
Towards Efficient Re-encryption for Secure
Client-side Deduplication in Public Clouds

Lei Lei1,2,3, Quanwei Cai1,2, Bo Chen4,5?, and Jingqiang Lin1,2,3

1 Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China
2 Data Assurance and Communication Security Research Center, Chinese Academy

of Sciences, Beijing, China
3 University of Chinese Academy of Sciences, Beijing, China

4 Department of Computer Science, University of Memphis, Memphis, TN, USA
5 Center for Information Assurance, University of Memphis, Memphis, TN, USA

bchen@mtu.edu

Abstract. By only storing a unique copy of duplicated data possessed
by different users, data deduplication can significantly reduce storage
cost, and is thus used extensively in cloud storage. When combining
with confidentiality, deduplication will become problematic as encryp-
tion performed by different users may differentiate identical data. MLE
(Message-Locked Encryption) is thus utilized to derive the same encryp-
tion key for the identical data. As keys may be leaked and users may be
revoked, re-encrypting the outsourced data is of paramount importance
to ensure continuous confidentiality. This problem is unfortunately not
well addressed in deduplication-based encrypted cloud storage.

In this paper, we design SEDER, a SEcure client-side Deduplication
system for cloud storage enabling Efficient Re-encryption. A salient ad-
vantage of SEDER is that it allows data owners to efficiently re-encrypt
the data to ensure continuous data confidentiality for cloud storage using
client-side deduplication, by smartly leveraging all-or-nothing transform,
proofs of ownership as well as delegated re-encryption. Experimental
evaluation validates the efficiency of SEDER.

Keywords: secure deduplication, client-side deduplication, re-encryption,
cloud storage

1 Introduction

Cloud storage services are widely deployed nowadays. Popular services include
Amazon S3 [1], Apple iCloud [5] and Microsoft Azure [6]. By using cloud services,
data owners pay for the storage they use, eliminating the expensive cost of
maintaining dedicated infrastructures.

As more and more users turn to clouds for storage, the amount of data stored
in the clouds grows rapidly. Conventionally, the clouds simply store what have

? Corresponding author.

been sent by the users. This unfortunately will lead to significant waste of stor-
age space, as different users may upload identical data. A promising remediation
is to perform data deduplication, in which the clouds only store a unique copy of
duplicated data from different users to reduce the unnecessary waste of storage
space. For example, recent research from Microsoft [34] showed that deduplica-
tion can achieve 50% and 90-95% storage savings in the standard file systems
and backup systems, respectively. Almost all the existing popular file hosting
services like Dropbox [4] and Box [2] perform data deduplication.

There are two popular data deduplication mechanisms: server-side dedupli-
cation and client-side deduplication. The main difference between them lies in
the location of deduplication. In server-side deduplication, servers transparently
perform deduplication on the data outsourced by the clients. In client-side dedu-
plication, however, the servers and the clients cooperate to perform deduplica-
tion. Compared to the server-side deduplication, the client-side deduplication
has a significant benefit that the clients do not need to upload the data which
have already stored by the servers, significantly reducing bandwidth consump-
tion. Therefore, the client-side deduplication has been used extensively in the
public file hosting services [4, 2].

Encryption is necessary to protect confidentiality of sensitive data. How-
ever, it creates a severe obstacle for deduplication, as identical plain-texts may
be encrypted into different cipher-texts by different users using different keys.
Message-Locked Encryption (MLE) [13] is a cryptographic primitive which can
resolve the aforementioned issue. MLE can derive encryption keys from messages
being encrypted, such that different users are able to generate the same key for
the identical data. Existing MLE schemes include CE [23], DupLESS [12], Duan
Scheme [24], and LAP scheme [33].

To ensure continuous data confidentiality for encrypted cloud storage, re-
encryption seems unavoidable, due to the potential key exposure [3, 8] or user re-
vocation [41, 39]. Compared to conventional encrypted cloud storage, re-encryption
in deduplication-based cloud storage is much more challenging, as it needs to be
performed in such a manner that deduplication should not be disturbed. Li et
al. proposed REED [32] to address the re-encryption problem for deduplication-
based storage systems by smartly transforming the encrypted data such that
they can be efficiently re-encrypted when revoking keys/users. REED however
is specifically designed for server-side deduplication, which is not immediately
applicable to the more beneficial client-side deduplication.

To design a secure client-side deduplication system which supports efficient
re-encryption, we face several challenges: 1) To conform to the notion of storage
outsourcing, we usually outsource both the data and the management of data [19,
16], such that once the data have been outsourced, the client will be involved as
little as possible. It is thus challenging to allow re-encryption with least client
intervention. 2) Different from server-side deduplication, in which the client will
always upload the data being outsourced, in client-side deduplication, the client
will not upload the data when he/she convinces the cloud server that he/she
possesses the data which have already been stored in the cloud, and the keys

2

for decrypting these data will be disclosed to such clients after re-encryption.
To ensure continuous confidentiality, we need a technique which can allow the
cloud server to differentiate valid or invalid clients by efficiently verifying the
possession of the file in the clients without being able to learn the plaintext
of the file. 3) Considering the data stored in clouds are usually large in size,
re-encrypting them may be prohibitively expensive. An efficient re-encryption
approach is usually challenging.

In this paper, we propose SEDER, the first secure client-side deduplication
system for cloud storage supporting efficient re-encryption. Our key insights
are threefold: First, we leverage proofs of ownership (PoWs), by which we can
ensure that after re-encryption, the new key is only disclosed to valid users who
can prove they are the owners of the data. Second, we leverage all-or-nothing
transform, by which it is possible to re-encrypt a file by only re-encrypting a
small portion of it. Third, by observing that the existing proxy re-encryption can
not be used in SEDER directly, we re-design a delegated re-encryption scheme,
by which we can freely delegate the re-encryption to the cloud server without
disclosing the plaintext data. This is advantageous as the client can be released
from the burden of re-encryption and remains lightweight.

Comparison. Although both SEDER and REED [32] aim to address the re-
encryption problem, they are different in multiple aspects: 1) REED resolves
the re-encryption problem for server-side deduplication. However, SEDER re-
solves this problem for client-side deduplication, which has a more complicate
design and hence a larger attack surface; 2) REED has very expensive computa-
tion/communication overhead for uploading files, as the client always needs to
perform the expensive all-or-nothing transform and upload the file. In SEDER
however, the amortized computation/communication overhead for uploading files
is significantly reduced, as the clients do not need to perform the expensive all-
or-nothing transform and upload the file if it exists in the cloud server; 3) In
REED, the client is heavily involved in the re-encryption process which imposes
significant burden on the client and contradicts with the notion of storage out-
sourcing. In SEDER however, the re-encryption is delegated to the cloud server
who has rich computation resources, such that the client can always remain
lightweight.

Contributions. We summarize our contributions in the following:

{ We initiate the research of designing efficient re-encryption schemes for se-
cure client-side deduplication in cloud storage.

{ We design a delegated re-encryption scheme which can be used to delegate
re-encryption to the untrusted third party. In addition, we design SEDER
by smartly leveraging all-or-nothing transform (AONT), proofs of ownership
(PoWs), and delegated re-encryption (DRE).

{ We evaluate the performance of SEDER. Experimental results validate the
efficiency of SEDER.

3

2 System and Adversarial Model

System model. We consider two entities: (1) Cloud server (CS). CS provides
storage services and wants to perform client-side deduplication to reduce both
storage and bandwidth cost; (2) Cloud users (U). The users outsource their
data to the cloud. To maintain confidentiality of their outsourced data, they will
encrypt the data before outsourcing them. Note that when the cloud user tries
to upload a file that has been stored in the cloud server, CS will append this
cloud user to the owner list of the corresponding file without requiring uploading
the file again.
Adversarial model. We consider an honest-but-curious cloud server [41, 39].
CS will honestly store the encrypted data uploaded by the users, perform data
deduplication, and respond the requests from the users. Moreover, CS will not
disclose the data to any parties who fail to prove ownership of the data. However,
it is curious and attempts to infer information about the encrypted users’ data.
In addition, there is a malicious entity (ME) who has obtained the key materials
and tries to have access to the sensitive data.
Assumptions. We assume the MLE used in SEDER is secure6. All the com-
munication channels among the CS and U are protected by SSL/TLS, so that
any eavesdroppers cannot infer the messages being transmitted. Each entity (CS
and U) has an asymmetric key pair, and the private key is well protected. We
also assume that CS, U, and ME will not collude with each other.

3 Building Blocks

Message-Locked Encryption (MLE). MLE [13] is a scheme designed to derive
encryption keys from messages being encrypted. In MLE, different users are able
to generate the same key for the identical data. Existing MLE schemes include
CE [23], DupLESS [12], Duan Scheme [24], and LAP scheme [33]. A secure MLE
scheme ensures that only the users who possess the same content can obtain
the corresponding encryption key. MLE usually uses symmetric encryption to
encrypt messages.
All-or-Nothing Transform (AONT). AONT [35] is an unkeyed, invertible and
randomized transformation. No one can succeed to perform the inverse trans-
formation without knowing the entire output of the AONT. Specifically, given
message m of s-blocks: m = m1jj : : : jjms where jj denotes block concatena-
tion, AONT transforms m into message m0 of t-blocks: m0 = m01jj : : : jjm0t where
t � s+ 1, and satisfies the following properties:

{ Given m, m0 AONT(m) can be computed efficiently. That is, the com-
plexity of AONT(m) is polynomial to the length of m.

{ Given m0, m AONT�1(m0) can be computed efficiently.

6 The MLE has been well investigated in the literature, and we believe a secure MLE
can be found and directly applied here.

4

{ Without knowing the entire m0 (i.e., if one block is missing), the probability
of recovering m is negligibly small.

In this paper, we instantiate AONTwith the package transform [35], which takes
input an s-block message m and outputs an (s+ 1)-block message m0.

Proofs of Ownership (PoWs). PoWs [26] is a cryptographic protocol that
allows the cloud server (as a verifier) to efficiently and securely validate that
the data owner (as a prover), who wants to upload the data file that has been
already stored in the server, really possesses that data file. Here the efficiency
means that the communication is far less than the bandwidth of uploading the
data file, and the security means that the data owner cannot cheat the server in
non-negligible probability even if he/she possesses a large portion of the file and
its metadata (e.g., hash value).

{ witness PoWs:Init(f) : Given a data file f , the verifier first preprocesses it
and obtains some auxiliary data witness for the verification purpose:
� The verifier uses an �-erasure-code EC to encode the data file f , where
� denotes the erasure recovery capability.

� The verifier computes the Merkle tree MTH,b(f) of the data file f , where
H is a hash function used in computing Merkle tree and b is the size of
a Merkle-tree leaf. The root value of Merkle-tree rMT (f) will be witness.

{ challenge PoWs:Challenge: When a prover declares that he/she owns a
file f , the verifier chooses randomly x leaf indexes l1; l2; :::; lx and sends
challenge = (l1; l2; :::; lx) to the prover, where � is the soundness bound and
x is the minimum integer satisfying (1� �)x < �.

{ prof PoWs:Prove(challenge; f) : The prover builds the Merkle tree on top
of data file f and returns the proof prof which consists of the sibling-paths
of l1; l2; :::; lx.

{ f0; 1g PoWs:Verify(witness; challenge; prof): The verifier returns 1 if all the
sibling-paths are valid with the Merkle tree root, and 0 otherwise.

4 SEDER

In this section, we first present a delegated re-encryption scheme (DRE) which
allows to delegate re-encryption to an untrusted third party, and then elaborate
the design of SEDER by leveraging DRE and other building blocks (Sec. 3).

4.1 Delegated Re-Encryption

Proxy re-encryption (PRE) [14, 27] allows a proxy to convert the ciphertext,
which can only be decrypted by the delegator, into another ciphertext that can
be decrypted by the delegatee, without leaking the plaintext to the proxy. Proxy
re-encryption has been well studied and many promising features have been
proposed, such as uni-direction, key privacy and no-interaction key generation.
However, proxy re-encryption cannot be used here, because it cannot support

5

unlimited hops. Based on the scheme [11] which only supports single hop, we
re-design a delegable re-encryption scheme supporting unlimited hops (DRE).
The detail of DRE is as follows:

{ DRE:SetUp(1`): G is a multiplicative cyclic group of prime order q (q is an
‘-bit system parameter, and ‘ is large enough). g is chosen from G at random
and is known to all the parties.

{ DRE:KeyGen(Ui): Given user Ui, this algorithm generates the public key
pki = fgaig and ski = faig, where ai is chosen at random from Zq.

{ DRE:Enc(pki;m): Messagem is encrypted into ci = (ci1 ; ci2) = ((gai)ki ;mgki),
where ki is chosen at random from Zq.

{ DRE:ReKeyGen(ski; pkj ; ci1): Given user Ui’s private key ski, user Uj ’s public
key pkj (note that by running PRE:KeyGen(Uj), Uj generates public key
pkj = fgajg and skj = fajg, where aj is chosen at random from Zq) and ci1 ,
the re-encryption key rki!j can be generated: rki!j = (rki!j1 ; rki!j2) =

((gaj)kj ; gkj

(ci1
)1=ai

), where kj is randomly selected from Zq.

{ DRE:ReEnc(rki!j ; ci): Given the re-encryption key rki!j = (rki!j1 ; rki!j2),
the proxy can re-encrypt the ciphertext ci = (ci1 ; ci2) to cj by computing:
cj = (cj1

; cj2
) = (rki!j1

; ci2rki!j2
):

{ DRE:Dec(skj ; cj): Given the ciphertext cj = (cj1
; cj2

), the user Uj decrypts
it using skj = fajg by computing: m =

cj2

(cj1)
1=aj

:

4.2 Design Rational of SEDER

SEDER contains several key designs: First, we use AONT and DRE together to
support efficient re-encryption of the outsourced file. Specifically, given a file, we
apply MLE, obtaining the MLE ciphertext. MLE ensures that the same ciphertext
will be generated from different users if the file content is the same. Then AONT
is applied to MLE ciphertext, generating a set of data blocks. Note that without
fetching all the data blocks, the MLE ciphertext cannot be recovered thanks to
the interesting property of AONT. In this way, to re-encrypt a data file, the data
owner only needs to re-encrypt one data block, rather than all the data blocks.
In addition, by leveraging DRE, we can delegate the re-encryption process to
the untrusted cloud server, without leaking the plaintext of the file. This is
advantageous as we can eliminate the burden on the client who is supposed to
be kept lightweight.

Second, to ensure only the valid data owners are able to decrypt the data
being re-encrypted, we perform the following: 1) We leverage proofs of ownership
(PoWs) to distinguish valid and invalid data owners. A valid data owner for a
file should be able to prove his/her ownership as he/she possesses the file. When
a data owner passes the verification, the cloud server will add him/her to the
owner list of the file. 2) The cloud user who re-encrypts the file will compute new
assisting information that is required to decode the file being re-encrypted. The
new assisting information will only be disclosed to the valid data owners. The

6

malicious entity, even though have obtained the secret key, will not be able to
pass the PoWs verification, and thus cannot obtain the new assisting information
which is required to decode the re-encrypted file.

4.3 Design Details of SEDER

Let �, and � be the security parameters. Let �DRE be a delegated re-encryption
scheme, such that �DRE = (�DRE:SetUp, �DRE:KeyGen, �DRE:Enc; �DRE:ReKeyGen;
�DRE:ReEnc; �DRE:Dec). �sym is a symmetric encryption scheme such that �sym =
(�sym:KeyGen, �sym:Enc; �sym:Dec), and �asym is an asymmetric encryption scheme
such that �asym = (�asym:KeyGen; �asym:Enc; �asym:Dec). Let H1 be a crypto-
graphic hash function: H1 : f0; 1g� ! f0; 1gλ. In the following, we describe the
design details of SEDER, which contains six phases: SetUp, PreUpload, Upload,
Update, Download and Delete.

SetUp: This is to bootstrap the system parameters, and initialize cryptographic
parameters for cloud users and cloud server. The system runs �DRE:SetUp(1γ) to
initialize the system parameters. In addition,

{ Cloud user Ui: He/She runs the key generation algorithm of asymmetric en-
cryption scheme to generate the public/private key: (�asym:pkUi

; �asym:skUi
)

�asym:KeyGen(1β).

{ Cloud server: It runs the key generation algorithm of asymmetric encryp-
tion scheme to generate the public/private key: (�asym:pkCS; �asym:skCS)
�asym:KeyGen(1β).

PreUpload: The PreUpload phase is run by the cloud user Ui before Ui uploads
file f to the cloud. Ui uses MLE [13, 24, 23, 12] to obtain the file key kf for file
f . MLE can ensure that different users are able to generate the same key for the
same file content.

Upload: The Upload phase is run by Ui to upload file f . Note that Ui has obtained
the file key kf during the PreUpload phase. Ui encrypts f by running ct =
�sym:Enc(kf ; f) (Note that this is part of MLE). Ui then computes a tag for f :
Tagf = H1(ct), and sends Tagf to cloud server CS. CS proceeds as follows:

Case 1: Tagf does not exist in the cloud server: In this case, the cloud
user conducts the following operations and uploads the corresponding file to the
cloud:

{ Given ct, Ui runs PoWs:Init(ct) to generate the witness.

{ Assume that the encrypted file ct consists of s blocks: ct = ct1jjct2jj::: cts.
Ui first applies all-or-nothing transform on ct, generating s+ 1 blocks, such
that ct0 AONT(ct) where ct0 = ct01jjct02jj:::jjct0sjjct0s+1.

{ Ui generates a pair of public/private key by applying (�PRE:pki; �PRE:ski)
�PRE:KeyGen(Ui).

7

{ Ui randomly selects a data block ct0z from ct01; : : : ; ct0s+1. Then Ui applies
the delegated re-encryption scheme �PRE to encrypt ct0z into c, such that
c = (c1; c2) = �DRE:Enc(�DRE:pki; ct0z). Therefore, the final ciphertext to be
uploaded is: ctUpload = ct01jj : : : jjct0z�1jjcjjct0z+1jj : : : jjct0s+1.

{ Using file key kf , Ui encrypts �DRE:ski using �sym:Enc such that ct�sym =
�sym:Enc(kf ; �DRE:ski):

{ Using the cloud server’s public key �asym:pkCS, Ui encrypts ct�sym such that
ctasym = �asym:Enc(pkCS; ct�sym).

{ Ui uploads ctUpload, witness, and ctasym.
{ After receiving the aforementioned information, CS organizes them in the

format < Tagf , ctUpload, witness, ctasym, user list ulctUpload
>. By decrypting

ctasym using skCS, CS obtains the assisting information ct�sym, which will be
distributed to valid cloud users in the following manner: encrypt ct�sym using
each user’s public key and send the corresponding ciphertext to that user.

Case 2: Tagf exists in the cloud server: To further confirm that Ui really
possesses f , CS and Ui proceed as follows:

{ CS runs PoWs:Challenge to generate a challenge which is sent to Ui.
{ Ui computes a proof prof by running PoWs:Prove(challenge; ct).
{ CS further runs PoWs:Verify(witness; challenge; prof). If the output is 1, CS

appends ui to the user list ulctUpload
and sends the assisting information of file

f to Ui. Otherwise, CS terminates.

Update: When a data owner finds his file key is compromised, he needs to re-
encrypt the corresponding file and makes sure that other data owners of the file
can decrypt the latest ciphertext of the file. Thanks to AONT we only need to
re-encrypt the encrypted block c rather than the entire outsourced file. Note that
c = (c1; c2), and c1 is also sent to cloud users when CS distributes the assisting
information ct�sym. The Upload phase is performed between cloud user Uj (who
is on the user list of file f) and CS. The phase proceeds as:

{ Uj runs DRE:KeyGen(Uj) to generate a pair of public/private key, namely
(DRE:pkj ;DRE:skj) DRE:KeyGen(Uj).

{ Uj decrypts ct�sym using kf , obtaining DRE:ski.
{ Using DRE:ski; c1 and DRE:pkj , Uj generates the delegable re-encryption key
rki!j DRE:ReKeyGen(DRE:ski;DRE:pkj ; c1).

{ Using kf , Uj encrypts �DRE:skj : ct#sym = �sym:Enc(kf ; �DRE:skj):

{ Using �asym:pkCS, Uj encrypts ct#sym: ct0asym = �asym:Enc(pkCS; ct#sym).
{ Uj sends ct0asym and rki!j to CS.
{ CS runs c0 �DRE:ReEnc(rki!j ; c) and replaces c with c0. In addition, CS

replaces ctasym with ct0asym, decrypts ct0asym obtaining ct#sym, and distributes

ct#sym to the users on the user list ulctUpload
.

Download: If user Ui wants to download ctUpload from the cloud server, Ui will send
a download request (Tagf ; download) to CS. When CS receives the request, CS

8

returns ctUpload to the requestor. Ui uses the file key and the assisting information
to decode ctUpload.

Delete: When CS receives a delete request (Tagf ; delete) from user Ui, CS will
delete Ui from ulctUpload

. If ulctUpload
turns empty, CS will delete ctUpload.

5 Security Analysis and Discussion

5.1 Security Analysis

Correctness and security of DRE. When receiving the ciphertext cj , Uj can
successfully decrypt it as follows:

cj2

(cj1
)1/aj

=
ci2rki!j2

(rki!j1
)1/aj

=
ci2(gkj

(ci1
)1=ai

)

((gaj)kj)1/aj
=
mgki(gkj

((gai)ki)1=ai
)

gkj
=
mgkj

gkj
= m:

In addition, by knowing g, user Ui’s public key gai and user Uj ’s public key
gaj , the proxy cannot learn anything about plaintext m by observing: 1) ci =

(ci1 ; ci2) = ((gai)ki ;mgki); and 2) rki!j = (rki!j1 ; rki!j2) = ((gaj)kj ; gkj

(ci1)
1=ai

) =

((gaj)kj ; g
kj

gki
), due to the hardness of discrete logarithm problem.

Data con�dentiality. In the following, we show that cloud server CS and the
malicious entity ME are not able to learn the plaintext of the encrypted data.

CS possesses the following information: Tagf , witness, ct�sym, ct#sym and ctUpload.
By knowing Tagf , CS usually cannot learn ct as H1 is a cryptographic hash
function. Even if CS can learn something about ct, without knowing the file key
kf (note that we assume CS, U, and ME will not collude with each other, and
MLE ensures that only the valid cloud user U who possesses the plaintext of the
file can obtain kf), CS still cannot learn the plaintext of the file. Also, as witness
is computed from ct, it cannot help to learn the plaintext of the file. In addition,
by having access to ct�sym or ct#sym, CS cannot decrypt either of them as it cannot
have access to the file key kf . This can ensure that CS cannot decrypt either
block c or c0. By knowing ctUpload, CS is not able to obtain ct, as it is not able
to decrypt either block c or c0 (security of AONT), let alone the plaintext of the
file.

ME, though have obtained the key materials (i.e., the old assisting informa-
tion and the file key kf), is not able to prove to CS the ownership of f , and
is thus not able to obtain the new assisting information from CS. Upon having
access to ctUpload, by using the old assisting information, ME cannot decrypt the
re-encrypted block c, and is thus not able to decode ctUpload to obtain ct (security
of AONT). Therefore, even if he/she can have access to the file key kf , he/she
is not able to obtain f .

5.2 Discussion

Zero-day attack. SEDER is vulnerable to the zero-day attack, in which the key
is leaked and the re-encryption has not been performed. During this period, the

9

adversary can have access to the original file using the obtained key materials.
This seems to be unavoidable and we currently do not have a good solution for
mitigating such a strong attack.
Supporting user revocation. Considering the scenario that each data owner
has a few users, and the data owner wants to revoke a certain user, which requires
re-encrypting the outsourced file. SEDER can be simply adapted to this scenario,
but may face an additional attack: the malicious user can store the decrypted
version of block c, and is always able to decode ctUpload, even though he/she is
not able to obtain the new assisting information. This attack can be mitigated
by re-encrypting a randomly chosen block during each re-encryption process.
The nature of the storage being supported by SEDER. Currently, SEDER
only supports archival storage [10, 22, 15, 20]. We will extend SEDER to support
dynamic storage (i.e., supporting dynamic operations like insert, delete, modify,
and append [25, 39, 17, 18]) in our future work.

6 Experimental Evaluation

6.1 Experimental Setup

We evaluated the overhead of each operation in SEDER. We choose security pa-
rameters as: = 256, � = 1024. The length of MLE file key is 128 bits. We used
OpenSSLv1.0.0e [7] for data encryption/decryption and large number modular
operations. The symmetric and asymmetric encryption/decryption function are
instantiated by AES-128 and RSA-1024 respectively. Throughout the experi-
ment, the client and the server both ran on local workstations with Intel i7-2600
(3.4 GHz) CPU and 10GB RAM. In our experiment, the added block implying
the random key k for AONT is computed as m0s′ = k�m01�m02� :::�m0s, which
is a little different from [35].

The PreUpload phase simply relies on the existing MLE schemes. Therefore,
we only focus on the performance overhead in Upload, Update, and Download.
We evaluated the processing time for these phases with data size varying from
100 MB to 2GB. Results are averaged over 100 runs.

6.2 Evaluation Results

Upload. The computation overhead required for Upload phase is shown in Fig-
ure 1(a) and 1(b). In SEDER, the cloud user has to perform AONT which consists
multiple AES encryption (determined by the size of the data) and XOR opera-
tions on the regular encrypted data. We observed that the computation overhead
for AONT increases with the size of the processed data and is slightly larger than
the regular data encryption.

When the cloud user (User 1) has accomplished the data encryption and
AONT, it performs the asymmetric encryption on one block of the AONT trans-
formed data. The user generates the asymmetric key pair, encrypts this block
with the corresponding public key. He/she then encrypts the corresponding pri-
vate key using the file key, and the resulting assisting information is further

10

encrypted by the public key of the cloud server (the process is denoted as
User1BlEncrypt). From Figure 1(a), we observed that User1BlEncrypt is the
same for different data sizes, and is less than 0:5 ms, which is rather small. The
cloud server decrypts the information sent by User 1, obtaining the assisting in-
formation. It then encrypts the assisting information with other user’s public key
(the process is denoted as CloudReturnKey). From Figure 1(b), we observed
that CloudReturnKey is the same for different data sizes, and is approximately
5:5 ms, which is also very small. Note that RSA decryption is usually slower
than encryption, which explains why CloudReturnKey is more expensive than
User1BlEncrypt.
Update. When a user (User 2) wants to update the key, he/she requires the
cloud server to collaborate in performing the re-encryption. The user generates
the delegated re-encryption key rki!j , encrypts �DRE:skj with the file key, and
the resulting ciphertext is future encrypted with the cloud server’s public key
(the process is denoted as User2ReEncrypt in Figure 1(c)). He/she then re-
quires the cloud server to complete the re-encryption (this process is denoted
as CloudReEncrypt in Figure 1(c)) and re-distribute the new assisting informa-
tion. We observed that the performance overhead for either User2ReEncrypt or
CloudReEncrypt is independent of the size of data, and is very small (less than
0:5 ms) compared to the time for re-encrypting the entire data.
Download. To download the data, the user needs to decrypt the re-encrypted
block (the process is denoted as ReDecryption in Figure 1(d)). Then, the user
performs the inverse operation of AONT and decrypts the resulting data to ob-
tain the final plain-text (the process is denoted as DataDecryption). From Fig-
ure 1(d), we observed that the performance overhead caused by ReDecryption
is the same (less than 6 ms) for different data sizes, which is negligible compared
to the cost of DataDecryption (more than 7 seconds for 100 MB data). The pro-
cessing time of DataDecryption increases with the size of data, and is almost
equal to the time required to perform data encryption plus AONT(Figure 1(a)).

7 Related Work

Bellare et al. [13] formalized a new cryptographic primitive “MLE” (Message-
Locked Encryption) to derive encryption/decryption key from the message being
encrypted/decrypted. This new primitive can facilitate performing deduplication
over data encrypted by different users.

Douceur et al. [23] proposed convergent encryption (CE), the first MLE
scheme in which the key used to encrypt a file is the hash value of the file,
so that the same file possessed by different users can be encrypted by the same
key. CE has been used in a few systems [21, 28, 37, 40, 31, 36, 30]. CE however,
is vulnerable to an off-line dictionary attack as file data are usually from a pre-
dictable space [13]. Following CE, several MLE schemes were proposed. Bellare
et al. proposed DupLESS [12] to mitigate the off-line dictionary attack using
per-client rate limiting strategy. Specifically, they introduced a key server dur-

11

