N-VERSION PROGRAMMING: A
FAULT-TOLERANCE APPROACH TO
RELIABILITY OF SOFTWARE OPERATION

Liming Chen, Algirdas Avizienis
Presented by Yifei Li

Definition

» N-version programming is defined as the
independent generation of N >=2
functionally equivalent programs, called
“versions”, from the same initial
specification

General Idea

» A driver coordinates the execution of n versions and
compare their correspondent results

» Forn >= 3, a result is voted as a result of majority
decision. For n = 2, the comparison algorithm checks if
two results match

» For numerical computations, an allowable discrepancy
range is used by the comparison algorithm

= Agreeing version: its result falls into an allowable discrepancy
range.

=Otherwise, a disagreeing version

Special Mechanisms

» Comparison vectors (c-vectors)

= C-variables: hold results to be compared with
their counterparts from other versions

*'Comparison status indicators: if some significant
events have occurred during the generation of

c-variables

Special Mechanisms

» Synchronization mechanisms
= Cross-check points (cc-points): points where

c-vectors are generated and employed for
comparison

Special Mechanisms/Synchronization
mechanisms

SERVICE REQUIRED:

CROSS- ek POINT
ONDITION
SATISFIED

TERMINATING CONDITION
SATISFIED

Figure 1 State Transitions of a Version

Comparison with Recovery-blocks

» Less storage overhead

» No special mechanisms needed to coordinate
parallel processes

» Errorscan be detected and recovered as early as
possible

» Noneed to design acceptance test

An implementation of 3-version
programming

VERSION{i: PROCEDURE OPTIONS (TASK);
pcL 1 C-VECTORi EXTERNAL,
2 fcomparison variables

i {statu a B
DCL (DISAGREEi, GOODBYE) BIT(1) EXTERNAL;
DCL (SERVICEd, COMPLETEi) EVENT EXTERNAL;
DCL FINIS BIT(1) INIT('0'8);
other declarations;
D0 WHILE (FINIS);

WAIT (SERVICEi);

COMPLETION (SERVICET) = '0'8;

IF 1GOODBYE & “DISAGREEI

THEN CALL PRODUCE

ELSE FINIS = '1'

COMPLETION :COMPLUEl) = '1'B;

END;

PRODUCE: PROCEDURE;
produce C-VECTOR{;
END PRODUCE;

END VERSION{

Figure 2 A Schema for the i-th Version
Code

An implementation of 3-version
programming

ACCEPTANCE : PRUC[DURE OPTIONS (MAIN);
DCL VERSIONI ENTRY;
DCL 1 C_VECTORi EXTERNAL ,
2 comparison variables
status flag

OCL DISAGREET BIT(1) " extennaL,
GOODBYE BIT(1) EXTERNAL ;
DCL SERVICET EVENT EXTERNAL ,

COMPLETE{ EVENT EXTERNAL ;
other declarations;
COMPLETION (SERVICEi) = '1'B;
COMPLETION (COMPLETEi) = '0'B;
CALL VERSION{ TASK EVENT (FINISi);
DO WHILE (need_more service);
WAIT (COMPLETER)}
COMPLETION (CGMPLETEi) = '0'8;
process C_VECTO!
IF 7ineed_more serv‘ce THEN GOODBYE = '1'8;
CDMPLETION (SERVICET) = '1'83

wu‘r (FINISE)
END ACCEPTANCE:

Figure 3 A Schema for an Acceptance Program

An implementation of 3-version
programming

ORIVER: PROCEDURE OPTIONS (MAIN);
DeL (vznsmm VERSION2, VERSION3) ENTRY;
declare (C_VECTORY, C_VECTORZ, C vmnm)
DCL (DISAGREET , DISAGREEZ, DISAGREE3, GOODBYE)
BIT(1) EXTERANL;
DCL (SERVICE], COMPLETEL,
SERVICEZ, COMPLETER,
SERVICE3, COMPLETE3) EVENT EXTERNAL;
other declarations:
initialize (SERVICE!, convLErm as in ACCEPTANCE;
CALL VERSION] TASK EVENT (FINIST
CALL VERSIONZ TASK EVENT (Fmsz)
CALL VERSIONS TASK EVENT (FINIS3);
DO WHILE (naed more_service)s
WAIT (COMPLETE], COMPLETE2, COMPLETE3);
process (C_VECTORI, C VECTORZ, C VECTOR3
IF DISAGREET THEN COMPLETION(COMPLETE
IF DISAGREE2 THEN COMPLETION(COMPLETE:
IF DISAGREED THEN COMPLETION(COMPLETE3)
IF Ineed more _service THEN GOODBYE="1'8;
COMPLETIDN(SERVICE])="1'B;
COMPLETION(SERVICER)
COO‘IPLETIOMSERHCEJ) 1'83

HMT (FINISY, FINIS2, FINIS3);
END DRIVER;

Inexact Voting

» Numerical computations may suffer from
= Rounding errors
= Unstable algorithms

» [Thus, we can not require majority of
correspondent results have exactly the
same values

Inexact Voting/Adaptive Voting

» Adaptive voting:
= R = WI*R1 + W2*R2 + W3*R3
= W1, W2 and W3 are calculated dynamically and
their sum should be 1

= The goal is to favor acceptable results and minimize the
efféct of disagreeing results

» The performance of a scheme to compute weights
is influenced by its tolerance parameter
= _a measure of the allowable noise level

Inexact Voting/Adaptive Voting
» The tolerance parameter is difficult to determine

» The remaining effect of noise may not be
acceptable

» Accumulation of residual effects of noise

» Adaptive voter implemented in software is slow

Inexact Voting/Non-Adaptive Voting

» Uses an allowable discrepancy range and
differences of pairs of correspondent results
in determining the voted result

» Maximum(D12, D23, D31) <= [

= Minimum(D12,D023,D31) <= [

Inexact Voting/Non-Adaptive Voting
» [is difficult to determine dynamically

» Maximum(D12, D23, D31) <= [
= Too rigid

» Minimum(D12,D23,D31) <= [
= Each version may have different effects on the outcome
of voting
= For'example, f = 0.9, R1 = 117.0, R2 = 116.5, R3 =
115:8

Experiment Results/MESS

» MESS (Mini-Text Editing System)
» The methodology used to implement N-version
programming is relatively simple
= The effectiveness of 3-version programming
warrant further investigation

* The 3-version redundancy was successfully
applied at subroutine level

Experiment Results/RATE

» RATE, Region Approximation and
Temperature Estimation
= 7 programs implemented 3 algorithms
= 12 3-version programs
=384 test cases
¥ 290 cases contained no bad versions
71 cases contained one bad version
18 cases contained two bad versions
5 cases contained three bad versions

Experiment Results/RATE

» Other two versions that were running
correctly could not proceed due to the
errors introduced by one version

» Faulty but identical results may outvote
correctresults

Conclusions

» System failures caused by performance limitations instead
of functional problems

» No unique path to the solution of a problem

»./A/long sequence of outputs that can not be specified in a
specific.order

» Sequence of outputs is context dependent

» An allowable range of discrepancy is difficult to determine

Questions ?

Discussions

» What type of applications is N-version
programming good for?

