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S b t h d d li t d i DEM d t d t d The PRECIS (Providing Regional Climates for ImpactsThis work consists of determining the impacts of climate change and variability on precipitation and Sub-watersheds were delineated using DEM data and were aggregated The PRECIS (Providing Regional Climates for ImpactsThis work consists of determining the impacts of climate change and variability on precipitation and

i t i th Y i B i Th Y i b i i l ifi d id t i id li t ith g gg g
into Upper Middle and Lower sub basins each with a single outflow Studies) model which is based on the third generation ofreservoir storage in the Yaqui Basin. The Yaqui basin is classified as an arid to semi-arid climate with into Upper, Middle, and Lower sub-basins, each with a single outflow. Studies) model, which is based on the third generation of
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an average rainfall of 527 mm and a mean annual temperature above 22°C The basin consists of (Figure 4) the Hadley Regional Climate Model (HADAM3P) was usedan average rainfall of 527 mm and a mean annual temperature above 22 C.The basin consists of (Figure 4) y g ( )
to generate changes in precipitation over the period 2011 toroughly 72 000 square kilometers of land located mainly in Northwest Mexico (Figure 1)
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Figure 10 shows a typical precipitation change mapbesides the farmers include rural and urban municipalities,
•winter precipitation: October-January Figure 10 shows a typical precipitation change map.p ,
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land use and precipitation. Runoff was estimated monthly on a pixel byg p
a monthly basis. These percentage changes were then applied to the baseline precipitation record used

pixel basis by multiplying the precipitation by the static runoff coefficient
a monthly basis. These percentage changes were then applied to the baseline precipitation record used 
in this work (1970 2000) assuming that this record would be repeated over the 2011 to 2041 periodpixel basis by multiplying the precipitation by the static runoff coefficient. in this work (1970-2000), assuming that this record would be repeated over the 2011 to 2041 period.

Every water user within the basin holds water rights The agricultural users in the Yaqui Valley hold the RESULTSEvery water user within the basin holds water rights. The agricultural users in the Yaqui Valley hold the
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Figure 7. Historical vs. estimated run-offFigure 6 Fit of linear modelWATER BALANCE MODEL Figure 7. Historical vs. estimated run offFigure 6. Fit of linear model WATER BALANCE MODEL
Figure 6 shows a typical fit of predicted (Y) vs measured (Y*) runoff The historical runoff values areFigure 6 shows a typical fit of predicted (Y) vs. measured (Y ) runoff. The historical runoff values are
compared with the estimates from the calibrated rainfall-runoff model in Figure 7 for the Upper sub-basincompared with the estimates from the calibrated rainfall runoff model in Figure 7 for the Upper sub basin
i th th 33 lib ti i d Th ti i f th k t h blin the summer season over the 33-year calibration period. The timing of the peak matches reasonably
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well but the model tends to under predict runoff during wetter yearsThe first step of the water balance model was to create a well, but the model tends to under predict runoff during wetter years.
node-link network of the Rio Yaqui Basin, which is thenode link network of the Rio Yaqui Basin, which is the
concept al basis for the s rface ater model (Fig re 2)
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conceptual basis for the surface water model (Figure 2).
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Figure 13. Frequency of occurrence for total storage.Figure 12. Precipitation correlation for dry conditionsUNCERTAINTY ANALYSIS: A MONTE CARLO APPROACH
Uncertainty in the rainfall-runoff model predictions were assessed using a Monte Carlo simulationThis node link network includes the primary reservoirs within Figure 12 shows that there is a small but significant probability that two or three dry seasons canUncertainty in the rainfall-runoff model predictions were assessed using a Monte Carlo simulation
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Table1 Rio Yaqui Basin Reservoirs •The results show that there is sufficient surface water to meet users’ needs for a wide range ofRESULTS
Table1. Rio Yaqui Basin Reservoirs •The results show that there is sufficient surface water to meet users needs for a wide range ofRESULTS conditions (uncertainty climate change and climate variability) However all of the simulations wereW t Figure 8 shows the best estimates and 10% and 90% confidence
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the storage come from historical data over the period 1970 2000 •The rainfall-runoff model produces acceptable results when compared with historical data. The bestLa Angostura 880 57A MATLAB code was developed in order to estimate the the storage come from historical data over the period 1970-2000. The rainfall runoff model produces acceptable results when compared with historical data. The best
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fits are due to merging infrequent, short-duration, and intense precipitation-runoff events. However,El Oviachic 2,782 2,800years. The model considers each surface water rights needed to satisfy all water rights within the basin. the historical flow data in the lower basin may be unreliable.
El Oviachic 2,782 2,800 
Total 6 462 2 857holder within the basin and takes into account priorities in

y g the historical flow data in the lower basin may be unreliable.Total 6,462 2,857 holder within the basin and takes into account priorities in
ll ti th t Th d l l i l d th •The impact of uncertainty in the rainfall runoff model predictions were assessed using a Monte Carlo*less dead storageallocating the water. The model also includes the Figure 8 Total storage: best estimates andBased on the results in Figure 8 there is enough surface water to •The impact of uncertainty in the rainfall-runoff model predictions were assessed using a Monte Carlo*less dead storageg
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Figure 8. Total storage: best estimates and 
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Based on the results in Figure 8, there is enough surface water to

ti f t t i ht f th b t ti t d approach One hundred numbers randomly generated give a good estimation of the uncertaintymaximum groundwater usage allowed to the Yaqui Valley confidence Intervalssatisfy current water rights every year for the best estimates and, approach. One hundred numbers randomly generated give a good estimation of the uncertainty
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th b i ld b l it d it ti th t t l bThe model solves a water balance on a monthly step the basin would be exploited, a situation that may not always be •The storage estimates obtained from the incorporation of climate change into the water model areThe model solves a water balance on a monthly step p , y y
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The storage estimates obtained from the incorporation of climate change into the water model are
i il t th bt i d i th b li i Th f li t d l(Figure 3). The input data such as direct precipitation, desirable. very similar to the ones obtained using the base line scenario. The use of more climate models or(Figure 3). The input data such as direct precipitation,
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different SRES scenarios that are more optimistic or pessimistic might produce different resultsdirect evaporation, and extractions comes from historical The confidence intervals in Figure 8 appear to be truncated with different SRES scenarios that are more optimistic or pessimistic might produce different results.p
data The runoff was obtained from a rainfall runoff model

The confidence intervals in Figure 8 appear to be truncated with
respect to the lo er confidence inter al This occ rs beca se F t t f li t i bilit h ld id t l ti d diff tdata. The runoff was obtained from a rainfall-runoff model respect to the lower confidence interval. This occurs because, •Future assessments of climate variability should consider season to season correlation and different

developed in GIS.
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ways of classifying precipitation levels and corresponding probabilitiesdeveloped in GIS. when the runoff generation is low, the reservoirs approach the ways of classifying precipitation levels and corresponding probabilities.
Although the storage of the reservoirs is estimated on a dead storage level, which cannot be exceeded. Figure 9 shows aAlthough the storage of the reservoirs is estimated on a dead storage level, which cannot be exceeded. Figure 9 shows a
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Figure 3. Water Balance dry year, indicating that the cdf is cut off at the lower end 1. Minjares J.L. 2004. Sustainable operation of the Yaqui River Multiple Reservoir System. Ph D. dissertation. New Mexico State University. Las Cruces, News o age e ese o s Oc obe o e e y yea , e
cropping decisions are made because the storage cannot decrease below the level associated Figure 9 Cumulative frequency

j p q p y y ,
Mexico.cropping decisions are made. because the storage cannot decrease below the level associated

ith d d t
Figure 9. Cumulative frequency 

di t ib ti f t
Mexico.
2 Nicholas and Battisti (2007) Drought Recurrence and Seasonal Rainfall Prediction in the Rio Yaqui Basin Mexico In press J App Meteor Hydrowith dead storage. distribution for storage. 2. Nicholas and Battisti (2007) Drought Recurrence and Seasonal Rainfall Prediction in the Rio Yaqui Basin, Mexico. In press, J. App. Meteor. Hydro.
3 PRECIS http://precis insmet cu/menu page htmg 3. PRECIS http://precis.insmet.cu/menu_page.htm


