Temporal & Modal Logic

E. Allen Emerson

Presenter:
Aly Farahat

Acronyms

- TL: Temporal Logic
- BTL: Branching-time Logic
- LTL: Linear-Time Logic
- CTL: Computation Tree Logic
- PTL: Propositional Linear Temporal Logic
- PLTLF: PLTL with only future timeline structures
- PLTLP: PLTL with only past timeline structures
- PLTLB: PLTL with future and past timeline structures
- BMCP: Branching-Time Logic Model Checking Problem
- LMCP: Linear-Time Logic Model Checking Problem

Contents

- Temporal Logic
 - Overview
 - Classification
 - PLTL
 - Syntax
 - Semantics
 - Identities
- Concurrency
- Model Checking
Introduction

- Modal Logic: describes different worlds over which P might be True or False.
- Temporal Logic: a Modal Logic whose worlds are discrete states

Reasoning about Programs

- Hoare Logic:
 - Terminating Programs
 - Prove Post-Condition given Pre-Condition
 - Transformational Semantics – No notion of time
- Temporal Logic:
 - Concurrent Nonterminating Programs
 - Prove Properties about Programs valid during execution

Q: Why do we need logic for programs?

Classification

- Propositional vs. First-Order
- Global vs. Compositional
- Branching vs. Linear Time
- Points vs. Intervals
- Discrete vs. Continuous
- Past vs. Future
Propositional Linear Temporal Logic

• Syntax
 – Propositions
 – Connectives
 – Formulae
 – Temporal Operators
• Semantics
 – Time Structure
 – Formulae Interpretation

Syntax “Definitions”

• Gp: Always p
• Fp: Eventually p
• pUq: p until q
• Xp: Next p
• F p: Infinitely often p
• G p : Almost everywhere p

Syntax

• The Rules for forming Formulae
 – Every Atomic Proposition P is a Formula
 – If p and q are formulae, so are:
 – If p and q are formulae, so are:

 \[p \land q \]
 \[\neg p \]
 \[p \lor q \]
 – If p and q are formulae, so are:

 \[Xp \]
 \[pUq \]
 \[Fp \]
 \[Gp \]

Q: How the other connectives are syntactically defined?
Syntactical Equivalences

$$False = p \land \neg p$$
$$True = \neg False$$
$$p \rightarrow q = \neg p \lor q$$
$$p \leftrightarrow q = (p \rightarrow q) \land (q \rightarrow p)$$
$$Fp = True \lor Up$$
$$Gp = \neg F\neg p$$
$$pBq = \neg \neg (pUq)$$

Semantics

- Structure
 - $$S$$: A set of States
 - $$x$$: An infinite sequence of states
 - $$L: S \rightarrow \text{PowerSet}(AP)$$ Truth assignment for atomic propositions at each state. AP is the set of atomic propositions.
 - Notation: $$x^i satisifies P$$ starting from $$s$$ to the future.

Q: How can we link program computations and structures in PLTL?

Semantics (cont’d)

- $$x^i satisifies P$$ iff $$P$$ is atomic proposition
- $$x^i \models p \land q$$ iff $$x^i \models p$$ and $$x^i \models q$$
- $$x^i \models p$$ iff it is not the case that $$x^i \models \neg p$$, $$p$$ and $$q$$ are formulae
- $$x^i \models pUq$$ iff $$\exists j (x^j \models q \land \forall k, i \leq k < j (x^k \models p))$$
- $$x^i \models Xp$$ iff $$x^{i+1} \models p$$

Q: Verify the syntactical equivalences for $$Gp$$ and $$Fp$$ for PLTL…
Semantic Equivalences

\[
& \vdash G \neg p \equiv \neg F p \\
& \vdash F \neg p \equiv \neg G p \\
& \vdash X \neg p \equiv \neg X p \\
& \vdash F \neg p \equiv \neg G p \\
& \vdash G \neg p \equiv \neg F p \\
& \vdash (\neg p) \lor q \equiv \neg(p \land q)
\]

Semantic Implications

\[
& \vdash p \Rightarrow F p \\
& \vdash G p \Rightarrow p \\
& \vdash X p \Rightarrow F p \\
& \vdash G p \Rightarrow X p \\
& \vdash G p \Rightarrow F p \\
& \vdash G p \Rightarrow X G p \\
& \vdash p \lor q \Rightarrow F q \\
& \vdash G q \Rightarrow F q
\]

More Identities

\[
& \vdash F F p = F p \\
& \vdash F F p = F p \\
& \vdash F F p = F p \\
& \vdash G F p = G p \\
& \vdash G G p = G p \\
& \vdash G G p = G p \\
& \vdash G F p = G p \\
& \vdash G F p = G F p = G G p \\
& \vdash G X G p = G F p = G G p \\
& \vdash G F p = G F p = G G p \\
& \vdash G X G p = G X G p = G G p \\
& \vdash G X G p = G X G p = G G p
\]
Identities for X

\[\vdash X(p \lor q) \equiv (Xp \lor Xq) \]

\[\vdash X(p \land q) \equiv (Xp \land Xq) \]

\[\vdash X(p \Rightarrow q) \equiv (Xp \Rightarrow Xq) \]

\[\vdash X(p \equiv q) \equiv (Xp \equiv Xq) \]

\[\vdash XFp \equiv FXp \]

\[\vdash XGp \equiv GXp \]

\[\vdash (X(p \Rightarrow q)) \equiv X(p \Rightarrow Xq) \]

Variants of PLTL

- Strong and Weak Until
- Inclusion of Past Tense Operators
- Reflexive and non-Reflexive operators

Global and Initial Equivalences

- \(P \) and \(Q \) are globally equivalent iff for all linear time structures and for all times, \(P \) has the same truth value as \(Q \).

- \(P \) and \(Q \) are initially equivalent iff for all linear time structures and for the initial state 0, \(P \) has the same truth value as \(Q \).
Power of PLTLF and PLTLB

- Theorem 3.1: With respect to Global Equivalence, PLTLB is strictly more expressive than PLTLF

- Theorem 3.2: With respect to Initial Equivalence, PLTLB has the same expressive power as PLTLF

Concurrency

- Concurrency is modeled by Nondeterminism and Fairness

- Abstract Model:
 - M: a time structure
 - Φ_{Start}: an atomic proposition corresponding to the starting states
 - Φ: a temporal logic fairness property

Fairness Properties

- Weak Fairness:
 $\bigwedge_{\Phi \in \Pi} \left(\neg \text{enabled} \implies \neg \text{executed} \right)$

- Strong Fairness:
 $\Phi = \bigwedge_{\Phi \in \Pi} \left(\neg \text{enabled} \implies \neg \text{executed} \right)$

- Impartiality:
 $\Phi = \bigwedge_{\Phi \in \Pi} \bigvee \text{executed}$

Q: Is there an order on these fairness properties?
Concrete Models

- Constraints on the abstract Model:
 - Structure on State Space: Message Passing vs. Shared Memory.
 - Domain Constraints: Define variables domains (Integer ranges, Enumerations)
 - Transition Constrains: Define specific allowable instructions- Read/Write Restrictions

Memory Models

- Shared Memory: Shared variables and location counters define the state space
- Distributed Shared Memory: Writes granted only to Process having affinity to the shared variable.
- Message Passing: zero message buffer size; i.e. CSP.

Concurrent Programs and PLTL

- For the concurrent program
 \[P = (M, \Phi_{Start}, \Phi) \]
 and a temporal logic formula \(\rho\),
 \(\rho\) holds true for \(P\) iff
 \[\forall x, M, x \models ((\Phi_{Start} \land \Phi) \rightarrow \rho) \]
- Intuitively, for all possible time structures satisfying the initial and fairness conditions, they should satisfy \(\rho\).
Model Checking

- A decision problem:
 - M is a finite temporal structure
 - P is a temporal logic formula
 - Is $M \models P$?

Formal Definition

- BMCP:
 - M: a finite BTL structure
 - p: a BTL formula
 - For every state s in M where p is satisfied, Label s with p
- LMCP:
 - M: a finite LTL structure
 - p: an LTL formula
 - For every state s in M starting a full path satisfying p, Label s with Ep

Interpretation

- In BMCP, it is sufficient to label the states with the BTL formula truth value, without checking full paths from each state
- In LMCP, it is necessary to check, for each state, the set of all possible paths and label it with Ep if a path exists
Theorems

- LMCP for PLTL is polynomial-time reducible to SAT-PLTL
- LMCP for PLTL is P-space complete
- LMCP for PLTL(F) is NP-complete
- BMCP for CTL is deterministic polynomial time

Modalities are what matters

- Given a model checking algorithm for LTL, there is a model checking algorithm for the corresponding BTL of the same order of complexity
- "corresponding": having the same basic modalities

 Q: Is this result contradicting the fact that BMCP is in P?

Conclusions

- TL formulae express properties of concurrent programs
- Concurrent programs are represented by structures in TL
- Model Checking is an application of TL to concurrent programming
Thank you!