Participatory Modeling and Collaborative Water Resources Decision-Making in the Rio Sonora Basin, Mexico

Kathleen E. Halvorsen, David J. Kossak, Alex S. Mayer, Michigan Technological University, USA;

Enrique Vivoni, Agustin Robles Morua, Kelsii Dana, Mariela Castaneda, Daniel Che, Arizona State University, USA;

Vivianna Gamez Molina, Northern Arizona University, USA

Acknowledgements

- Funding source: NSF CBET #101481 Interdisciplinary Research Program
- Ana Christina, Sonora, Mexico for excellent facilitation of workshops
- Universidad de Sonora
- Workshop participants

Rio Sonora Basin (RSB)

- Climate is semi-arid, highly variable, with frequent, severe droughts.
- Major water use
 large-scale irrigated
 agriculture and a
 large urban area.
- Water resources infrastructure system struggles to deliver sufficient water.

Rio Sonora Basin (RSB)

Water resources management is controversial, due to perceptions of water scarcity, conflicts among water users, and political backdrop.

http://www.miambiente.com.mx

Project overview

- We are studying decision-making for water resources management in anticipation of climate change in the Rio Sonora River Basin, Sonora, Mexico.
- Primary question:

Can water resources systems modeling, developed within a <u>participatory framework</u>, contribute to management strategies in a context of **water** scarcity, conflicting water uses and highly variable and changing climate conditions?

Project focus: Participatory modeling

- Definition: process of collaboratively constructing a shared representation of a natural resources management system.
- Designed to:
 - gather and integrate a diversity of viewpoints from participants in the development of models..

....so that a collective management vision can be established and adapted as conditions change in the future.

Scientific Gap

- Participatory modeling (PM) has been used in many contexts.
- But, evaluation of the outcomes is rarely done systematically (Robles Morua et al. In Press).
- Many PM organizers assert outcomes with little empirical data to support their findings.
- Some conduct post-workshop qualitative interviews, but without pre-workshop baselines, causality is problematic.
- Gold standard is pre- versus post-workshop surveys, but rarely done (Robles Morua et al. In Press).

Methods: Research Design

Develop and assess conceptual models of beliefs about models

- create, implement and analyze pre- and post-workshop surveys to analyze impact of workshops
- Develop models and forcings
 - hydrology: surface water and groundwater models
 - water resources system: supply and demand management, including infrastructure system
 - climate scenarios: downscaled climate predictions
- Conduct three participatory modeling workshops with water agency staff, academics, NGOs

Baseline model of RSB water resources system

Workshop participants

- 129 invitations were sent.
- Number of participants:
 workshop 1/2/3: 53/28/30
 representing 18 organizations
- 18 participants attended all three workshops and completed surveys

Topics

- RSB hydrology, climate, and water management system
- Climate change in the RSB
- Hydrologic systems modeling
- Elaboration of future development scenarios
- Supply and demand management in the RSB

Survey scales summary

Theme/Scale	Pre/Post	# questions
Participant's prior experience with models	Pre only	7
Beliefs about personal capacity to use and understand models	Both	11
Beliefs about "usefulness" of models	Both	6
Beliefs about "exactness" of models	Both	6
Beliefs about water quantity problems, causes, and solutions	Both	3
Beliefs about water quantity problem impacts	Both	4
Climate change-related beliefs	Both	7
Results of the workshops	Post only	6
Evaluation of the process	Post only	6
Total questions	Pre: 44	Post: 49

Overall scale results

The lack of water hurts agriculture and industry and reduces economic development in our region.

<pre>*** significant at p < 0.01 ** significant at p < 0.025</pre>	Climate change-related beliefs
	** Beliefs about water quantity problem impacts
	Beliefs about water quantity problems, causes, & solutions
	Beliefs about "exactness" of models
	*** Beliefs about "usefulness" of models
×	*** Capacity to use and understand models
	0 1 2 3 4 5

Selected pre- and post-survey results

- Impacts of the problems
 - More people believe that lack of water can cause ecological problems.
 - Fewer people believe that the lack of water can result in reduction in population in the region.
 - Fewer people believe that excessive exploitation of water **does not** exist in the Río Sonora.

- Social impacts of water resources decision making
 - More people believe that when there are conflicts between uses of water, priority should be given to domestic use.

Conclusions/Observations/Questions

- Most people were highly satisfied with the conduct of the workshop.
- Most people believed that they had contributed to the development of the models and that the models are useful.
- Full, rich, open dialogue about water resource decision making in the basin occurred.
- Further analysis of survey data may reveal linkages to beliefs regarding water resources.
- □ How do we increase participation in workshops?

Related ongoing and future work

- Optimization of existing and future reservoir operation in the Rio Sonora basin context of climate change
- Model improvements
 - tighter coupling between surface and groundwater models
 - more climate scenarios
 - modify development scenarios
 - ecological flow criteria
- Web-based participant modeling
- Expansion of participant modeling in other basins in Mexico

Bibliography of Our Work

- Robles-Morua, A., Mayer, A.S., and Durfee, M.H. 2009. Community partnered projects: a case study of a collaborative effort to improve sanitation in a marginalized community in northwest Mexico. *Environmental Development and Sustainability* 11, 197-213.
- Robles Morua, A., K.E. Halvorsen, and A.S. Mayer. 2011. Waterborne Disease-Related Risk Perceptions in the Sonora River Basin, Mexico. *Risk Analysis* 35(5)866-878.
- Brenna, E.A. 2012. Perceptions of Water Conditions and Management in the Sonora River Basin, Sonora, Mexico. Unpublished Masters Thesis in Environmental Policy. Michigan Technological University.
- Robles-Morua. A., Vivoni, E.R., and Mayer, A.S., 2012. Improved distributed forecasting in northwest Mexico using North American Land Data Assimilation System forcing. J Hydrometeorology 2012, DOI: 10.1175/JHM-D-11-0112.1.
- Robles Morua, A., K.E. Halvorsen, A.S. Mayer, and E.R. Vivoni. 2013. Can Hydrologic Models Change Water-related Risk Perceptions? Results of a Participatory Modeling Workshop in the Sonora River Basin, Mexico. Environmental Modeling and Software, in press.
- Robles-Morua, A., Mayer, A.S., Auer, M.T., and Vivoni, E.R. 2012. Modeling riverine pathogen fate and transport in Mexican rural communities and its public health implications. *Journal of Envirironmental Management*, 113 (2012) 61-70, 2012.
- Robles-Morua, A., Che, D., Mayer, A., and Vivoni, E. 2013. Hydrologic assessment of proposed reservoirs in the Sonora River Basin, Mexico, under historical and forecasted climate scenarios, Hydrological Sciences Journal, accepted.