y′

r := true;
DAr1 : (LCr) ∧ (yr = false) −→ yr := true;
DAr2 : (LCr) ∧ (ur = false) ∧ (us = true) −→ ur := true;
Cr2 : (ur = true) −→ cr := 1; ur := false;
DAr3 : (LC′

r) ∧ (u′

r = false) ∧ (u′

s = true) −→ u′

r := true;
Cr3 : (u′

r = true) −→ cr := 0; u′

r := false;

References

[1] S. S. Kulkarni and Ali Ebnenasir. Adding fault-tolerance using pre-synthesized components. Technical report MSU-CSE-03-28, Department of
Computer Science, Michigan State University, East Lansing, Michigan, USA. A revised version is available at http://www.cse.msu.edu/
˜sandeep/auto_component_techreport.ps, 2003.

3


