User Manual
A Framework for The Synthesis of Fault-Tolerant Programs

By
ALI EBNENASIR

Michigan State University
Computer Science and Engineering Department

2002

ABSTRACT
A Framework for The Synthesis of Fault-Tolerant Programs
By
ALI EBNENASIR

We present the design and the implementation of a framework for adding fault-
tolerance to existing fault-intolerant distributed programs. The input to our frame-
work is an abstract structure of the fault-intolerant program, its specification, and
a class of faults that perturbs the program. The output of our framework is the
abstract structure of the fault-tolerant program. Our framework also enables one to
add new heuristics for adding fault-tolerance. Further, it is possible to change the
internal representation of different entities involved in synthesis while reusing the rest
of the framework.

We have used this framework for automated synthesis of several fault-tolerant
programs including token ring, Byzantine agreement, and agreement in the presence
of Byzantine and failstop faults. These examples illustrate that the framework can be
used for synthesizing programs that tolerate different types of faults (process restarts,
Byzantine and failstop) and programs that are subject to multiple faults (Byzantine
and failstop) simultaneously. We also note that our framework has been used for

pedagogical purposes.

© Copyright 2002 by Ali Ebnenasir
All Rights Reserved

iii

v

Acknowledgements
Thanks to Arun Chippada for coding of part of the implementation as his Master’s

project.

Table of Contents

LIST OF TABLES

LIST OF FIGURES

1 Introduction

2 Overview

3 Specifying The Fault-Intolerant Programs
3.1 Syntax and Semantics
3.2 The Specification of Agreement Program

3.2.1 The Description of The Input File

4 Input Translator
4.1 Generating The Program State
4.2 Generating The Fault-Intolerant Program
4.3 Generating The Faults 0 0L
4.4 Generating The Invariant 0L

4.5 Generating The Safety Specification

vi

viii

ix

12

18

22

4.6 Generating The Initial States

4.7 Generating The Output Generator

5 Framework Instantiation

6 Supervised Synthesis

6.1 Applying Heuristics

APPENDIX

LIST OF REFERENCES

vii

39

41

43

45

55

List of Tables

viii

List of Figures

2.1 The framework architecture.

ix

Chapter 1

Introduction

In this manual, we present a framework where the developers of fault-tolerance
can synthesize fault-tolerant programs from their fault-intolerant versions. Since the
complexity of synthesis is exponential, developers need to apply heuristics during the
synthesis to reduce the complexity. Moreover, developers of fault-tolerance may need
to use heuristics in different order for different problems.

Our goal is to introduce our framework by describing its input, its output, its
design, and a succinct description of its implementation. Towards this end, we first
present an overview of our framework so that the reader can realize the architecture
of the framework. Second, we describe the way that developers of fault-tolerance can
communicate with our framework. To achieve this goal, we explain the syntax and the
semantics of the interaction language. Third, we present the object-oriented design
of our framework where we present the classes and design patterns that are involved
in the organization of the framework. Fourth, we briefly describe the implementation
of our framework. Finally, we present some examples that illustrate the use of our
framework.

Remark. We assume that the reader is familiar with the theoretical background of

our research work based on which we have developed this framework. Otherwise, we

refer the interested reader to [1-4].

Chapter 2

Overview

In this chapter, we present a quick overview of our framework. We also present
the architecture of the framework where we show different components and their
relationships.

We first introduce the architecture of our framework (cf. Figure 2.1) that shows
how it enables the addition of fault-tolerance to an existing fault-intolerant program.
Then, we describe the input and the output of our framework. Further, we illus-
trate how the users can interact with the framework in order to semi-automatically
synthesize a fault-tolerant program from its fault-intolerant version.

The framework consists of the components that represent the program being
synthesized, faults, program invariant, program specification, and the synthesis algo-
rithm. Given a fault-intolerant program and a particular class of faults, the framework
generates the reachability graph of the program. Then, the synthesis algorithm itera-
tively manipulates the initial reachability graph in order to generate the reachability
graph of the fault-tolerant program. At each step of the synthesis, the reachability
graph represents an intermediate program that is being synthesized.

The synthesis algorithm by itself consists of the following steps: identify ms,

identify mt, remove mt, mark invariant, and ResolveDeadlock. The set of states ms

———————————————— Fault

Groups of Groups of
State Transitions T Stalel Transitions State Fault
Reachability Graph - RG Transition
Reachable states by Reachability

fault/program Graph of

transitions ﬁ fault-tolerant
Fault/Program l Invariant program
Transitions

[safety Specification |
|

Identify ms [Remove mt | | Mark invariant states | Recompute RG

Resolve deadlock i

Synthesis Algorithm l

Figure 2.1: The framework architecture.

identifies states from where safety of specification will be violated by one or more
fault transitions. The set of transitions mt represents the transitions that reach ms
or directly violate safety. After removing mt transitions from the reachability graph,
the synthesis algorithm resolves deadlock states (if any). We refer the reader to [4]
for further information.
The input/output of the framework. We use Dijkstra’s guarded commands [5] as
the interaction language between the user and the synthesis framework. A guarded
command (action) is of the form g — st, where g is a state predicate and st is a
statement that updates the program variables. The guarded command g — st can
be executed in a state where g is true; to execute this command, st is executed
atomically. In other words, a guarded command includes all program transitions
{(s0, 1) : g holds at sy and the execution of st at sy takes the program to state s;}.
The faults are also modeled as a set of guarded commands that update program
variables. The invariant of the fault-intolerant program is represented as a state
predicate. Since we internally identify the safety specification by a set of transitions
that the fault-tolerant program should not execute (i.e., the set of safety-violating
transitions), the safety specification is specified as a set of transitions as well. We di-
vide the specification of safety-violating transitions into three parts: destination, and
relation. In the destination part, the users can specify the safety-violating transitions
that are identified only by their destination states. In the relation part, the users

specify the safety-violating transitions that are identified by both their source and

destination states. Finally, the output is also in the guarded command language. (As
an example, we present a masking fault-tolerant agreement program in the Appendix
that tolerates both failstop and Byzantine faults.)

User interactions. Although the framework can automatically synthesize a fault-
tolerant program without user intervention, there are some situations where (i) user
intervention can help to speed up the synthesis of fault-tolerant programs, or (ii) a
fully automatic approach fails. Hence, our framework permits developers to semi-
automatically supervise the synthesis procedure. In such supervised synthesis, the
fault-tolerance developers interact with the framework and apply their insights during
the synthesis. In order to achieve this goal, we have devised some interaction points
where the developers can stop the synthesis algorithm and query it.

At each interaction point, the users can make the following kinds of queries:
(i) apply a specific heuristic for a particular task that the framework should try to
satisfy and the strategies that it should use to satisfy that predicate); (ii) apply some
heuristics in a particular order; (iii) view the incoming program (respectively, fault)
transitions to a particular state; (iv) view the outgoing program (respectively, fault)
transitions from a particular state; (v) check the membership of a particular state
(respectively, transition) to a specific set of states (respectively, transition); e.g., check
the membership of a given state s in the set of states ms, and finally (vi) view the
intermediate representation of the program that is being synthesized.

The developers of fault-tolerance can use the queries to obtain the current ver-
sion of the program and choose the additional steps (e.g., resolving deadlock states,
resolving non-progress cycles, etc.) that need to be taken for adding fault-tolerance.
While we expect that the queries included in this version will be sufficient for a large
class of programs, we also provide an alternative for the case where these queries
are insufficient. Specifically, in this case, the users of our framework can obtain the

corresponding intermediate program in Promela modeling language [6]; this program

can then be checked by SPIN to determine the exact scenario where the intermediate
version does not provide the required fault-tolerance. We note that while the code
that interprets the counterexamples given by SPIN is not currently implemented, it

will be available in the next version of the framework.

Chapter 3

Specifying The Fault-Intolerant

Programs

In this chapter, we describe the syntax and the semantics of the input language by
which developers of fault-tolerance specify the fault-intolerant program, its invariant,
its specification, and the faults. The framework generates the output in the same

language.

3.1 Syntax and Semantics

In order to provide the required input for the framework, we have to create a
text file with the following structure.

1 program programName

3 var

4 bool vari;

5 int var2=0, domain 0 .. 1;

9 // The structure of process pName

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

process pName

begin

guardl -> statementl;
I

guard2 -> statement2;

guardk -> statementk;

read list of variables that pName can read;
write 1list of variables that pName can write;

end

26 // Faults are represented as a process.

27

28

29

30

31

32

33

34

35

36

37

38

fault faultName
begin
guardl -> statementl,

I
guardM -> statementM,

end

30 // The invariant of the program.

40

41

wvariant

A state predicate S in terms of program variables.

42
43 // The specification of the program is specified in three parts starting
44 // with specification keyword.

45

46 specification

47

48 // The destination part identifies a set of states that every

49 // transition that reaches it violates safety.

50

51 destination

52

53 A state predicate that identifies a set of states which the program

54 should not reach.

56 // The relation part identifies a set of transitions that violate safety.

58 relation

60 A state predicate that identifies a set of transitions that

61 the program is not allowed to execute.

63 // The 1init section is used for specifying the initial states.

65 nit

66 // Each initial state is specified using the state keyword.
67

68 state

69

70 Sstate

In the rest of this section, we describe each part of the input file, respectively
(cf. Appendix for the grammar of the input language). In the structure of the input

file, we have shown all the keywords in italics. Also, in this section, we represent

keywords in #talics form. The input text file consists of the following sections: program
Name, variable declaration, process specification, fault specification, the invariant, the
specification, and the initial states. We show the structure of the program as the

following BNF statement.
(ProgramDeclarator())

VariableDeclarator())

ProcessDeclarator())+

(

(
(FaultDeclarator())
(Invariant())
(Specification())

(

Initialization())

The syntax of program the ProgramDeclarator is as follows.

ProgramDeclarator() : ”program” Name()

After the program keyword, we write a user-defined name. In the wvariable dec-
laration section, we have to specify all program variables. Each variable should be

declared as follows.

varType varName [= initValue|, domain 1b .. ub;

In this version, we only provide Boolean (denoted bool) and integer (denoted
int) types for variables. Also, we have the option to initialize the variables in the
declaration. For integer variables, we need to identify the domain of each variable.
Since we assume that the domain of each variable is finite, we specify the domain
of each integer variable as a closed interval from a lower bound to an upper bound
(denoted lowerbound .. upperbound).

To specify a process, we use the following syntax.

process processName begin processBody read readRestriction;

write writeRestrictions; end

10

The processName is an arbitrary identifier that becomes the name of the process.
The syntax of the processBody consists of a set of actions. Each action consists of a
guard and a statement (cf. the Appendix for the detail grammar). After the specifi-
cation of program actions, we have to identify the read/write restrictions imposed on
the process. The read keyword should follow by a list of variables that the process is
allowed to read, and the write keyword should follow by a list of variables that the
process is allowed to write. In this list of variables, each variable is separated from
other variables by a comma. The program may contain more than one process. Thus,
we use the above syntax to specify all the program processes.

We specify faults similar to process specification. The only difference is that
we specify no read (respectively, write) restrictions for faults. Thus, we again use
guarded commands to specify faults in the body of a process structure.

We represent the invariant of a program as a set of states. Thus, in the input
file, we have to write a Boolean condition in the invariant section that identifies the

set of states that belong to the invariant. The syntax of this section is as follows.

invariant BooleanExpression|()

In order to represent the safety specification of the fault-intolerant program, we

use the following structure.

specification (destination BooleanExpression() — noDestination)

(relation BooleanExpression() — noRelation)

The keyword specification shows the start of the specification section. The des-
tination section is followed by a Boolean expression that represents a set of states
where the program should not reach. The relation keyword is followed by a Boolean
condition that represents a set of transitions that the program should not execute.
If, for a particular problem, the specification does not need a destination (respec-
tively, relation) section then we just write the keyword noDestination (respectively,

noRelation).

11

Note that the Boolean expressions that we specify in the specification section
are in terms of the modified names of the program variables. We attach the letter
d to the name of the variables that are involved in the Boolean expression that we
write in the destination section. Also, since the relation section identifies a set of
safety-violating transitions in the state space of the program, we need to identify the
value of different variables at the source and the destination of the safety-violating
transitions. Thus, in the Boolean expression that follows the keyword relation, we
attach the letter s (respectively, the letter d) to variables where they represent a
value at the source (respectively, destination) state. In order to illustrate this issue,

we present a concrete example in the next section.

3.2 The Specification of Agreement Program

In this section, we present an example of specifying a fault-intolerant program.
Specifically, we show how the developers of fault-tolerance can specify an agreement
program that consists of a general process and four non-general processes that are
perturbed by both Byzantine and failstop faults. The structure of the input text file

is as follows:

1 program Byzantine-Failstop

2 wvar

3 bool bi;
4 bool bj;
5 bool bk;
6 bool bl;
7 bool bg;

9 int dg=0, domain 0 .. 1;
10 int di, domain -1 .. 1; // (di == -1) means process i has not yet decided.

u it d4dj, domain -1 .. 1;

12

12 int dk, domain -1 .. 1;
13 int dl, domain -1 .. 1;
14

15 bool fij;

16 bool f£j;
17 bool f£k;
18 bool f£1;

19
20 bool wupi;

21 bool wupj;

22 bool wupk;

23 bool upl;

24

25 // The structure of process 1i.

26 process i

27 begin

28 ((di == -1) && (fi == 0) && (upi == 0)) -> di = dg ;
20 |

30 ((di !'= -1) && (£fi == 0) && (upi == 0)) -> fi =1 ;

31
32 read di, dj, dk, dl, dg, fi, upi, bi;
33 write di, fi;

34 end

35

36 // The structure of process j.

37 process j

38 begin

30 ((dj == -1) && (£fj == 0) && (upj == 0)) -> dj = dg;
10 |

a1 ((dj = -1) && (£fj == 0) && (upj == 0)) -> £j = 1;

42
43 read di, dj, dk, d1, dg, fj, upj, bj;

44 write dj, fj;

13

45 end
46
47 // The structure of process k.

48 process k

49 begin

50 ((dk == -1) && (fk == 0) && (upk == 0)) -> dk = dg;
s1 |

52 ((dk '= -1) && (fk == 0) && (upk == 0)) -> fk = 1;

53

sa read di, dj, dk, d1, dg, fk, upk, bk;

55 write dk, fk;

s6 end

57

58 // The structure of process 1.

59 process 1

60 begin

o1 ((d1 == -1) && (£1 == 0) &% (upl == 0)) -> dl = dg;
62 |

63 ((d1 !'= -1) && (£f1 == 0) && (upl == 0)) -> f1 = 1;

64
es read di, dj, dk, dl, dg, f1, upl, bl;
66 write d1, f1;

67 end

68

60 // Faults are represented as a process.
70

71 fault FailstopAndByzantine

72 begin

73 ((upi == 1) &&(upj == 1)&&(upk == 1)&&(upl == 1)) -> upi = 0, upj

74 upk
75 |
76 ((bi == 0)&&(bj == 0)&&(bk == 0)&&(bl == 0)&&(bg == 0)) -> bi

77 bk = 1, bl

14

0, upl

1]
o

]
o
-

79 ((bi == 1)) ->di =1, di =0 ,

81 ((bj == 1)) ->dj =1, dj =0 ,

83 ((bk == 1)) => dk = 1 , dk =0 ,
84 |
g5 ((bl == 1)) =>dl =1, dl =0 ,
g6 |
s7 ((bg == 1)) ->dg =1, dg =0 ,

89
90 // The invariant of the program.
91 inwvariant

92 ((

93 ((bg==0) &&

94 (((bi == 1) && (bj == 0)&& (bk == 0)&& (bl == 0)) ||
95 ((bj == 1) && (bi == 0)&& (bk == 0)&& (bl == 0)) ||
96 ((bk == 1) && (bj == 0)&& (bi == 0)&& (bl == 0)) ||
o7 ((b1 == 1) && (bj == 0)&& (bk == 0)&& (bi == 0)) ||
08 ((bi == 0) && (bj == 0)&& (bk == 0)&& (bl == 0))) &&
99 ((bi==1) [(di==-1) | | (di==dg))&&

100 ((bj==1) | | (dj==-1) | | (dj==dg)) &&

101 ((bk==1) | | (dk==-1) | | (dk==dg)) &&

102 ((b1==1) [(d1==-1) | | (d1==dg)) &&

103 ((bi==1) | [(£i==0) | | (di!=-1))&&

104 ((bj==D) | (£j==0) [1 (dj!'=-1) D &&

105 ((bk==1) | | (fk==0) | | (dk!=-1))&&

106 ((b1==1) | | (£1==0) | | (d1'=-1))) ||

107
108 ((bg==1)&& (bi==0)&&(bj==0)&& (bk==0)&& (b1==0)&& (
109 (((Cupi == 1) && (upj == 1)&& (upk == 1)&& (upl == 1))) &&

110 ((di==dj) && (dj==dk) && (dk==d1) &&(di'=-1))) ||

15

111 ((((upi 1) & (upj == 1)&& (upk == 1)&& (upl == 0))) &%

12 ((di==dj)&&(dj==dk)&&(di!=-1))) |
113 (((Cupi == 1) && (upj == 1)&& (upk == 0)&& (upl == 1))) &%

114 ((di==dj)&&(dj==d1)&&(di!'=-1))) |
115 ((((upi == 1) && (upj == 0)&& (upk == 1)&& (upl == 1))) &&

116 ((di==dk) &&(dk==d1)&&(di!'=-1))) |
117 ((((upi == 0) && (upj == 1)&& (upk == 1)&& (upl == 1))) &%

118 ((dj==dk) &&(dk==d1)&&(dj'=-1)))
119))

120)

121 &&

122 (

123 ((upi == 0) && (upj == 1) && (upk ==1) && (upl == 1)) ||

124 ((upi == 1) && (upj == 0) && (upk ==1) && (upl == 1)) ||

125 ((upi == 1) && (upj == 1) && (upk ==0) && (upl == 1)) ||

126 ((upi == 1) && (upj == 1) && (upk ==1) && (upl == 0)) ||

127 ((upi == 1) && (upj == 1) && (upk ==1) && (upl == 1))))

128
120 // The specification of the program is specified in three parts starting with
130 // specification keyword.

131

132 specification

133

134 // The source part identifies a set of states that every transition

135 // originating at them violates safety.

137 noSource

138

130 // The destination part identifies a set of states that every
140 // transition reaching them violates safety.

141

142 destination

143 (

16

144 ((bid == 0) && (bjd == 0) && (upid == 1) && (upjd == 1) && (did != -1) &&

145 (djd !'= -1) && (did '= djd) && (fid == 1) && (fjd == 1)) ||
146 ((bid == 0) && (bkd == 0) && (upid == 1) && (upkd == 1) && (did !'= -1) &&

147 (dkd !'= -1) && (did !'= dkd) && (fid == 1) && (fkd == 1)) ||
148 ((bid == 0) && (bld == 0) && (upid == 1) && (upld == 1) && (did !'= -1) &&

149 (d1d !'= -1) && (did !'= d1d) && (fid == 1) && (fld == 1)) ||
150 ((bjd == 0) && (bkd == 0) && (upkd == 1) && (upjd == 1) && (djd !'= -1) &&

151 (dkd !'= -1) && (djd !'= dkd) && (fjd == 1) && (fkd == 1)) ||
152 ((bjd == 0) && (bld == 0) && (upld == 1) && (upjd == 1) && (djd !'= -1) &&

153 (d1d !'= -1) && (djd !'= dld) && (fjd == 1) && (fld == 1)) ||
154 ((bkd == 0) && (bld == 0) &% (upkd == 1) && (upld == 1) && (dkd !'= -1) &&

155 (d1d !'= -1) && (dkd !'= dld) && (fkd == 1) && (fld == 1)) ||
156

157 ((bgd == 0) && (bid == 0) && (did != -1) && (did !'= dgd) && (fid == 1)) ||

158 ((bgd == 0) && (bjd == 0) && (djd !'= -1) && (djd !'= dgd) && (fjd == 1)) ||

150 ((bgd == 0) && (bkd == 0) && (dkd !'= -1) && (dkd '= dgd) && (fkd == 1)) ||

160 ((bgd == 0) && (bld == 0) && (dld '= -1) &% (dld !'= dgd) && (fld == 1))

161)

162

163 // The relation part identifies a set of transitions that violate safety.
164

165 relation

166 ((((bis == 0)&& (bid == 0) && (fis == 1) && (dis !'= did))) ||

167 (((bjs == 0) && (bjd == 0) && (fjs == 1) && (djs !'= djd))) ||
168 (((bks == 0) && (bkd == 0) && (fks == 1) && (dks '= dkd))) ||
169 (((bls == 0) && (bld == 0) && (fls == 1) && (dls != d1d)))||
170 (((bis == 0) && (bid == 0) && (fis == 1) && (fid == 0))) ||
171 (((bjs == 0) && (bjd == 0) && (fjs == 1) && (£fjd == 0)))||
172 (((bks == 0) && (bkd == 0) && (fks == 1) && (fkd == 0))) ||
173 (((bls == 0) && (bld == 0) && (fls == 1) && (fld == 0))))

174
175 // The init section is used for specifying the initial states.

176

17

e anat
178
179 // Each initial state is specified using the state keyword.

180

181 State

182bi = 0; bj = 0; bk = 0; bl =0; bg =0; dg = 0; di = -1; dj = -1; dk = -1; bl
183fi = 0; £j = 0; fk = 0; £f1 = 0; upi = 1; upj = 1; upk = 1; upl = 1;

184

185

186 Sstate

187bi = 0; bj = 0; bk = 0; bl =0; bg =0; dg =1; di = -1; dj = -1; dk = -1; bl

188 fi = 0; £j = 0; fk = 0; f1 = 0; upi = 1; upj = 1; upk = 1; upl = 1;

189

3.2.1 The Description of The Input File

The fault-intolerant agreement program consists of four non-general processes
1,7, k,l and a general g. Each non-general process has four variables d, f, b, and up.
Variable di represents the decision of a non-general process ¢, fi denotes whether ¢
has finalized its decision, bi denotes whether i is Byzantine or not, and upi states
whether 7 has failed or not. Process g also has variables dg and bg. We assume that
the process g never fails. Thus, the variables of the agreement program are as shown
in the var section (cf. lines 2-23).
Transitions of the fault-intolerant program. If process 7 has not copied a
value from the general and i has not failed (i.e., upi = 1) then i copies the decision
of the general (first action in the body of process i (cf. line 28)). If 7 has copied a
decision and as a result di is different from -1 then ¢ can finalize its decision if it has
not failed (second action in the body of process i (cf. line 30)). Other non-general

processes (J, k, and [) have a similar structure as shown in the input file (cf. lines

37-67).

18

Read/Write restrictions. Each non-general process i is allowed to read the
following set of variables: {di,dj, dk,dl, dg, fi,upi,bi}. Thus, i can read the d values
of other processes and all its variables. The set of variables that ¢ can write is
{di, fi}. Read/write restrictions of each process are specified in its body after the
program actions (using read and write keywords (e.g., lines 32-33)).
Faults. A Byzantine fault transition can cause a process to become Byzantine
if no process is initially Byzantine. A Byzantine process can arbitrarily change its
decision (i.e., the value of d). Moreover, the program is subject to failstop faults
such that at most one of the non-general processes can be failed, and as a result, it
will stop executing any action. The developers of fault-tolerance should specify the
faults similar to an independent process that can perturb program variables (cf. lines
71-86).
Invariant. The users of our framework should represent the invariant of the
program as a state predicate. In particular, the invariant is a Boolean function (over
program variables) that takes a state s and identifies whether s is an invariant state
or not.

In the agreement program, the bg variable partitions the invariant into two parts:
the set of states s; where g is non-Byzantine (cf. line 91), and the set of states s,
where g is Byzantine (cf. line 106). When ¢ is non-Byzantine, at most one of the
non-generals could be Byzantine (cf. lines 92-96). Also, for every non-general process
i that is non-Byzantine (i) 7 has not yet decided or it has copied the value of dg (cf.
lines 97-100), and (ii) 7 has not yet finalized or ¢ has decided (cf. lines 101-104).
When g becomes Byzantine, all the non-general processes are non-Byzantine and all
the processes that have not failed agree on the same decision (cf. lines 106-116). The
invariant of the agreement program stipulates the above conditions on the states in
which at most one non-general process has failed (cf. lines 121-125).

Safety specification. The safety specification requires that if g is Byzantine, all

19

the non-general non-Byzantine processes that have not failed should finalize with the
same decision (agreement). If g is not Byzantine, then the decision of every finalized
non-general non-Byzantine process should be the same as dg (validity). Thus, safety
is violated if the program executes a transition that satisfies at least one of the
conditions specified in the specification section of the input file (cf. lines 129-168).

The specification section is divided into three parts: source, destination, and
relation parts. Intuitively, in the source part (cf. line 133), we specify a condition
that identifies a set of states ssource, Where if a transition ¢ originates at sgource then ¢
violates the safety of the specification. In the destination part (cf. lines 137-156), we
write a state predicate that identifies a set of states Sgestination, Where if a transition
t reaches Sgestination then t violates safety. In the relation part (cf. lines 160-168),
we specify a condition that identifies a set of transitions that should not be executed
by the program. Note, that we have added a suffix “s” (respectively, suffix “d”) to
the variable names in the specification section that stands for source (respectively,
destination). Since the relation condition specifies a set of transitions ¢, using their
source and destination states, we need to distinguish between the value of a specific
variable = in the source state of ¢z, (i.e., s means the value of z in the source
state of ts,..) and in the destination state of ¢ (i.e., xd means the value of z in the
destination state of tspe.).

In the case that the program specification does not stipulate any source condition
on safety-violating transitions, we leave the source section empty with the keyword
noSource (cf. line 133). (We use similar keywords noDestination and noRelation for
the cases where we do not have destination or relation conditions in the specification,
respectively.)

Initial states. The keyword init (cf. line 172) identifies the section of the input file
where the user has to specify some initial states. These initial states should belong to

the invariant. For each initial state, the user should use the reserved word state (cf.

20

line 176). In the state section (cf. lines 176-178 and 181-183), the user should assign

some values to the program variables that belong to their corresponding domain.

21

Chapter 4

Input Translator

In this chapter, we illustrate how we automatically translate the input text file
to a set of Java files that are integrated into the framework. Towards this end, we
describe the relation between each section of the input file (described in Chapter 3)
and the corresponding data structure that we generate.

Depending on the problem at hand, developers of fault-tolerance should instan-
tiate an instance of our framework that is integrated with a set of problem-dependent
Java files. In other words, to synthesis a fault-tolerant program from its fault-
intolerant version, we need to give the fault-intolerant program to our framework
so that we can use the core of the framework for the synthesis of the fault-tolerant
program. Towards this end, we translate the abstract structure of the fault-intolerant
program (specified in guarded command) to a set of Java classes that we can inte-
grate into our framework and generate an instance of the framework that enables us
to synthesis the corresponding fault-tolerant program.

In order to translate the input text file to the corresponding Java files, developers

of fault-tolerance should use our parser on the command line as follows.

java MyParser inputFilename

The execution of the above command generates the required java files namely,

22

State.java, ProgramImplementation.java, Fault.java, Invariant.java, SafetySpecifica-
tion.java, InitialStates.java, Tool.java, and a set of Java files corresponding to each
process with the same name given to the process in the input file.

In Section 4.1, we illustrate how we generate a Java file that represents each state
of the program. Then, in Section 4.2 we introduce the structure of the program and
its processes. We present the data structure for the internal representation of faults
in Section 4.3. In Sections 4.4 and 4.5, we describe the generation of the Java files
that correspond to the invariant and the safety specification. Finally, we generate a

Java file that is responsible for the generation of the output fault-tolerant program.

4.1 Generating The Program State

In principle, we identify each program state by a specific valuation to the program
variables. In practice, we generate a Java file that specifies a class State. The State
class includes all the program variables as its state variables. Moreover, the State
class has extra state variables to store more information about a state. For example,
we have a Boolean variable invariant in the State class that shows if an instance of
the State class is an invariant state. We present a partial structure of the State class
as follows.

1 public class State {

2

3 int stateno;

4 int vars[];
5 int no_vars;
6 State next;
7 LinkedList out_ptransitions;
8 LinkedList in_ptransitions;
9 LinkedList out_ftransitions;
10 LinkedList in_ftransitions;

23

11 boolean invariant;
12 boolean ms;
13

14 public int getValue (int i) {

15 if((i < no_vars) & (i >=0)) {

16 return vars[il; }

17 else {

18 System.out.println("Erroneous variable no"); }
19 return Parameters.INVALID_VALUE;

20 }

21
22

23 public void setValue (int i, int v) {

24 if((i < no_vars) && (i >=0)) {

25 vars[i] = v; }

26 else

27 System.out.println("Erroneous variable no"); }

28 }

29
30 public void markInvariant() {
31 invariant = true;
2}

33

34 public boolean isInvariant() {
35 return invariant;
36}

37

3s public boolean is_ms() {

39 return ms;

40 }

41

42 public void set_ms() {

43 ms = true;

24

44 }

45
46 public LinkedList getInFaultTransitions() {

a7 return in_ftransitions;

s}

49
50 public LinkedList getOutFaultTransitions() {

51 return out_ftransitions;

52}
53
54 public LinkedList getInProgramTransitions() {

55 return in_ptransitiomns;

56}

57
58 public LinkedList getOutProgramTransitions() {

59 return out_ptransitions;

60 }

As we can observe in the State class, we have a set of methods for manipulating
the state variables of the State class. Also, we have a set of methods for extracting
information about an instance of the State class (e.g., isInvariant() method). Each
instance of the State class has four sets of transitions: input program transitions, input
fault transitions, output program transitions, and output fault transitions. Observe

that there exist some methods for the manipulation of these transitions.

4.2 Generating The Fault-Intolerant Program

We describe the automatic generation of the Programlmplementation class. This
class models the abstract structure of the fault-intolerant program. Accompanied with
the generation of this class, we generate Java classes corresponding to each process

of the fault-intolerant program. In this subsection, we first describe the structure of

25

the ProgramImplementation class, and then we describe the structure of the Java files
that are created for each process.
1

2 public class ProgramImplementation implements Program_Implementor {

3

4 Component cmpts[];

5 int no_components;

6 public ProgramImplementation(){

7 no_components = ProblemSpecific.NO_COMPONENTS;

8 cmpts = new Component [no_components];

9

10

11 // Create the internal representation of the first process
12 try {

13

14 }

15 catch(Exception e) {

16 System.out.println(" Exception in constructing Process i " + e); }
17

18

19

20 // Create the internal representation of the second process

21 try {

22

23 }

24 catch(Exception e) {

25 System.out.println(" Exception in constructing Process i " + e); }
26

27

28

29

30

26

31
32
33 }
34
35

36 public Stack exploreImp(State s, Hashtable states) {

37 Stack ns = new Stack();

38 for(int i = 0; i < no_components; i++) {
39 cmpts[i].explore(ns,s,states); }
40 return ns;

41 }

42
43

44 public boolean solveDeadlockImp(State s, Invariant inv, Hashtable states,

45 SafetySpecification spec, Program fitp) {
46 for(int i = 0; i < no_components; i++) {
a7 if(cmpts[i].solveDeadlock(s, inv, states, spec, fitp))

48 return true; }

49 return false; }

50

51

52 public boolean solveDeadlockMoreImp(State s, Invariant inv, Hashtable states,

53 SafetySpecification spec, Program fitp, Hashtable recStates) {

54 for(int i = 0; i < no_components; i++) {

55 if (cmpts[i].solveDeadlockMore(s, inv, states, spec, fitp, recStates))
56 return true; }

57 return false; }

50 public boolean producesTransitionImp(Transition t) {

60 for(int i = 0; i < no_components; i++) {
61 if (cmpts[i].producesTransition(t)) return true; }
62 return false; }

63

27

64 public boolean isDeadlockedImp(State s) {

65 for(int i = 0; i < no_components; i++) {
66 if(!cmpts[i].isDeadlocked(s)) return false; }
67 return true; }

68
69

70 public void printImp() {

71 System.out.println("Printing Program..... ");

72 System.out.println();

73 for(int i = 0; i < no_components; i++) {

74 System.out.println("Printing component" + i);
75 cmpts[i] .print(); }

76 }

7}

The Programlmplementation class implements the interface defined by the Bridge
design pattern applied on the abstract class Program. This way, the implementation
of the program structure remains independent of the abstract design of the frame-
work. The Programlmplementation class has three sections. In this first section, we
declare the state variables of the class. In the second section, we create a try block
corresponding to each process of the fault-intolerant program (cf. the documentation
of the code for the details of this section.). In the third section, we have a set of
methods that we use for the generation of the reachability graph and resolution of

the deadlock states.

4.3 Generating The Faults

The structure of the Fault class is very simple. The constructor of the Fault class
creates a linked list structure of the fault actions. The input translator converts the

fault actions represented as a process in the input text file to a lined list of actions

28

in the Fault class. Then, the synthesis framework uses these fault actions to generate

the reachability graph.

1 public class Fault {
2

3 LinkedList actions;
4

s public Fault() {

6

7 actions = new LinkedList();
8

9

10

11 }
12

13 Stack explore(State s, Hashtable states) {

14 Stack ns = new Stack();

15 ListIterator i = actions.listIterator(0);
16 while(i.hasNext()) {

17

18 }

19 return ns;

20 }

21

22 public void print() { }

23 }

4.4 Generating The Invariant

Using the invariantCondition specified in the input text file and program vari-

ables, the input translator creates the following Java class.

29

1 public class Invariant {

2

3 public Invariant() { }

4

5 public boolean satisfies(State s) {

6

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

if (

int
int
int
int
int
int
int
int
int
int

int

bi
bj
bk
bg
dg
di
dj
dk
fi
]

fk

bi;
bj;
bk;
bg;
dg;
di;
dj;
dk;
fi;
35

fk;

.getValue(0);
.getValue(1);
.getValue(2);
.getValue(3);
.getValue(4);
.getValue(5);
.getValue(6B);
.getValue(7);
.getValue(8);
.getValue(9);

.getValue(10);

invariantCondition)

return true;

30

34

35 return false;
36}
37}

The constructor of this Invariant class is empty. The input translator, declares all
program variables in the satisfies method. Then, using the value of the variables in
the parameter state of the satisfies method, the membership of the given state to the
invariant is determined. As an example, we have shown in the above Java code the
structure of the Invariant class that is generated for the Byzantine agreement program
introduced in Section 3.2. The invariantCondition specified in the if statement is

exactly the same condition specified in the input file in the invariant section.

4.5 Generating The Safety Specification

The structure of the SafetySpecification class is very similar to the structure of
the Invariant class. The only difference is that in the SafetySpecification class, we need
to check the validity of a given transition instead of checking the membership of a

given state to the invariant.

1 public class SafetySpecification {
2

3 LinkedList predicate_list;

4

5 public SafetySpecification() { 1}
6

7 public boolean violatesSafety(Transition t) {

8 State source = t.getSource();

9 State dest = t.getDestination();
10 int bis;

11 int bjs;

31

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

int
int
int
int
int
int
int
int

int

int
int
int
int
int
int
int
int
int
int

int

bis
bjs
bks
bgs
dgs
dis
djs
dks

fis

bks;
bgs;
dgs;
dis;
djs;
dks;
fis;
fis;

fks;

bid;
bjd;
bkd;
bgd;
dgd;
did;
djd;
dkd;
fid;
fjd;

fkd;

= source
= source
= source
= source
= source
= source
= source
= source

= source

.getValue(0);
.getValue(1);
.getValue(2);
.getValue(3);
.getValue(4);
.getValue(5);
.getValue(6) ;
.getValue(7);

.getValue(8);

32

45 fjs = source.getValue(9);

46 fks = source.getValue(10);

47

48

49 bid = dest.getValue(0);

50 bjd = dest.getValue(l);

51 bkd = dest.getValue(2);

52 bgd = dest.getValue(3);

53 dgd = dest.getValue(4);

54 did = dest.getValue(5);

55 djd = dest.getValue(6);

56 dkd = dest.getValue(7);

57 fid = dest.getValue(8);

58 fjd = dest.getValue(9);

59 fkd = dest.getValue(10);

60

61

62 if (destinationCondition) return true;
63

64 if (relationCondition) return true;

65

66 return false;

67}
68

69 public void print() { }

0 }

As an example, we have shown in the above Java code the structure of the
SafetySpecification class that is generated for the Byzantine agreement program in-
troduced in Section 3.2. The destinationCondition and relationCondition specified
in the if statements are exactly the same condition specified in the input file in the

specification section.

33

4.6 Generating The Initial States

In this subsection, we describe the automatic generation of the InitialStates class
from input file. In this class, the input translator generates Java code for the creation
of a linked list of initial states. The input translator uses the values of the variables
from the input file in order to generate code for the instantiation of initial states.

1 public class InitialStates {

2

3 public InitialStates() { }

4

5 static LinkedList getInputStates() {
6 State sO = new State();

7 s0.setValue(0,0);
s s0.setValue(1,0);
9 s0.setValue(2,0);
10 s0.setValue(3,0);
1 s0.setValue(4,0);
12 s0.setValue(5,-1);
13 s0.setValue(6,-1);
14 s0.setValue(7,-1);
15 s0.setValue(8,0);
16 s0.setValue(9,0);
17 s0.setValue(10,0);
18

19 State s1 = new State();

20 sl.setValue(0,0);
21 sl.setValue(1,0);
29 sl.setValue(2,0);
23 sl.setValue(3,0);
24 sl.setValue(4,1);
25 sl.setValue(5,-1);
2 sl.setValue(6,-1);

34

97 sl.setValue(7,-1);

08 sl.setValue(8,0);
29 sl.setValue(9,0);
30 sl.setValue(10,0);

31

32 LinkedList inputstates = new LinkedList();

33 inputstates.add(sl);
34 inputstates.add(s0);
35 return inputstates;
36 }

37}

Observe that the getlnputStates returns a linked list of states that are used for

the expansion of the reachability graph.

4.7 Generating The Output Generator

After the synthesis framework synthesizes a fault-tolerant program, it has to
transform the reachability graph of the fault-tolerant program to guarded commands
that are understandable for the user. To achieve this goal, the input translator

automatically generates the QutputGenerator class in Java code.

1 public class OutputGenerator {

2

3 public OutputGenerator() { 1

4

5 static void PrintProcess_i(AbstractReachabilityGraph g,

6 String action, OutputFile outf){

7

8 }

9 static void PrintProcess_j(AbstractReachabilityGraph g,

10 String action, OutputFile outf){

11

35

12

14

15

16

17

-

8

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

}

static void PrintProcess_k(AbstractReachabilityGraph g,

String action, OutputFile outf){

of .writeLine("No. of states: "+g.getNumStates());

of .writeLine(" ");
of .writeLine ("kx**k*xx

of .writeLine(" ");

of .writeLine("--------

of .writeLine(" ");

The fault-intolerant program **xxxxxx

PrintProcess_i(g,"set_di_val0",of);

of .writeLine(" ");

PrintProcess_i(g,"set_di_vall",of);

of .writeLine(" ");

PrintProcess_i(g,"set_fi_vall",of);

of .writeLine(" ");

of .writelLine("--—————-

of .writeLine(" ");

PrintProcess_j(g,"set_dj_val0",of);

of .writeLine(" ");

PrintProcess_j(g,"set_dj_vall",of);

of .writeLine(" ");

PrintProcess_j(g,"set_fj_vall",of);

of .writeLine(" ");

of .writeLine("----———-

of .writeLine(" ");

PrintProcess_k(g,"set_dk_val0",of);

of .writeLine(" ");

PrintProcess_k(g,"set_dk_vall",of);

of .writeLine(" ");

36

static public void printFIProgram(AbstractReachabilityGraph g,0utputFile of){

")

45

46

47

48

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

7

PrintProcess_k(g,"set_fk_vall",of);

of .writeLine(" ");

}

of .writeLine("No. of states: "+g.getNumStates());

of .writeLine(" ");
of .writeLine ("kxx**kxx

of .writeLine(" ");

of .writeLine("--—————-

of .writeLine(" ");

The fault-tolerant program

PrintProcess_i(g,"set_di_val0",of);

of .writeLine(" ");

PrintProcess_i(g,"set_di_vall",of);

of .writeLine(" ");

PrintProcess_i(g,"set_fi_vall",of);

of .writeLine(" ");

of .writeLine("--------

of .writeLine(" ");

PrintProcess_j(g,"set_dj_val0",of);

of .writeLine(" ");

PrintProcess_j(g,"set_dj_vall",of);

of .writeLine(" ");

PrintProcess_j(g,"set_fj_vall",of);

of .writeLine(" ");

of .writelLine("--——————-

of .writeLine(" ");

PrintProcess_k(g,"set_dk_val0",of);

of .writeLine(" ");

PrintProcess_k(g,"set_dk_vall",of);

of .writeLine(" ");

PrintProcess_k(g,"set_fk_vall",of);

of .writeLine(" ");

37

Rokkokokokokok ")

static public void printFTProgram(AbstractReachabilityGraph g,0utputFile of){

I

78 }

79

8o }

The structure of the OutputGenerator class consists of two parts. First, we have
a section that includes a method corresponding to each process. For example, for the
Byzantine agreement program, the input translator generates three methods corre-
sponding to non-general processes i, j, and k (cf. Section 3.2).

In the second part of the code of the OutputGenerator class, the input translator
generates two methods respectively for generating the fault-intolerant and the fault-
tolerant programs. In each of these section, the methods specified in the first part

are invoked to generate the guarded command of each process.

38

Chapter 5

Framework Instantiation

In this chapter, we show how developers can instantiate an instance of the frame-
work for the synthesis of a specific program. Towards this end, we present the proce-
dure by which the instantiation takes place.

After the translation of the input file to a set of Java files, we need to copy the
generated Java files to the same folder where the core of the framework exists. At
this step, first we have to compile the java files corresponding to each process. For
example, in the case of Byzantine agreement we do the following.

> javac i.java
> javac j.java

> javac k.java

Afterwards, we compile Tool.java file that is the main file for the instantiation of

the framework.

> javac Tool.java

The compilation of Tool.java file results in the compilation of the core of the
framework. Afterwards, we are ready to instantiate the framework for the synthesis
of the fault-tolerant version of the fault-intolerant program specified in the input text

file. We run the following command.

39

> java Tool

After running the above command, developers will be prompted by the command
line of the framework. In the next section, we describe the way that developers can

supervise the synthesis of the fault-tolerant program.

40

Chapter 6

Supervised Synthesis

In this section, we describe the capabilities of our framework by which developers
of fault-tolerance can direct the synthesis of fault-tolerant programs where automatic
synthesis fails. Towards this end, we describe the user interface of the framework and
the steps of the synthesis.

The main menu of the framework is as follows:

A: Automatic
S: Semi-automatic

T: Terminate

SYNFT:>

There exist three options namely Automatic, Semi-automatic, and Terminate.
The first option means that the synthesis will be performed automatically and devel-
opers have no option for the intervention during the synthesis. The Terminate option
terminates the execution of the framework. And, the SYNFT:; is the command line
of the framework. The Semi-automatic option provides the means for developers to
conduct the synthesis of the fault-tolerant program. When developers choose this
option the following menu appears.

E: Expand reachability graph.

41

ot

Identify states from where safety of specification is violated by fault transitions.
Remove safety violating transitions.
Mark the invariant states.

Solve deadlock states.

L # = F

Query.

The first option asks the framework to generate the internal representation of
the fault-intolerant program as a directed graph; i.e., reachability graph. Notice that
developers have to perform the first state before moving to the subsequent steps of
the synthesis. After the generation of the reachability graph, it becomes possible
to choose other option in the desired order. However, in the current version of the
framework, the synthesis algorithm is a deterministic implementation of the non-
deterministic algorithm presented in [1]. Thus, it is suggested to perform the rest of
the options in order.

The option M results in the identification of the invariant states. The option |
asks the synthesis algorithm to identify the set of states (i.e., denoted ms) from where
safety of specification is violated directly by fault transitions. The identification of ms
states results in the identification of a set of transitions (i.e., denoted mt) that reach
a state in ms or directly violated safety. The option R asks the synthesis algorithm to
remove mt transitions. The removal of mt transitions may create states that do not
have any outgoing program transitions (i.e., deadlock states). The option S asks the
framework to apply existing heuristics for resolving deadlock states. The complexity
of synthesis mostly stems from deadlock resolution.

In every subsequent step after expanding the reachability graph developers have
the option to explore the reachability graph in order to understand the cause of failures
of the synthesis. By selecting the option Q, developers can query the framework for
particular state or transition. In the case of making a query on the states of the

reachability graph, the following menu appears.

42

View the incoming program transitions.
View the incoming fault transitions.

View the outgoing program transitions.

Is this state an ms state?
Is this state an invariant state?

)
)
)
4) View the outgoing fault transitions.
)
)
) Return to the main menu.

Observe that the above menu allows developers to walk through the reachability
graph in the cases where the state space is manageable. Otherwise, there exists an
option to model the program being synthesized in Promela modeling language and
take advantage of the SPIN model checker. Using model checkers allows developers
of fault-tolerance to analyze the behaviors of the intermediate program when the
synthesis of the fault-tolerant program fails. The counter examples generated by
SPIN reflects the shortcomings of the existing heuristics in the synthesis of the fault-

tolerant program.

6.1 Applying Heuristics

In this section, we show how developers of fault-tolerance can select suitable
heuristics where they need to resolve deadlock states. The deadlock resolution step
follows after the removal of safety-violating transitions.

In the main menu of the framework, there exists an option related to deadlock
resolution (i.e., the option S). Upon selection of the option S, the following menu
appears:

1: Heuristicl.
2: Heuristic2.

3: Return.

43

The above menu provides the choice of selecting one of the existing heuristics
for deadlock resolution. Developers of fault-tolerance can select one of the existing
heuristics during the synthesis. The number of existing heuristics depends on the
heuristics that are currently integrated into the framework. We note that as develop-
ers design new heuristics, they can integrate them into the framework and add new
options to the above menu in Graphlmplementation2.java file. The integration of new
heuristics is fairly simple. We refer the interested readers to [4] for the details of

integrating new heuristics to the framework..

44

APPENDIX

45

10

11

12

13

14

15

16

17

18

19

*/

Copyright (C) 2002 Ali Ebnenasir.

Do not modify without amending copyright; distribute freely but retain

copyright message.

Java files generated by running JavaCC on this file (or modified versions

of this file) may be used in exactly the same manner as this file.

Author: Ali Ebnenasir

Date: 9/29/02

This file contains a grammar for specifying the input file of the SYNFT.
In the input file, the user should specify a fault-intolerant program,

its invariant, its specification, initial states, and faults.

20 TOKEN : /* RESERVED WORDS AND LITERALS */

21

31 |
32 |

33 |

PROGRAM: "program" >
VAR: "var" >
DOMAIN: "domain" >

PROCESS: "process" >
BEGIN: "begin" >
END: "end" >

READ: "read" >
WRITE: "write" >
BOOLEAN: "boolean" >
INT: "int" >

FALSE: "false" >

TRUE: "true" >

46

45

46

FAULT:

INVARIANT:

"fault" >

"invariant" >

SPECIFICATION: "specification" >

SOURCE:

"source" >

DESTINATION: "destination" >

RELATION:

INIT:

STATE: "st

NOSOURCE:

NODESTINATION:

"relation" >

"init" >

ate" >

"noSource" >

NORELATION: "noRelation" >

47 TOKEN :

48
49
50
51
52
53 |
54
55 |
56
57
58

59

/* LITERALS x*/

< INTEGER_LITERAL:

<DECIMAL_LITERAL>

| <HEX_LITERAL>

< #DECIMAL_LITERAL>

< #HEX_LITERAL>

60 TOKEN :

61

A

A

/* SEPARATORS */

LPAREN: "(" >

RPAREN: ")" >

SEMICOLON:

Il;ll >

COMMA: "," >

DOT:

ll.ll >

"noDestination" >

47

67 | < DOUBLEDOT: ".." >
68 | < ARROW: "->" >

69 | < BAR: "|" >

70

71

72

73

74 TOKEN : /x OPERATORS */
75

76 < ASSIGN: "=" >

77 | < GT: ">" >

78 | < LT: "<" >

79 | < BANG: "t!" >

go | < EQ: "==" >

81 | < LE: "<=" >

82 | < GE: ">=" >

83 | < NE: "t=" >

sa | < AND: "&&" >

85 | < PLUS: "+" >

s6 | < MINUS: "-" >

87 | < REM: "%" >

g8 | < TILDA: "~" >
go | < OR: "||" >
90

91
92

93/ 3Kk ek ok skok ok ok o e ok sk o o sk ok o sk sk sk ok o ok ok sk o o ok sk ok o o o ok ok ok ok ok

94 x THE LANGUAGE GRAMMAR STARTS HERE *

95 koo kokokokok sk kK skok ok ok ok ok ok ok ok ok o sk okok o sk sk ok o ek sk okok ok k ok /
96

o1 /*

98 * Program syntax follows.

99 */

48

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115 VariableDeclarator() : "var

116

117

118

119

120

121

122

InputProgram() :
(ProgramDeclarator())
(VariableDeclarator())
(ProcessDeclarator())+
(FaultDeclarator())
(Invariant())
(Specification())

(Initialization())

ProgramDeclarator() : "program"

VarDeclaration()

VarDeclaration()

Name ()

(BooleanDeclaration() | IntegerDeclaration())+

123 BooleanDeclaration()

124

125

126

127

128

129

130

131

132

"boolean" VariableId()
IntegerDeclaration() :
"int" VariableId() ["="

DomainDeclarator ()

49

n.n
I

["= Literal()] nen

Literal()] ","

134

135

136

137 VariableId ()

138 <IDENTIFIER> ("[" "]")x
139

140

141

142 DomainDeclarator ()

143 "domain" (Literal() ".." Literal())

144 (""" Literal() ".." Literal())=*
145

146

147 Literal ()

148 <INTEGER_LITERAL>

149 |

150 BooleanLiteral()

151

152

153

154

155 BooleanLiteral ()

156 "true" | "false"
157

158

159

160

161 /%

162 * Process syntax follows.
163 */

164

165 ProcessDeclarator()

90

166 "process" Name()

167 "begin" ProcessBody () RWRestrictions() "end"
168

169

170 ProcessBody () :

171 Action() ("[" Action())*

172

173

174

175 /%

176 * Fault syntax follows.

177 */

178

179 FaultDeclarator () :

180 "fault" Name()

181 "begin" FaultBody() "end"
182

183

184

185 FaultBody ()

186 Action() ("|" Action())=*

189 /*

190 * Invariant syntax should be in DNF form.
191 */

192

193 Invariant():

194 "invariant" BooleanExpression()

195

196

197

198

o1

199 /*

200 * Specification syntax consists of two parts: source states and destination states.
201 */

202

203 Specification():

204 "specification" ("destination" BooleanExpression() | "noDestination")
205 ("relation" BooleanExpression()

206 | "noRelation")

207

208

209

210 /*

2

-

1 * Initialization syntax consists of variables value assignment.
212 */

213

214

215

216 Initialization():

-

217 "init" ("state" (InState()))*
218

219

220 InState() :

221 (Statement() ";")+

222

223 Action Action()

224 BooleanExpression() "->"

225 (Statement() (t =";" | t=","))+
226

227

228

229

230

231

52

232 RWRestrictions() :

233 "read" NameList() ";" '"write" NameList()
234

235

236 NameList ()

237 Name() ("," Name())x*
238

239

240 Name ()

241 <IDENTIFIER>

242

243

244

245 Guard ()

246 (Conjunction()) ("||"Conjunction())x*
247

248

249

250

251 term() :

252

253 LOOKAHEAD(2) Comparison()

254 (LOOKAHEAD(2) ("&&" | "[|™)

255 Comparison())* |

256 " (" BooleanExpression(expr) ")"
257

258

259

260 BooleanExpression()

261 term() (LOOKAHEAD(2) ("&&" | "[I") term())*
262

263

264

93

n.n
)

265 Conjunction() :

266 " (" Comparison() ("&&" comp = Comparison())*

267 ") "
268
269
270

271 Disjunction() :

272 " (" Comparison() (G
273

274

275 Comparison() :

276 " (" ((Literal() | Name())
277 (Literal() | Name())

278

279

280 ComparisonOperators() :

e I U IRV
282 ">M | wg=m | wy=n
283
284

285 Statement ()

286 Name () "=t (Literal()

Comparison()

ComparisonOperators()

Bibliography

[1] S. S. Kulkarni and A. Arora. Automating the addition of fault-tolerance. Formal

Techniques in Real-Time and Fault-Tolerant Systems, 2000.

[2] S.S. Kulkarni and A. Ebnenasir. The complexity of adding failsafe fault-tolerance.

International Conference on Distributed Computing Systems, 2002.

[3] S.S. Kulkarni, A. Arora, and A. Chippada. Polynomial time synthesis of byzantine

agreement. Symposium on Reliable Distributed Systems, 2001.

[4] Sandeep S. Kulkarni and Ali Ebnenasir. A framework for automatic synthesis of
fault-tolerance. Technical Report MSU-CSE-03-16, Computer Science and Engi-

neering, Michigan State University, East Lansing MI 48824, Michigan, July 2003.
[5] E. W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1990.

[6] Spin language reference. http://spinroot.com/spin/Man/promela.html.

95

