CEE 5690 - Descriptive Modeling of Data

Homework 2
We are caught in an inescapable network of mutuality, tied in a single garment of destiny. Whatever affects one directly, affects all indirectly.
Martin Luther King, Jr.

January 28, 2008

Question 1

Let G be a graph of n nodes, then prove that any two of the following statements imply the third:
(i) G is connected
(ii) G does not contain a cycle
(iii) G has $n-1$ edges

Also show that proving the above is equivalent to stating Every n-node tree has exactly n - 1 edges.

Question 2

Devise an algorithm to test if a given graph is bipartite.

Question 3

Some friends of yours work on wireless networks, and they are currently studying the properties of a network of n mobile devices (let us assume n is even). As the devices move around (or as your friends move around!) they define a graph at any point in time as follows: there is a node representing each of the n devices, and there is an edge between device i and device j if the physical locations of i and j are no more than 500 m apart. If so, we say that i and j are "in range" of each other.

Help your friend by defining a constraint that will guarantee that the network always remains connected. Will it be enough to make sure that at any point of time every node has a degree of at least $\frac{n}{2}$.

