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» SPIN (Simple Promela |)\terpreter): Tool for seftware
model checking.

» Written by Gerard Holzmann and ethers.

» System to be verified Is described in PROMELA (Process
leta Lznguage).

» Properties to be verified are expressed as LTL formulae.

» Also works as simulator.



» SPIN does not actually perform model-checking itself, but
Instead generates C sources for a preblem-specific model
checker.

» Options to further speed up the process and save memory:
Partial order reduction
State compression
Bit-state hashing



» SPIN aims to provide:
Program; like notation to specify design choices unambiguously.
Concise notation for expressing general correctness reguirements.

A methodology for establishing the legical consistency of the design
choices.
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» The predecessors off SPIN were limited to standard safety
properties and limited liveness properties.

» Automata theoretic model became the formal basis for
temporal logic model checking in SPIN.

» Description ofi a concurrent system in PROMELA Is one or
more process templates (proctype definitions).

» Each template Is translated into a finite autemate.



» The global systemi behavior (asynchronous interleaving
product) Is also an automatoen.

» Correctness claim (temporal legic formula) is converted
Into Buchi automaton.

» Combined behavieur: synchrenous product of the system
and claim

» Correctness claims are used to specify undesirable
behaviours of the system.

» In worst case, reachability graph has the size ofi the
Cartesian product of the components of the system.



» SPIN uses negative correctness claims.

» Positive claim requires to prove that alll executions of the
system are included in the language ofi the claim.

Size of state space Is
» At most the Cartesian product of the system and claim.
» At least size of their sum.

» Negative claim requires to prove that the intersection; of
language of the system and of the claim I1s empty.

Size of state space Is
» In the size of the Cartesian product of the system and claim in worst case.
» Zero for the best case.



» A Buchi automaten accepts a system execution ' there
exists at least one acceptance cycle.

» \We need to prove the albsence of acceptance cycles to prove
correctness of the system.

» The nested depth-first search algorithm Is used for this
pUrpose.



System description: Correctness claim:
PROMELA Templates LTL Formula

N
=
/

Negated LTL
Formula

Counter example D Synchronous Product: No ﬁ:;:fégﬂ;;&sﬁes
Acceptance cycle Combined behaVior Absence of

exists acceptance cycle



» Nested depth-first search

» From LTL formula to Buchi automaton
» Partial order reduction

» Memory management



» larjan’s depth-first search adds twoe integer numbers to
every state reached: the a/s-number and the /owilink-number.

» This algorithm is not compatible with the bit-state hashing
techniques.

» Nested depth-first search: For an accepting cycle to. exist /i
the reachapility grapn, at /east one accepting state must be
both reachaple from the initial system state ana it much be
reachaple from itselr.



» [Wo searches are performed.
» If acceptance cycle exists, complete execution seguence IS
constructed which acts as the counter example of a

correctness claim.

» It cannot detect all possible acceptance cycles.

» In SPIN, this algerithm is extended with an optional weak
falrness constraint.



LTL fermula can; contain:
Lower case propositional symbol p.
Combined with unary or binary, Boolean and/or temporal operators.

| true

| false

| (f)

| f hinop f
| unop f

(always)
(eventually)
(logical nepation)

[strong until )
logical and)
ilogical or)

(implication}
(equivalence)
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» [0 reduce the number of reachable states that must be
explored.

» Validity of an LTL formula Is insensitive to the order in which
concurrent and independent events are interleaved in the
depth-first search.

» Implementation is based on a static reduction technigue.
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» It cannot cause significant increase ofi the memory
reguirement, compared to exhaustive searches.

» It IS not sensitive to decisions about process or variable
orderings.

» Correctness properties were verified using the theorem
prover HOL.



» A main goal of researchers Is to devise technigues that can
economize the memory requirements witheut Incurring
unrealistic Increases In runtime requirements.

» [wo such technigues are used in SPIN:
State compression
Bit-state hashing



» Static Huffman encoding and run-length enceding technigues
can be effective for this purpose.

» A different technigue was added to SPIN in late 1995.
Every process and channel has relatively small number of local states.

Store local states separately from global states and use unigue indices
to the local state tables inside the global state tables.

Descriptor for Global Variables

Descriptor for Process 1
Descriptor for Channel 1

Descriptor for Process 2

P2 | Global State Descriptor (state vector)




» In practice, most commonly observed reduction Is 60 to 80
percent.

EFFecT oF COMPRESSION

Type of Run | Moo States Memory (Mb) Time (sec.)

Standard 2435,22X) | 5659 107,56
Compressed | 2435220 057 12346




» 2 bits of memory are used to store a reachable state.

» S : width of system state
M : total machine memory (bytes)
L : M/S (maximum number of states that can be stored)
R : total number of reachable states generated by SPIN
When R>L, prob/em coverage ofi verification run is M/(R x S).

Ex: M=10° bytes, S=10° bytes and R=10° states
problem coverage=0.1 (10%)



Bit-state hashing technigue produces problem coverage close
to 1 (100%).
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Q Preceived < P i : reject
Preceived > P i . pass

Preceived == P i :

/ “

Winner has the largest identifier.
Unidirectional ring.
Process can decide to join at a later point in the execution.



» Properties:
No more than on leader : [] (ar_leader <= 1)
There must be one leader: <>[] (nr_leader == 1)
Leader must have largest identifier

» Modify algorithm for processes to defer their decision to
participate in the election.

» A process would adeciae to participate (only when,) Hrst
[ecelving a Imessage concemning e election.



variable declaration I
byte x,tl,t2;
system process
Eru:type Threadl() _I

do :: tl1 = x;
2 X;

t
t
X

= t1 + t2
od }

tem process
proctype Thread2() ul

{ do :: t1 = x;
t2 X

x = tl + t2

od }

init initial process I
{x=1,; start threads I
run Threadl(); run Thread2();

assert(x != ) 1

assertion I




sic Data Structures

s State vector

= holds the value of all variables as well as program
counters (current position of execution) for each
process.

s Depth-first stack

= holds the states (or transitions) encountered down a
certain path in the computation tree.

s Seen state set

« holds the state vectors for all the states that have
been checked already (seen) in the depth-first search.




SPIN Demo


http://www.spinroot.com/spin/Man/GettingStarted.html

» Partial erder reduction algerithm generates reduced state
space withr only representatives of classes of execution
seguences that are distinguishable for a given correctness

property.

What criteria Is used to distinguish the execution
segquences?



» Second property of partiall erder reduction: /he reauction
mernoa /s not sensitive o Aecision about [Process or
variaple oraering.

How does It affect the performance of SPIN?



» How does the “weak fairness constraint” in SPIN affects
nested depth-first search?
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