
MichiganTech

CS 5090: Software Fault Tolerance

Automated Program Synthesis

Ali Ebnenasir

Department of Computer Science

Michigan Technological University

S/W Fault-Tolerance – Ebnenasir – Spring
2008

2

What is automatic program
synthesis?

Synthesis
Algorithm

Specification
(expressed in terms of a formal language)

Synthesized
Program Model

(An abstract structure)

3

Why automatic program synthesis?

• Verification (especially model checking):

– Checking a property with respect to a program model
• Develop a program model

• Check the model with respect to specified properties

– Drawback: verification after the design

Question:

Does there exist an algorithm to design a program from its
specification?

Benefit: Correct by construction

MichiganTech

4

Programs

Functional: Terminating behavior (e.g., square root)

Functional ProgramInput Output
(Termination)

Closed Reactive: Non-Terminating Behaviors
(e.g., a group of processes competing for their critical section)

P1
The environment

of P1

P3
P4P2

Closed Reactive
Program

A collaborative
environment

5

Programs (Cont’d)

• Open Reactive Systems (synchronous or asynchronous)

Hostile
environment

P1

Open
Reactive
Program

P4

P3P2

Reaction

Action

Open
Reactive
System

6

Outline

• Program Synthesis Methods
– Model-Theoretic

– Automata-Theoretic
– Calculational

MichiganTech

7

Model-Theoretic Approach

• Automatic synthesis of closed reactive programs

Is the specification satisfiable?
(tableau proof)

Temporal specification

Create a finite model of the specification

Yes

Extract the synchronization skeleton
of each process

Finite model

The specification
is not satisfiable

No

8

Model-Theoretic Approach - Issues

• Specification Language
– Variants of propositional temporal logic

• Program Model
– Shared memory [Emerson&Clarke 1982]
– Message passing [Manna&Wolper 1984]

• Decision procedure
– Tableau-based proof

• Complexity
– Exponential in the length of the specification

• Distribution
– Decomposition of test-and-set actions (high atomicity) into atomic (low

atomicity) read/write actions [Emerson&Clarke 2001]

9

Model-Theoretic Approach -
Example

• Mutual Exclusion problem [Emerson&Clarke 1982]

• Problem Specification (i = 1, 2):

• Invariants:

MichiganTech

Model-Theoretic Approach -
Example

• Structural Specification:

• No process interferes with the transitions
of the other process

S/W Fault-Tolerance – Ebnenasir – Spring
2008

11

Model-Theoretic Approach –
Example (continued)

• Synthesis method
– Build a tableau proof of the spec.
– Extract a finite model
– Extract the synchronization skeleton

of each process

12

Model-Theoretic Approach –
Example (Reduction Rules)

– Conjunctive rules:

– Disjunctive rules

MichiganTech

13

Model-Theoretic Approach –
Example (continued)

• A tableau for the initial node

Leaf
A Block corresponding to each leaf in the tableau

Model-Theoretic Approach –
Example (continued)

S/W Fault-Tolerance – Ebnenasir – Spring
2008

15

Model-Theoretic Approach –
Example (continued)

• Blocks()

MichiganTech

Model-Theoretic Approach –
Example (continued)

S/W Fault-Tolerance – Ebnenasir – Spring
2008

17

Model-Theoretic Approach –
Example (continued)

3. Build the tableau
4. Extract a finite model

18

Model-Theoretic Approach –
Example (continued)

5. Extract the synchronization skeleton of each process

MichiganTech

19

Model-Theoretic Approach –
Some References

• E. Allen Emerson, Edmund M. Clarke: Using Branching
Time Temporal Logic to Synthesize Synchronization
Skeletons. Sci. Comput. Program. 2(3): 241-266 (1982)

• Paul C. Attie, E. Allen Emerson: Synthesis of Concurrent
Systems with Many Similar Processes. ACM Trans.
Program. Lang. Syst. 20(1): 51-115 (1998)

• Paul C. Attie, E. Allen Emerson: Synthesis of concurrent
programs for an atomic read/write model of computation.
ACM Trans. Program. Lang. Syst. 23(2): 187-242 (2001)

• Zohar Manna, Pierre Wolper: Synthesis of
Communicating Processes from Temporal Logic
Specifications. ACM Trans. Program. Lang. Syst. 6(1):
68-93 (1984)

Automata-Theoretic Approach

S/W Fault-Tolerance – Ebnenasir – Spring
2008

21

Automata-Theoretic Approach

• Automatic synthesis of open reactive programs
– Shared-variable synchronous open reactive programs

– Shared-variable asynchronous open reactive programs

Single-Process
Program

Non-deterministic
environment

x

y

Shared variables
Specification:
linear temporal logic
formula

Pnueli & Rosner 1989

MichiganTech

22

Automata-Theoretic Approach –
Basic Concepts

• Open reactive system computations

Environment writes on x

Program reads x and
writes y

Pnueli & Rosner 1989

.

.

.

.

.

.

.

.

23

Automata-Theoretic Approach –
Synthesis Method

• Synthesis method

Derive a branching temporal specification
(Implementability formula)

Linear temporal specification

Pnueli & Rosner 1989

Build a tree automaton

Check the non-emptiness of
derived tree automaton

extract a deterministic automaton
that satisfies the specification

A deterministic
automaton that

satisfies
the linear temporal

specification

24

Automata-Theoretic Approach –
Issues

• Specification language
– Temporal formula � Tree automaton

• Program model
– Single-process program
– Concurrent processes on a distributed architecture

• Synthesis method
– A sequence of conversions on the specification
– Reducing the synthesis problem to non-emptiness checking problem

• Complexity
– Single-process program: Doubly exponential in the length of

specification
– Distributed programs with arbitrary architecture: Undecidable

[Pnueli&Rosner 1990]

MichiganTech

25

Automata-Theoretic Approach –
Some References

• Amir Pnueli, Roni Rosner: On the Synthesis of
an Asynchronous Reactive Module. ICALP
1989: 652-671

• Amir Pnueli, Roni Rosner: On the Synthesis of a
Reactive Module. POPL 1989: 179-190

• Amir Pnueli, Roni Rosner: Distributed Reactive
Systems Are Hard to Synthesize FOCS 1990:
746-757

• Orna Kupferman, Moshe Y. Vardi: Synthesizing
Distributed Systems. LICS 2001

