$\rm CE$ 4990 - Construction Scheduling

Lab work

March 19, 2012

Problem 1

Cost and schedule data for a small project are given below. Assume an indirect cost of \$200 per day. Develop the least cost curve for the project.

Activity	Preceded	Crash	Normal	Crash	Normal
	by	Cost	Cost	Duration	Duration
А	N/A	\$3,900	\$3,600	6 days	7 days
В	А	\$6,500	\$5,500	3 days	5 days
С	В	\$7,200	\$6,350	7 days	9 days
D	В	\$4,900	\$4,700	18 days	19 days
Е	В	\$2,200	\$2,050	9 days	10 days
F	С	\$1,700	\$1,200	6 days	8 days
G	F	\$7,200	\$7,200	5 days	5 days
Н	Е	\$10,000	\$9,450	10 days	11 days
Ι	D,G,H	\$4,700	\$4,500	6 days	7 days

Table 1: Cost and schedule data for problem 1

Figure 1: LSM schedule for Problem 2

Problem 2

Figure 1 shows an LSM schedule to be expedited. Activity 2 can be expedited 5 days at a cost of \$400 per day and activity 5 can be expedited at most 2 days at a cost of \$500 per day. Ensure that at least a buffer of a day is maintained in between any two activities at any time.

Problem 3

Given the information in Tables 2 and 3, do the following:

- Develop a network schedule,
- Allocate and level resources,
- Develop an S-curve (cost vs. time) for the project,

.

• Develop an utilization curve for each of the resources.

Activity	Resource or	Number of	Preceded
	craft type	resources	by
А	Bulldozer	16	-
В	Laborer	32	А
\mathbf{C}	Laborer	32	А
D	Bulldozer	16	\mathbf{C}
\mathbf{E}	Welder	32	\mathbf{C}
\mathbf{F}	Bulldozer	16	В
G	Laborer	32	В
Н	Welder	24	\mathbf{F}
Ι	Laborer	56	\mathbf{E}
J	Crane	8	Η
Κ	Loader	16	G
\mathbf{L}	Crane	8	Ν
Μ	Welder	16	Ν
Ν	Loader	8	D
Ο	Laborer	16	Ν
Р	Crane	8	J
\mathbf{Q}	Welder	32	I, M
R	Welder	8	I, M
\mathbf{S}	Laborer	24	Р
Т	Laborer	40	Ο
U	Welder	24	$^{ m L,Q}$
V	Laborer	32	\mathbf{R}
W	Laborer	48	S, T, U, V

Table 2: Activity and resource requirements for Problem 3

	Type of	Maximum	Resource	Unit
	resource	available	unit	$\cos t$
	Laborers	8	Manhour	\$8.50
	Crane	1	Equip-hour	\$62.50
	Bulldozers	2	Equip-hour	\$37.50
	Welders	5	Manhour	\$18.00
	Loaders	1	Equip-hour	\$28.00

Table 3: Resource limits for Problem 3