Basic Concepts and Taxonomy of Dependable and Secure Computing

Algirdas Avizienis, Jean-Claude Laprie Brian Randell, and Carl Landwehr

Motivation

- Concepts in Our Taxonomy
- Dependability and Security
- Threats to Dependability and Security
- Means to Dependability and Security
- Conclusion
- Questions

Motivation

- Communication and cooperation among communities are difficult
 - Especially when system failures
- Explicit and clear concepts are necessary
- But, there are uncertainties and complexity in systems

Concepts of Our Taxonomy

System

A system is an entity that interacts with other entities, i.e., other systems, including hardware, software, humans, etc.

Function

The function of a system is what the system is intended to do and is described by the functional specification in terms of functionality and performance

Behavior

 The behavior of a system is what the system does to implement its function and is described by a sequence of states

Structure

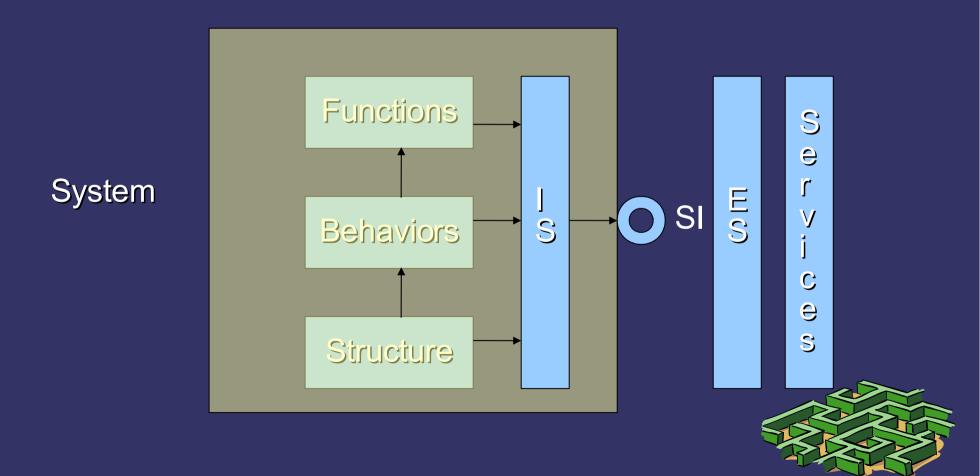
The structure of a system is what enables it to generate the behavior.

Concepts Continued.

Service

- The service delivered by a system is its behavior as it is perceived by its user(s)
- Roles
 - Provider
 - User
- Interfaces
 - Service Interface
 - Use Interface
- States
 - External State
 - Global varibles
 - Internal State
 - Local variables

Provider


SI

Relationship

Overview of a system

• A service is a sequence of the system's external states

Dependability and Security

Definition of Dependability
 Definition of Security
 Their Attributes
 Their Relationship

Definitions of Dependability

Definition 1

- The ability to deliver service that can justifiably be trusted
 - Stress the need for justification of trust

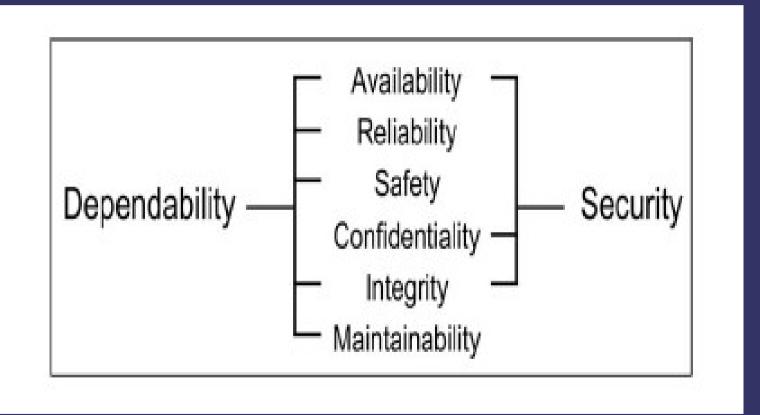
Definition 2

- The ability to avoid service failures that are more frequent and more severe than is acceptable
 - Stress the avoidance of failures

Attributes of Dependability

- Availability
 - Readiness for correct service
- Reliability
 - Continuity of correct service
- Safety
 - Absence of catastrophic consequences on the user(s) and the environment
- Integrity
 - Absence of improper system alterations
- Maintainability
 - Ability to undergo modifications and repairs

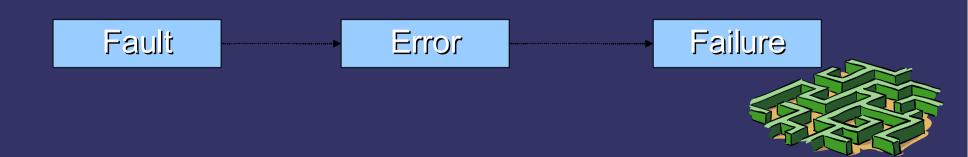
Definition of Security


- Security is a composite of the attributes of confidentiality, integrity, and availability, requiring the concurrent existence of
 - Availability for authorized action only
 - Confidentiality
 - Integrity with "improper" meaning "unauthorized"

Confidentiality

- The absence of unauthorized disclosure of information
- With great prominence

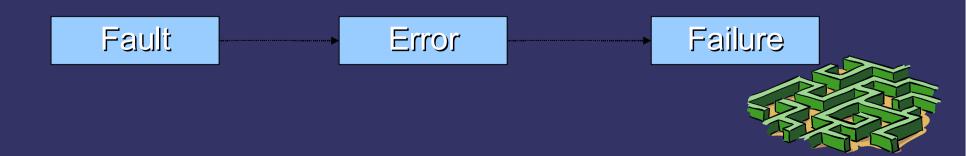
Relationship between Dependability and Security


Threats to Dependability and Security

Faults

S A fault is the adjudged or hypothesized cause of an error

Errors


- An error is the part of total state of the system that may lead to its subsequent service failure
 - Active
 - Latent

Threats continued

Failures (or Service Failures)

- S A failure is an event that occurs when the delivered service deviates from correct service
- S At least one external state of the system deviates from the correct service state

Taxonomy of Faults

Development Faults

All fault classes occurs during the development

Physical Faults

All fault classes that affect hardware

Interaction Faults

- All external faults
 - e.g. Interface mismatch between components

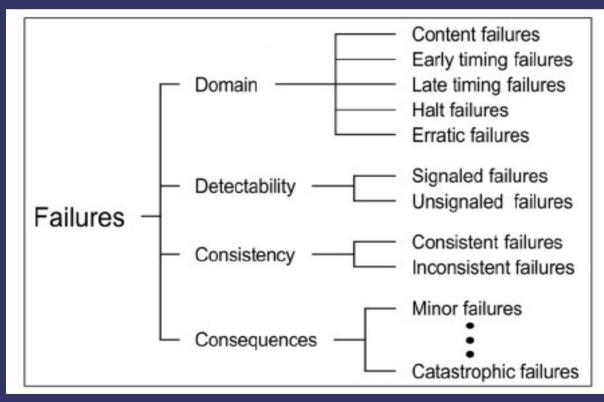
Taxonomy of Faults

Natural Faults

- Caused by natural phenomena without human participation
 - Physical faults
 - Production defects originating from development
 - Internal/External
- Human-Made Faults
 - Result from human actions
 - Omission/Commission faults
 - e.g. Absence/Wrong action
 - Malicious/Nonmalicious faults
 - Virus/Flaw

Taxonomy of Errors

Errors


- An error is the part of total state of the system that may lead to its subsequent service failure
 - Detected/Latent
 - Content/Timing
 - Consistent/Inconsistent
- Does an error cause a service failure?
 - It depends on the structure of the system
 - Redundancy
 - It also depends on the behavior of the system
 - What if the part of the state that contains the error never be needed for service?

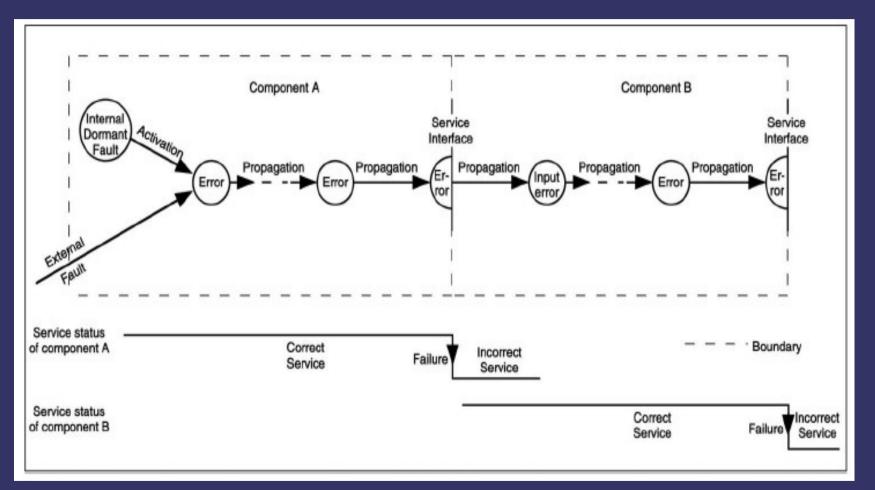
Taxonomy of Failures

Service Failures

- A service failure is defined as an event the occurs when the delivered service deviates from correct service
- 4 Viewpionts

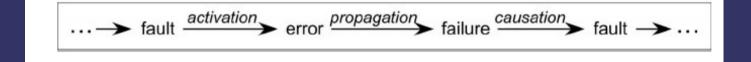
Development Failures

Development Failures


- Development faults introduced into the system by its environment, especially by human, may contribute to partial or complete development failures
 - Budget failure
 - Schedule failure

Development failures have a very negative impact on the user community

Complete development failure of the AAS system resulted in the waste of \$1.5 billion!!!

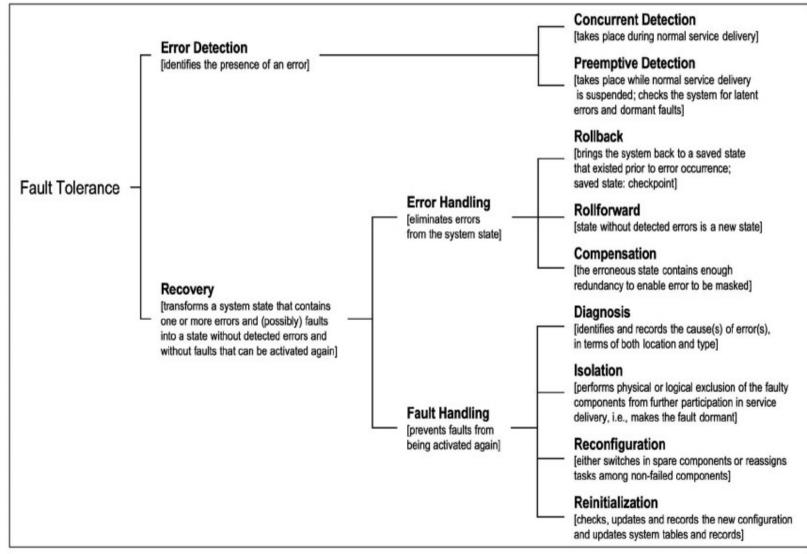


Pathology of Failure

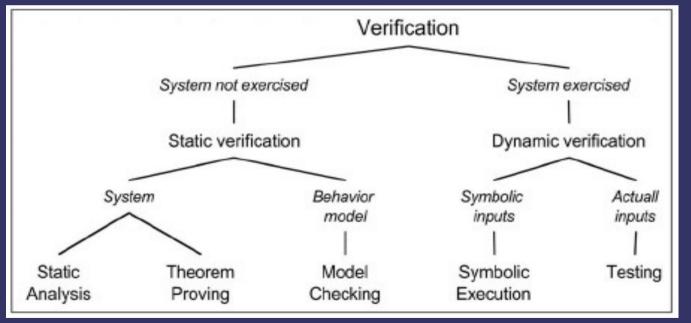
Chain of dependability and security threats

Means to Attain Dependability and Security

- Fault Prevention
 Fault Tolerance
 Fault Removal
- Fault Forecasting


Fault Prevention

- Part of general engineering
- Prevention of development faults is mentioned
 - Software & hardware
 - e.g. C or Java
 - Improvement of development processes
 e.g. Recording faults in product


Fault Tolerance

Failure avoidance by error detection and system recovery

Fault Removal

Fault Forecasting

- Fault forecasting is conducted by performing an evaluation of the system behavior with respect to fault occurrence of activation
 - Qualitative evaluation
 - Identify, classify, and rank the failure modes
 - Quantitative evaluation
 - Evaluate in terms of probabilities the extent to which some of the attributes are then viewed as measure

Relationship between the 4 means

Fault Prevention vs Fault Removal

Faults may occur after prevention, we need fault removal

Fault Removal vs Fault Forecasting

- Fault removal may generates faults, we need fault forecasting
- Fault Tolerance is required even more
 - Increasing dependence on computing systems
 - Fault Tolerance needs fault removal & forecasting
- Nothing is perfect, we need the combined utilization of all 4 means

Conclusion

We need trust various computing systems Airplane, nuclear plant, etc A single conceptual framework among various systems

- Availability
 Reliability
- Safety
- Confidentiality
- IntegrityMaintainability
- We need a system with an appropriate balance of these properties

In fault tolerance, error handling includes rollforward, can you give me an example of rollforward? Is it easy to do a rollforward?

What is symbolic execution? (in section 5.3.1)

What's the difference between protective redundancy and unintentional redundancy?

Question 4

Are there any computing systems, each phase of which actually uses all 4 approaches presented in the paper? (Fault prevention, fault removal, fault tolerance, fault forecasting)

More Questions?

