CS 5090: Software Fault Tolerance – Predicate Logic

Ali Ebnenasir Department of Computer Science Michigan Technological University

> S/W Fault-Tolerance - Ebnenasir - Spring 2008

Acknowledgement

• The contents of this lecture are adapted from

Anil Nerode and Richard A. Shore, "Logic for Applications", Springer-Verlag, 1997.

Basic Concepts - Predicates

Mehigenteeb

- Predicate: relation between objects
 - Special case: unary relations specify property of objects
- Predicate logic: Logic of predicates
- Predicates could be n-ary
- What is 0-ary predicate?

- Proposition

- Statement of facts independent of variables

Basic Concepts – Domain of Discourse • To reason about the relations between objects in a domain of discourse – Identify

- the non-empty domain of objects
- variables that range over the domain of discourse
- · constants that are the names of objects
- An <u>n-ary predicate</u> is an n-tuple representing a relation over n objects

S/W Fault-Tolerance – Ebnenasir – Spring 2008

Basic Concepts – Functions

- A <u>function</u> takes one or more objects in the domain and generates another object of the domain
 - Example: addition on natural numbers in mathematical discourse
 - Is subtraction a function?
- Example: a ternary function f(x,y,z) = x.y + z
- What is f(1,y,1)?
- How about f(1,0,1)?

Basic Concepts –

- · Predicates are relations
- Functions are specific relations
- 0-ary predicates → propositions
- 0-ary functions \rightarrow constants
- <u>Term</u>: all the <u>symbols</u> generated by functions, constants and variables
- Predicate constructors:
 - Truth-functional connectives
 - Universal and existential quantifications $_{\rm S/W \; Fault \ To krame \ Bheensir Spring}_{2008}$

Syntax - Symbols

- Distinct primitive symbols of a language
 - Variables: x, y, z, ..., x₀, x₁, ..., y₀, y₁, ...
 may be infinite
 - Constants: c, d, c₀, d₀, ...
 may be empty, finite or infinite
 - Connectives: \land , \lor , \neg , \rightarrow , \leftrightarrow

 - Quantifiers: \forall , \exists
 - Predicate symbols: P, Q, R, P_0, P_1, \dots
 - Function symbols: f, g, h, f_0 , f_1 , ...
 - Punctuation: the comma,), (
 - S/W Fault-Tolerance Ebnenasir Spring 2008

Syntax - Terms

Michiganilech

- <u>Term</u>: Symbol whose interpretation is an element of the domain of discourse
- Formal inductive definition:
 - 1. Every variable is a term
 - 2. Every constant symbols is a term
 - 3. If *f* is an n-ary function symbol, for n =1,2, ..., and t_1 , ..., t_n are terms, then $f(t_1, ..., t_n)$ is also a term.
- *Ground terms*: terms with no variables; also called *variable-free* terms
 - Constants and terms built up from constants by Rule 3

Syntax - Formulas

Meliganiech

- <u>Atomic formula</u>: an expression of the form $R(t_1, ..., t_n)$ for a predicate R and terms $t_1, ..., t_n$
- Formula:
 - Atomic formula
 - $\begin{array}{l} (\alpha \wedge \beta), \ (\alpha \vee \beta), \ (\alpha \rightarrow \beta), \ (\alpha \leftrightarrow \beta), \ (\neg \alpha), \ where \ \alpha \\ \text{ and } \beta \ \text{are formulas} \end{array}$
 - $((\forall \textit{v}) \alpha)$, $((\exists \textit{v}) \alpha),$ where v is a variable and α is a formula

S/W Fault-Tolerance – Ebnenasir – Spring 2008

Syntax – Some Definitions

- <u>Subformula</u>: a consecutive sequence of symbols that is a formula itself
- Bound occurrence of a variable *v*: if there is a subformula that begins with (∀*v*) or (∃ *v*)
- <u>Free occurrence of v</u>: if that occurrence is not bound
- Free occurrence of v in a formula: if v appears free at least once
- Sentence: a formula with no free occurrences
- Open formula: a formula without quantifiers

S/W Fault-Tolerance - Ebnenasir - Spring 2008

Syntax – Instantiation (substitution)

- ϕ (v) means v <u>occurs free</u> in formula ϕ
- ϕ (v/t) is the resulting formula by **substituting** every free occurrence of v in ϕ with t; also denoted ϕ (t)
 - ϕ (t) is called an $\underline{\text{instance}}$ of ϕ
- Ground instance: $\phi(t)$ contains no free vars.
- <u>Substitutable</u>: if all (free) variables in t remain free in every occurrence of v in ϕ (v/t), then we say t is substitutable for the variable v in ϕ (v)

Syntax – Formation Tree

Michiganileab

- Term formation trees: finitely branching trees labeled with terms satisfying
 - 1. Leaves are labeled with variables and constants
 - 2. Non-leaf nodes are labeled with terms $\mathit{f}(t_1, \ \ldots, t_n)$
 - 3. A node labeled with $\mathit{f}(t_1,\,...,\,t_n)$ has exactly n immediate successors labeled with $t_1,\,...,\,t_n$
- The root of the tree is associated with the term

Semantics

Meliganiech

Michiganileab

- Context (domain of discourse) → an interpretation of a language of predicate logic
- Meaning of predicates and functions
- Example:
 - Context \rightarrow natural number
 - Predicate \rightarrow "less than" <
 - Function \rightarrow addition +

S/W Fault-Tolerance – Ebnenasir – Spring 2008

$\label{eq:basic} \begin{array}{l} \text{Branching of the second structure} \\ \textbf{Semantics - Structure} \\ \textbf{S for a language L includes} \\ \textbf{-} A non-empty domain D \\ \textbf{-} Rational numbers} \\ \textbf{-} An assignment of an actual n-ary relation to each n-ary predicate symbol \\ \textbf{-} A hassignment of an actual n-ary relation to each n-ary predicate symbol \\ \textbf{-} A hinary realtion "less than or equal" (n = 2) \\ \textbf{-} An assignment of each element of D to each constant symbol of L \\ \textbf{-} Constants c = 0, d = 1 \\ \textbf{-} An assignment of an n-ary actual function $D_n \rightarrow D$ to each function symbol f of L \\ \textbf{-} Multiplication, addition \\ \end{array}$

S/W Fault-Tolerance – Ebnenasir – Spring 2008

Semantics – Ground Terms

- 1. Each constant term t_c names an element e_s in the domain ${\pmb D}$ of a structure ${\pmb S}$
- If terms t₁, ..., t_n of the language *L* name the elements e₁, ..., e_n of *D*, and *f* is an n-ary function symbol of *L*, then

the term $f(t_1, ..., t_n)$ names the element $f^{S}(e_1, ..., e_n)$, where f^{S} is the interpretation of f in **S**

Michiganilech Semantics - Sentences 2) **S** $\models \neg \phi$ iff it is not the case that **S** $\models \phi$ 3) **S** |= ($\alpha \lor \beta$) iff **S** |= α or **S** |= β 4) **S** |= $(\alpha \land \beta)$ iff **S** |= α and **S** |= β 5) **S** |= ($\alpha \rightarrow \beta$) iff **S** | $\neq \alpha$ or **S** |= β 6) **S** |= ($\alpha \leftrightarrow \beta$) iff (**S** |= α and **S** |= β) or $(\mathbf{S} | \neq \alpha \text{ and } \mathbf{S} | \neq \beta)$ 7) **S** |= $\exists v \phi(v)$ iff for some ground term t, **S** |= $\phi(t)$ 8) **S** |= $\forall v \phi(v)$ iff for all ground terms t, **S** |= $\phi(t)$

S/W Fault-Tolerance - Ebnenasir - Spring 2008

	MichiganTech
Examples	
 Structure S₁ 	
 <u>Domain</u>: natural numbers 	
 <u>Predicate</u> R: "less than" (denoted <) relation 	
 Is the sentence (∀x) (∃y) R(x, y) true in S 	?
 Structure S₂ 	
 <u>Domain</u>: rational numbers 	
 <u>Predicate</u> R: "less than" (denoted <) relation 	
• Is $(\forall x) (\forall y) (R(x, y) \rightarrow ((\exists z) (R(x, z) \land R(y)))$	(z, y)))))
true in S₂ ?	
• Is $(\forall x) (\forall y) (R(x, y) \rightarrow ((\exists z) (R(x, z) \land R(y)))$	(z, y)))))
true in S₁ ?	
S/W Fault-Tolerance – Ebnenasir – Spring 2008	

_
