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What is automatic program 
synthesis?

Synthesis 
Algorithm

Specification
(expressed in terms of a formal language)

Synthesized 
Program Model

(An abstract structure)
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Why automatic program synthesis?

• Verification (especially model checking):

– Checking a property with respect to a program model
• Develop a program model

• Check the model with respect to specified properties

– Drawback: verification after the design 

Question: 

Does there exist an algorithm to design a program from its 
specification? 

Benefit:  Correct by construction
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Programs

Functional: Terminating behavior (e.g., square root)

Functional ProgramInput Output
(Termination)

Closed Reactive: Non-Terminating Behaviors 
(e.g., a group of processes competing for their critical section)

P1
The environment 

of P1

P3
P4P2

Closed Reactive 
Program

A collaborative
environment
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Programs (Cont’d)

• Open Reactive Systems (synchronous or asynchronous)

Hostile
environment

P1

Open 
Reactive 
Program

P4

P3P2

Reaction

Action

Open
Reactive 
System
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Outline

• Program Synthesis Methods
– Model-Theoretic

– Automata-Theoretic
– Calculational
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Model-Theoretic Approach

• Automatic synthesis of closed reactive programs

Is the specification satisfiable?
(tableau proof)

Temporal specification

Create a finite model of the specification

Yes

Extract the synchronization skeleton
of each process

Finite model

The specification 
is not satisfiable

No
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Model-Theoretic Approach - Issues

• Specification Language
– Variants of propositional temporal logic

• Program Model
– Shared memory [Emerson&Clarke 1982]
– Message passing [Manna&Wolper 1984]

• Decision procedure
– Tableau-based proof

• Complexity
– Exponential in the length of the specification

• Distribution 
– Decomposition of test-and-set actions (high atomicity) into atomic (low 

atomicity) read/write actions [Emerson&Clarke 2001]
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Model-Theoretic Approach -
Example

• Mutual Exclusion problem [Emerson&Clarke 1982]

• Problem Specification (i = 1, 2):

• Invariants:
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Model-Theoretic Approach -
Example

• Structural Specification:

• No process interferes with the transitions 
of the other process
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Model-Theoretic Approach –
Example (continued)

• Synthesis method 
– Build a tableau proof of the spec.
– Extract a finite model
– Extract the synchronization skeleton 

of each process
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Model-Theoretic Approach –
Example (Reduction Rules)

– Conjunctive rules:

– Disjunctive rules
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Model-Theoretic Approach –
Example (continued)

• A tableau for the initial node

Leaf
A Block corresponding to each leaf in the tableau

Model-Theoretic Approach –
Example (continued)
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Model-Theoretic Approach –
Example (continued)

• Blocks(                                          )



MichiganTech

Model-Theoretic Approach –
Example (continued)
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Model-Theoretic Approach –
Example (continued)

3. Build the tableau
4. Extract a finite model
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Model-Theoretic Approach –
Example (continued)

5. Extract the synchronization skeleton of each process
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Automata-Theoretic Approach

• Automatic synthesis of open reactive programs
– Shared-variable synchronous open reactive programs

– Shared-variable asynchronous open reactive programs

Single-Process
Program

Non-deterministic
environment

x

y

Shared variables
Specification: 
linear temporal logic
formula 

Pnueli & Rosner 1989
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Automata-Theoretic Approach –
Basic Concepts

• Open reactive system computations

Environment writes on x

Program reads x and
writes  y

Pnueli & Rosner 1989
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Automata-Theoretic Approach –
Synthesis Method

• Synthesis method

Derive a branching temporal specification
(Implementability formula)

Linear temporal specification

Pnueli & Rosner 1989

Build a tree automaton

Check the non-emptiness of 
derived tree automaton

extract a deterministic automaton 
that satisfies the specification

A deterministic
automaton that 

satisfies
the linear temporal 

specification
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Automata-Theoretic Approach –
Issues

• Specification language
– Temporal formula  � Tree automaton

• Program model
– Single-process program 
– Concurrent processes on a distributed architecture

• Synthesis method
– A sequence of conversions on the specification
– Reducing the synthesis problem to non-emptiness checking problem

• Complexity
– Single-process program: Doubly exponential in the length of 

specification
– Distributed programs with arbitrary architecture: Undecidable 

[Pnueli&Rosner 1990]
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Automata-Theoretic Approach –
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