
Sanitizing Data is Not Enough!
Towards Sanitizing Structural Artifacts in Flash Media∗

Bo Chen1, Shijie Jia2,3,4, Luning Xia2,3, Peng Liu5

1 Department of Computer Science, Michigan Technological University, USA
2State Key Laboratory of Information Security, Institute of Information Engineering,

Chinese Academy of Sciences, Beijing, China
3Data Assurance and Communication Security Research Center,

Chinese Academy of Sciences, Beijing, China
4University of Chinese Academy of Sciences, Beijing, China

5 College of Information Sciences and Technology, The Pennsylvania State University, USA
bchen@mtu.edu, {jiashijie, halk}@is.ac.cn, pliu@ist.psu.edu

ABSTRACT
Conventional overwriting-based and encryption-based secure
deletion schemes can only sanitize data. However, the past
existence of the deleted data may leave artifacts in the lay-
out at all layers of a computing system. These structural
artifacts may be utilized by the adversary to infer sensitive
information about the deleted data or even to fully recover
them. The conventional secure deletion solutions unfortu-
nately cannot sanitize them.

In this work, we introduce truly secure deletion, a novel
security notion that is much stronger than the conventional
secure deletion. Truly secure deletion requires sanitizing
both the obsolete data as well as the corresponding struc-
tural artifacts, so that the resulting storage layout after a
delete operation is indistinguishable from that the deleted
data never appeared. We propose TedFlash, a Truly secure
deletion scheme for Flash-based block devices. TedFlash
can successfully sanitize both the data and the structural
artifacts, while satisfying the design constraints imposed for
flash memory. Security analysis and experimental evalua-
tion show that TedFlash can achieve the truly secure dele-
tion guarantee with a small additional overhead compared
to conventional secure deletion solutions.

1. INTRODUCTION
Securely deleting obsolete data is of paramount impor-

tance, as reserving these data may not only endanger data
owners’ privacy, but also violate retention regulations like
HIPAA [19], Gramm-Leach-Bliley Act [13], Sarbanes-Oxley
Act [37], and Fifth Directive of The Data Protection Act [12].

To achieve secure data deletion, simply sanitizing the data
(i.e., making the data inaccessible by over-writing them or
deploying encryption with ephemeral keys) is unfortunately
not enough, as the past existence of the data may leave
artifacts in the layout of the resulting storage medium at
all layers, which may be utilized by the adversary to infer
sensitive information about the deleted data or even fully
recover them [18, 26]. For example, a CIA document was
published by the New York Times in 2000 as a PDF file

∗A preliminary version of this technical report was published
in ACSAC ’16.

that contained the original document and an overlay cover-
ing up sensitive information in the document. The overlay
was then removed by Internet users and the sensitive infor-
mation about the CIA’s role in the 1953 overthrow of Iranian
Government was revealed [25].

It thus becomes necessary to sanitize both the obsolete
data as well as the structural artifacts introduced by them.
Traditional overwriting-based [24] and encryption-based [23,
32, 33, 35, 39, 42] secure data deletion solutions can only
sanitize data. However, they cannot sanitize structural arti-
facts. We thus explore a novel security notion, namely, truly
secure deletion, that can ensure sanitization of both the data
and the structural artifacts. An existing security notion“his-
tory independence” [31] is stronger than truly secure dele-
tion. However, we believe that the truly secure deletion is
already a very strong security notion. This security notion
enables the development of a practical easy-to-deploy data
deletion technique which is presented in this paper.

People today are increasingly turning to flash memory for
data storage due to its high throughput and decreasing price.
Flash-based storage media like SSD drives are used exten-
sively in laptops, even cloud providers allow their users to
choose SSDs as the underlying storage media [6]. Other pop-
ular flash products like eMMC cards, SD cards, and miniSD
cards dominate the storage media of mobile devices.

In this work, we aim to realize truly secure deletion for
flash memory, which is in particular challenging due to its
special nature: 1) Flash memory is over-write unfriendly.
Over-writing a small region (e.g., a 4KB page) requires first
erasing a large region (i.e., a 128-KB block); 2) Each flash
storage unit can only be programmed/erased for a limited
number of times before it is worn out. The special nature of
flash memory imposes additional constraints on any scheme
specifically designed for flash: (C1) The number of over-
writes should be as less as possible; (C2) Writes should be
distributed evenly among flash (i.e., wear leveling).

We propose TedFlash, the first scheme which can sanitize
both the data and the structural artifacts from flash and,
at the same time, satisfy the aforementioned design con-
straints. Our key insights are: 1) We write data to flash in
such a way that every single write will not introduce addi-
tional artifacts to the storage state except the data them-
selves. This is advantageous, because upon deletion, we can
simply sanitize the data, eliminating the need of sanitiz-

DNEFS [35] HiFlash [18] TedFlash
Sanitizing data Yes Yes Yes

Sanitizing
structural artifacts

No Yes Yes

Satisfying C1 Yes No Yes
Satisfying C2 Yes No Yes

Table 1: Comparison among representative secure
deletion schemes for flash memory

ing the corresponding artifacts, which is probably expensive
and may significantly decrease I/O throughput. 2) To en-
sure every write to flash will not bring in structural arti-
facts, we always place the data being written to an empty
location which is randomly selected (Note that if this is an
over-write, the old data will be invalidated and securely san-
itized). The random placement technique can eliminate the
structural artifacts brought by each write, as the placement
of data is independent and does not affect the placements of
any other data. Most importantly, the random placement
technique is exclusively feasible for flash memory, because:
First, random seeks on flash memory are as efficient as se-
quential seeks, a salient unique characteristic of flash mem-
ory compared to mechanical storage media like HDDs. Sec-
ond, random placements inherently distribute data evenly
among flash, leading to good wear leveling.

We design TedFlash in such a way that is compatible with
the pervasively deployed “translation layer”, which stays be-
tween the physical flash layer and the file system layer in
literally all computing devices (e.g., smart phones, tablets,
and laptops) using flash memory as the underlying storage
media. Our design is advantageous as the translation layer is
much simpler and contains much less code compared to the
file system layer, and retrofitting it will not affect the other
layers of the storage system, preserving the independence
principle of storage system designs.

Comparisons. We provide in Table 1 a comparison among
three representative schemes which can securely delete data
from flash, DNEFS [35], HiFlash [18], and TedFlash, respec-
tively. DNEFS was able to sanitize the data from flash, but
it is not able to sanitize the structural artifacts. HiFlash was
the first design that can provide history independence for
flash memory, which can always ensure sanitization of both
the data and the structural artifacts. However, it cannot
satisfy design constraint C1 or C2, which seems unavoidable
due to the strong security requirement of history indepen-
dence. TedFlash is the first scheme specifically designed to
achieve the truly secure deletion guarantee. Most impor-
tantly, it can satisfy both design constraint C1 and C2.

Contributions. We summarize our contributions in the
following:

We introduce the first concrete attacks on conventional
overwriting-based and encryption-based secure deletion
schemes. In our attacks, the adversary can learn sensitive in-
formation about the deleted data or even fully recover them
by utilizing structural artifacts.

We define truly secure deletion, a novel security notion
that can achieve a much stronger security guarantee than the
conventional secure deletion. Truly secure deletion requires
sanitizing both the obsolete data as well as the structural
artifacts introduced by them.

We initiate the research of truly secure deletion for flash
memory. We propose TedFlash, the first scheme specifically
designed to achieve the truly secure deletion guarantee in
flash-based block devices. TedFlash can sanitize both the
data and the structural artifact, while satisfying the design
constraints imposed for flash memory.

We implement TedFlash in an actual flash device based on
an open-source flash firmware.

We experimentally evaluate TedFlash. Compared to con-
ventional secure deletion for flash memory, our TedFlash can
achieve the much stronger truly secure deletion guarantee
with a small additional overhead.

2. BACKGROUND

2.1 Flash Memory
Flash. The flash family contains NAND-type and NOR-
type flash. This work concentrates on the NAND-type flash,
which is pervasively used in flash-based storage products like
SD cards, eMMC cards, USB sticks, and SSD drives. Flash
stores information in an array of memory cells. The entire
memory cells are grouped into erase blocks. An erase block
is the minimal unit of performing erase operations on flash.
Each erase block is further divided into a certain number
(e.g., 32, 64, or 128) of pages. Typical page size can be 512
bytes, 2KB, and 4KB. A flash page is the I/O unit of NAND
flash.

Compared to mechanical disks, a significant difference of
flash memory is, the flash cell cannot be re-programmed be-
fore it has been erased. Unfortunately, as erase operations
can only be performed on a block basis, over-writing a small
page requires first erasing a large block. If the remaining
pages of this block are filled with valid data, erasing it re-
quires copying the valid data elsewhere and writing them
back after the erase operation has been performed, leading
to significant write amplification. This explains why flash
is over-write unfriendly and any designs relevant to flash
memory should avoid frequent over-write operations.

Another significant difference between flash memory and
the mechanical disks is, each flash cell has a limited num-
ber (e.g., 10K) of program-erase (P/E) cycles before it is
worn out and is not stable enough to store information.
To prolong the service life of flash memory, wear leveling
is necessary, by which writes/erasures on flash memory are
distributed evenly across it so that no single block has signif-
icantly larger P/E cycles than others and fails prematurely.

How to use flash. To be compatible with traditional block-
based file systems (e.g., EXT4, FAT32), a flash device is
usually emulated as a block device by exposing a block-based
access interface, which is the most popular form of flash-
based products (e.g., SSDs, eMMCs, SD cards, and USB
sticks). This is usually achieved by introducing a special
flash firmware, Flash Translation Layer (FTL), between the
file system and the raw flash. FTL can translate the logical
block addresses to the underlying physical flash addresses,
providing a block-based access interface to the upper layer.

Another alternative of using raw flash is to directly build
a flash-specific file system over it. Popular flash file sys-
tems include YAFFS, UBIFS, JFFS2, and F2FS. However,
most of the recent mobile devices are only designed to be
compatible with flash-based block devices, and usually do
not allow directly accessing the raw flash. For example, the

2

(a) With deletion

(b) Without deletion

Figure 1: An example showing why structural arti-
facts matter. T1, T2, and T3 are balanced BSTs

most recent Android smart phones like Nexus 6P use eMMC
cards as storage media, and only the old Android phones like
Nexus One and Nexus S can allow directly accessing the raw
flash.

2.2 Re-thinking “secure deletion”
Conventionally, what “secure deletion” can promise to the

data owners is: once the data have been deleted, they will
become inaccessible [23, 24, 35, 39]. Most of the prior so-
lutions rely on either over-writing [22, 24, 40] or encryp-
tion [23, 32, 33, 35, 39, 42] to make the deleted data in-
accessible. However, the structural artifacts created by the
deleted data, if preserved in the storage media, may en-
able the adversary to learn sensitive information about the
deleted data. In the worse case, the adversary may be able
to recover the deleted data by utilizing those structural ar-
tifacts and the remaining data (Sec. 3). We believe secure
deletion should promise: once the data have been deleted,
the adversary should not be able to learn anything about the
deleted data. Intuitively, if we can ensure after having delet-
ing certain data, the resulting storage state is indistinguish-
able from that the deleted data never appeared, we should
be able to fulfill the aforementioned promise.

2.3 Why Structural Artifacts Matter
To show why structural artifacts matter, we use balanced

binary search tree (BST) as an example. To create a bal-
anced BST, we insert 5 nodes in the order of 2, 11, 13, 14,
1, obtaining T1 (Figure 1(a)). After deleting node 2, we
obtain T2 (Figure 1(a)). However, if we directly create the
balanced BST by inserting the 4 nodes in the order of 11,
13, 14, 1, we will obtain T3 (Figure 1(b)). T3 and T2 will
be different, due to the past existence of node 2. In other
words, although we have deleted node 2, its structural arti-
facts remain in the data organization. By accessing T2, the
adversary may suspect the past existence of the sensitive
data (which now have been deleted), and try to partially or
fully recover them. A more concrete attack scenario utilizing
these structural artifacts is provided in Sec. 3.

Figure 2: Bitcoin transactions stored in the vic-
tim’s device (obtained from MultiBit, and being
anonymized in a few components)

3. ATTACK SCENARIOS
In the following, we provide concrete attack scenarios, in

which an adversary is able to recover the data being deleted
by performing conventional secure deletion on flash mem-
ory. Conventionally, over-writing (e.g., scrubbing [35]) and
encryption [35] were used to securely delete data from flash.
In the following attack scenarios, we consider a victim who
uses his/her computing device equipped with flash memory
(NAND flash with 2KB page size) to manage his/her bitcoin
transactions. Figure 2 shows a portion of the bitcoin trans-
actions stored in the victim’s device (note that these trans-
actions are real bitcoin transactions collected from Multi-
Bit [5], and we anonymized them for privacy concerns). All
the four transactions A, B, C, and D in Figure 2 are stored
in the device’s flash storage, one transaction at each page1.
As flash media usually prefer log-structured writing tech-
nique [7] to reduce over-writes, these transactions are writ-
ten sequentially to flash pages.

Attack 1: secure deletion based on scrubbing. After
having written transaction A, B, C, and D to flash (Fig-
ure 3(a)), the victim tried to securely delete C by perform-
ing scrubbing2 over the corresponding flash page. However,
scrubbing will convert this page to a page with all “0” bits
(i.e., a zero page). By having access to the storage state after
deletion of C, the adversary will notice there was a deletion
on the zero page in the past. Most importantly, he/she will
learn sensitive information relating to C: (1) The transaction
was generated between “Wed Jan 15 12:51:34 2014” and “Fri
Jan 17 12:16:25 2014” as it should be generated after trans-
action B and before transaction D. (2) The transaction was
possibly sending 0.016131BTC to another bitcoin address.
This information is obtainable if the adversary is able to
learn the overall balance after the four transactions. (3)
The transaction was possibly sending bitcoin using address

1Note that a bitcoin transaction varies from around 0.2 kilo-
bytes to over 1 kilobyte in size, and is half a kilobyte on
average [10]. Therefore, a 2KB flash page should be able
to store a bitcoin transaction. As a page is the I/O unit
of NAND flash, we consider that each bitcoin transaction is
written to one flash page.
2Overwriting in flash is usually not feasible except using
scrubbing, in which a flash page is converted to a page of
all “0” bits by programming all the remaining “1” bits to “0”
bits, as flash can allow programming a single “1” bit to“0”.

3

(a) Scrubbing-based secure deletion

(b) Encryption-based secure deletion. e is an en-
cryption function

Figure 3: Attacking conventional secure deletion
schemes for flash memory.

1BEzV fsppyhCZczWybjR9f3ZPrAPbNBz7K,
as this address was used to receive bitcoin in previous trans-
actions, and bitcoin protocol only allows a transaction to
send bitcoin from an address which has received bitcoin pre-
viously. By further searching blockchain [1] using address
1BEzV fsppyhCZczWybjR9f3ZPrAPbNBz7K, the adver-
sary can identify a bitcoin transaction which can satisfy both
(1) and (2), obtaining transaction C’s receiving address
1Mpq1FwxWUCohqfSczQywLN3btAp46V bnY .

Attack 2: secure deletion based on encryption. Af-
ter having encrypted and written the encrypted transaction
A, B, C, and D to flash (Figure 3(b)), the victim tried to
securely delete C by deleting its corresponding decryption
key [35]. By having access to the storage state after deletion,
the adversary can identify that the page holding transaction
C has been deleted, as all the other pages storing transac-
tion A, B, and D can be successfully decrypted to correct
plain-texts3. Based on the plain-texts of transaction A, B,
and D, the adversary may learn sensitive information relat-
ing to transaction C, using the attack described in “Attack
1”.

4. MODEL AND DEFINITIONS

4.1 System Model
We consider a flash-based block device (Figure 4). The

device exposes a block-based access interface, by which the
file system from upper layer can read/write the device using
regular block-device addresses. We define“data node”as the
unit of data reading/writing from/to the block device by the
upper layer. Let N be the capacity of the block device in
terms of data nodes. Let i denote the block-device address,
then 0 ≤ i ≤ N − 1. The access interface at least needs to
provide two entry-points:
Block Device Read(i, &data): read a data node from block-

device address i

3For encryption-based secure deletion [35], decryption keys
are usually stored in disks, and to achieve secure deletion,
those keys for the deleted data will be removed

Block Device Write(i, data): write a data node to block-
device address i
The delete operation (e.g., TRIM [11] from the upper layer)
can simply be implemented by Block Device Write(i, NULL).
The NAND flash within the device consists of n erase blocks,
each composed of s pages. The flash translation layer trans-
lates a block-device address to a flash address. For example,
the block-device address i will be translated to flash address
(a, b), where a identifies the erase block and b identifies the
flash page in this erase block.

Figure 4: System model

4.2 Adversarial Model
We consider an adversary who tries to learn the sensitive

information about the deleted data by having access to the
storage state of a flash-based medium. We assume the ad-
versary is computationally bounded, and is able to access
the storage state no more than once. This applies to a lot of
real-world scenarios, e.g., the attacker steals a smart phone
equipped with an eMMC card or a laptop equipped with an
SSD drive [15, 41], or breaks into a data center obtaining a
snapshot of a target flash-based storage medium. Note that
the adversary is not allowed to have access to random bits
flipped during the running of the algorithm [25].

4.3 Security Definition
A truly secure deletion scheme should achieve two secu-

rity properties: 1) sanitizing data from the storage medium,
such that the adversary is not able to have access to them; 2)
sanitizing structural artifacts introduced by the data being
deleted, such that the adversary is not able to infer any sen-
sitive information from the storage state about the deleted
data. A formal definition of truly secure deletion is as fol-
lows.

Let D be a secure deletion scheme. Let S1 be the sequence
of operations (e.g., insert, delete) performed on the storage
medium. S1 = {Ot0 , Ot1 , ..., Oti , ..., Otl}, in which Oti

represents the operation at time ti, where 0 ≤ i ≤ l. Let
O′ be the set of those operations from S1 that delete data
items, and O′′ be the set of those operations from S1 that
insert the corresponding data items. Let S2 be the sequence
of operations excluding the operations in O′ and O′′. The
adversary obtains a complete image of the storage state at
time tp, where tp is after tl but before a new operation is
performed. Let P be the probability that the adversary can
differentiate which operation sequence, S1 or S2, led to the
storage state at time tp. We say D is a truly secure deletion
scheme if and only if P → 0.

4

Truly secure deletion VS conventional secure dele-
tion. Truly secure deletion requires sanitizing both the data
and the structural artifacts introduced by the data being
deleted. In other words, once the data have been deleted,
the resulting storage state is indistinguishable from that the
data being deleted never appeared. This can guarantee that
the adversary, by looking at the storage state after a dele-
tion has been performed, will not be able to learn anything
about the deleted data (e.g., the exact content, the location,
and any other sensitive information relevant to the deleted
data). This offers a much stronger security guarantee than
conventional secure deletion [23, 24, 35, 39], which can only
ensure that the deleted data become inaccessible.

5. TEDFLASH

5.1 Overview
To achieve truly secure deletion guarantee for flash-based

block devices, we design TedFlash. Our TedFlash is able to
sanitize both the obsolete data and the structural artifacts
introduced by such data. To sanitize the structural arti-
facts, we use a random placement table to organize the data
stored on flash. In this way, a new data node is always
placed to a randomly selected location on flash, and will not
affect the placement of any other data, hence no structural
artifacts are introduced. Upon deletion, we can simply sani-
tize the obsolete data, eliminating the need of sanitizing the
structural artifacts introduced by them. The random place-
ment scheme well fits the nature of flash memory, as ran-
dom seeks can be performed efficiently in flash memory. In
addition, random placements can distribute writes/erasures
evenly among flash, leading to good wear leveling.

As data nodes are placed randomly on flash, we need to
keep track of these placements, i.e., the mappings between
the block-device addresses and the flash locations. These
mappings should be committed to flash in case of system
failures like power lost. This unfortunately will create an-
other issue: Updating a single mapping requires performing
an over-write on flash, which is expensive as it requires eras-
ing the entire encompassing erase block and writing back
the remaining data stored in this block, leading to signif-
icant write amplification. We mitigate this by 1) organiz-
ing mappings in such a way that can preserve locality from
the upper layer; and 2) accumulating multiple subsequent
updates on mappings, and performing them together. As
locality is preserved in the mappings, the batched updates
may target only a few different erase blocks, significantly
reducing the number of block erasures required for per up-
date. In addition, to avoid introducing structural artifacts
in the mappings, we organize mappings in such a way that
writing a new mapping will not affect the locations of any
other mappings.

TedFlash securely sanitizes a data node from flash by eras-
ing its encompassing erase block. When the size of a data
node is close to that of an erase block, securely deleting
a data node will not cause significant write amplification.
However, when the data node size is small, erasing the en-
compassing block will lead to enormous write amplification
and significantly decrease throughput. Batching multiple
subsequent deletions on data nodes and performing them
together cannot help as the random placements in TedFlash
have destroyed locality from the upper layer. We further op-
timize TedFlash by encrypting each data node with a unique

key, so that upon a deletion, we can delete the corresponding
key, delaying the deletion of the encrypted data node. As
keys are much smaller than data nodes, it becomes much eas-
ier to organize them in a locality-preserving manner, which
can be utilized to reduce the amortized overhead of deleting
keys. Note that to avoid introducing structural artifacts in
keys, we also organize keys in such a way that writing a new
key will not affect the locations of any other keys.

5.2 A Random Placement Table
A random placement table [30] works as follows. Consider

an array t of l slots. Each slot is initially empty (e.g., each
slot is filled with 0). Elements are inserted into and deleted
from t in the following ways:

Insert. To insert an element x, we pick a number i from
{0, 1, 2, · · · , l − 1} uniformly at random. If t[i] is empty,
we store x at t[i]. Otherwise, we continue probing slots at
random until we find an empty slot which can be used to
store x.

Delete. To delete an element stored at t[i] (0 ≤ i ≤ l − 1),
we simply re-set t[i] to 0.

As it is proved in Sec. 6.1, deleting an element from the
aforementioned random placement table can achieve the truly
secure deletion guarantee. A significant advantage of this
random placement table comes from its efficiency on insert
and delete operations, which can be performed in constant
time.

5.3 TedFlash Design

5.3.1 How to Sanitize the Structural Artifacts
The truly secure deletion guarantee requires sanitizing all

the corresponding structural artifacts when certain data have
been deleted. To achieve this guarantee in a flash-based
block device, we can use a “post-processing” solution: upon
deleting a data node, we sanitize all the corresponding struc-
tural artifacts, such that the storage state after this deletion
is indistinguishable from that the deleted data node never
existed. Post-processing may be prohibitively expensive for
flash, as it may require relocating a large number of data
and incur a lot of over-writes just for a single deletion, sig-
nificantly decreasing throughout.

We thus turn to a more promising “pre-processing” solu-
tion. We use a special data structure to organize the data
stored on flash, by which the placement of a new data node
will not affect the placements of any other data nodes. A
history independent data structure [31] can immediately sat-
isfy this requirement. However, simply applying an existing
history independent data structure is impractical for flash as
it may either require a large number of data re-locations for
a simple write [14, 31] or incur significant over-writes [18].

We use the random placement table introduced in Sec. 5.2
to organize the data in flash, which is shown to be able to
achieve the truly secure deletion guarantee (Sec. 6.1). The
random placement table amazingly fits the nature of flash
memory: First, it requires performing random seek, while in
flash, the random seek is as efficient as the sequential seek,
a salient characteristic of flash memory. Second, placing the
writes to random locations can inherently achieve good wear
leveling as writes/erasures can be distributed evenly among
the entire flash.

5

By utilizing the random placement table, the data node
written to block-device address i is placed to an empty lo-
cation which is randomly selected from flash. If the block-
device address i has been written before, the old data node
will become invalid and should be securely sanitized by eras-
ing the corresponding flash block, then the new data node
will be placed to a new randomly selected empty location.

5.3.2 Handling Metadata
TedFlash stores each data node from the upper layer to a

randomly selected flash location, e.g., the data node writ-
ten to block-device address i is stored in a random location
(a, b). Due to the randomness, we need to keep track of the
mappings between the block-device addresses and the flash
locations.

As data nodes may be frequently written/deleted by the
upper layer, the corresponding mappings may need to be up-
dated frequently. However, updating mappings is expensive
since they are usually committed to flash, which is update
unfriendly. To efficiently update them, we organize them in
a locality-preserving manner. In this way, it is possible to
reduce the amortized overhead by batching multiple subse-
quent update operations and performing them together.

Organization and management of mappings. We de-
sign a MAP table to organize the mappings. Our MAP tale
always maintains a fixed size of N rows. In the MAP table,
the mapping for block-device address i is always located in
the i-th row, where 0 ≤ i ≤ N − 1. Initially, we fill “NULL”
as the default flash location for each block-device address. If
a data node is written to block-device address i, and stored
by TedFlash to a randomly selected flash location (a, b), we
will update the mapping in row i by changing the flash lo-
cation to (a, b). If a data node is deleted from block-device
address i, we will update the mapping in row i by changing
the flash location to“NULL”. If a read is performed on block-
device address i, we will read the mapping in row i, obtain
the corresponding flash location, and read the corresponding
data node. The MAP table is stored on a contiguous area
of flash, consisting of multiple contiguous erase blocks. We
call this area metadata area.

The aforementioned design is advantageous, because: First,
it preserves in the metadata area the locality from the up-
per layer, so that we can reduce the amortized overhead
by batching multiple subsequent update operations on map-
pings. Second, writing a new mapping will not introduce
any structural artifacts, as it will not affect the placement
of any other data (including mappings and regular data).

Efficiently reading mappings. As the I/O granularity
of NAND flash is a page, reading a sole mapping from flash
usually requires reading the entire encompassing page, which
is expensive. We can improve the performance by caching
all or a portion of the MAP table. Note that commodity
flash devices are usually equipped with a certain amount
of SRAM and DRAM which can be used for the caching
purpose. For example, Jasmine OpenSSD Platform [3] has
96KB SRAM and 64MB DRAM; LPC-H3131 [4] has 192KB
SRAM and 32MB DRAM.

Efficiently updating mappings. Updating a mapping
from metadata area requires performing an over-write on
flash, which is expensive and should be avoided. By accu-
mulating multiple subsequent updating operations and per-
forming them together, we can significantly reduce the over-

head for per-mapping update. Due to locality, the accu-
mulated updates may only target the mappings from a few
different erase blocks, and by waiting, we reduce the number
of block erasures necessary per update operation. Note that
accumulating multiple update operations in volatile storage
(e.g., SRAM or DRAM) is problematic, as they will be lost
upon system failures (e.g., power lost). We address this is-
sue by utilizing a few journal blocks. The mapping update
operations which have not been committed are stored se-
quentially to the journal blocks. After the journal blocks
are filled, we commit all the updates to the MAP table, and
erase the journal blocks. Next time we will pick a new set
of journal blocks for wear leveling consideration.

Wear leveling for metadata area. After introducing the
MAP table, we face some wear leveling issues: 1) The pro-
grams/erasures may not distribute evenly among the erase
blocks holding the metadata area. This is because: Writes
to block device may concentrate on a few hot places [18]; As
the metadata area preserves locality from the upper layer,
the writes to the key area will also concentrate on a few hot
spots. 2) The erase blocks holding the metadata area have
significantly more programs/erasures per block compared to
those for data area, because the total number of writes to
both areas are approximately the same, but the metadata
area is much smaller. A good wear leveling solution can
be periodically moving the metadata area around the entire
flash, which is feasible as the metadata area is very small.
For example, if each mapping is 4-byte in size, and each data
node is 4KB in size, the metadata area only occupies 0.1%
of the entire flash. For a 10GB eMMC card, that is only
10MB.

5.3.3 Operations of TedFlash
We describe the detailed procedure for the main opera-

tions of TedFlash in Figure 5.
Block Device Write provides an entry point for the upper

layer to write data to block-device addresses. It can also
be used as an entry point to delete data from a flash-based
block device by using NULL data as input. Given a block-
device address i, we first search the MAP table, obtaining
the corresponding flash location. If the flash location is not
NULL, this is an over-write. Otherwise, it is a new write.
For the over-write, we first sanitize the old data from flash.
For both the new write and the over-write, we place the new
data to a new empty location which is randomly selected.
To obtain such a flash location, we may need to perform
multiple trials. One optimization can be, we keep track of
the empty flash locations in RAM, and randomly pick one
when needed. Finally, we update the mapping for block-
device address i.

Block Device Read provides an entry point for the upper
layer to read data from block-device addresses. Given a
block-device address i, we first search the MAP table, ob-
taining the corresponding flash location. We then read the
data from flash. A read FAILURE will occur if the flash
location does not possess any valid data.

5.4 Optimizing TedFlash
TedFlash is efficient when the size of data node is close

to that of the erase block. However, if the data node size is
small (e.g., 4KB), deleting a data node will be expensive as it
requires erasing the entire flash block which stores this data
node, leading to significant write amplification. Batching

6

Block Device Write(i, data):

1. Read the mapping located in the i-th row of the MAP table,
obtaining the flash location (a, b)

2. If data is NULL:

(1) Delete the data node stored in flash location (a, b)

(2) Update the mapping located in the i-th row of the MAP
table by changing the flash location to NULL;

(3) Return SUCCESS

3. If (a, b) is not NULL:

(1) Delete the data node stored in flash location (a, b)

4. Choose a number r uniformly at random from a set R =
{0, 1, ..., N − 1}

5. Calculate a new flash location (x, y):

(1) x = r/
s·|page|
|data node|

(2) y = r%
s·|page|
|data node|

6. Check whether the flash location (x, y) is empty or not. If
it is not empty, go to step 4

7. Write data to flash location (x, y)
8. Update the mapping located in the i-th row of the MAP

table by changing the flash location to (x, y)
9. Return SUCCESS

Block Device Read(i,&data):

1. Read the mapping located in the i-th row of the MAP table,
obtaining the flash location (a, b)

2. If (a, b) is NULL, return FAILURE
3. Otherwise, read the data node from flash location (a, b) to

&data
4. Return SUCCESS

Figure 5: TedFlash operations. SUCCESS: 0; FAIL-
URE: -1

multiple subsequent delete operations and performing them
together unfortunately cannot help, as TedFlash randomizes
the placement of data nodes on flash, which completely dis-
turbs the locality from the upper layer.

One optimization could be to use partial scrubbing [26] to
remove the desired data nodes. However, this approach is
only suitable for SLC flash, as it may cause errors to MLC
flash [26]. Additionally, it only suits applications of data
which are meaningful in bytes [26].

Motivated by DNEFS [35], we optimize the performance
of delete operations in the following way: We encrypt each
data node with a unique key. Upon deleting a data node, we
only delete the corresponding key, and delay the deletion of
the encrypted data node. This can bring several advantages:
1) As the key size (e.g., 16 bytes) is significantly smaller
than the data node size, keys can be stored in a much more
compact manner, which makes it possible to optimize the
performance of deleting keys. 2) By delaying the deletion of
encrypted data nodes, we avoid instantly erasing the corre-
sponding flash block, which is expensive. A flash block will
not be erased until it has accumulated enough number of
obsolete data nodes, so that the amortized overhead of dele-
tion can be significantly reduced. Compared to the original
TedFlash, the optimized TedFlash seems to have reduced the
security, as the deleted data, though become inaccessible,
are still preserved in the storage state before the space oc-
cupied by them are actually reclaimed. By observing the
storage state after a delete operation, the adversary is able
differentiate the storage state from that the deleted data
never existed. However, as it is shown in Sec. 6.1, compared

to the original TedFlash, the adversary cannot obtain any
more knowledge except some additional randomness.

The question now becomes, how can we efficiently delete
keys? As deleting a key usually requires performing an over-
write on this key, we can efficiently delete them by adapting
the idea from metadata handling: We organize keys in a
locality-preserving manner, so that we can batch multiple
subsequent key deletions, and perform them together to re-
duce the amortized overhead.

Organization and management of keys. We organize
keys using a key table, which has a fixed size of N rows. The
design of the key table is similar to the MAP table, in which
the key used for encrypting the data node associated with
block-device address i (0 ≤ i ≤ N − 1) is always stored in
the i-th row of the table. Initially, each row of the key table
is filled with a fresh unused key which is cryptographically-
appropriate random data. When a new data node is written
on block-device address i, we will encrypt it using the key
located in the i-th row of the key table. When an old data
node is deleted, its corresponding key will be replaced by a
new unused key. When a data node is read, the correspond-
ing key will be read in order to decrypt this data node. We
store the key table in a contiguous region of flash, which
consists of multiple contiguous erase blocks. We call this
flash area key area. Similar to the metadata area, the key
area can also preserve the locality from the upper layer. In
addition, the writing of new keys will not introduce struc-
tural artifacts as it will not affect the placement of any other
data.

Efficiently deleting/reading keys. Deleting a key from
key area requires performing an over-write on flash, which
is expensive and should be avoided. By batching multiple
subsequent key deletions and performing them together, we
can significantly reduce the overhead for per-key deletion as
the key area preserves locality from the upper layer. We
can utilize a few journal blocks for this batching purpose
(Sec. 5.3.2). To improve the efficiency of reading keys, we
can utilize SRAM or DRAM equipped with the flash device
to cache all or a portion of keys (Sec. 5.3.2).

Wear leveling for key area. The key area faces similar
wear leveling issues as writes to the key area are much more
condensed and the erase blocks for holding the key area will
have much more programs/erasures per block. As the key
area is small (e.g., if each key is 128-bit in size, and each
data node is 4KB in size, the key area only occupies 0.4%
of the entire flash), we can simply performing wear leveling
by periodically moving the key area around the entire flash.

Reclaiming space occupied by obsolete data nodes.
As the optimized TedFlash only deletes keys, the obsolete
(encrypted) data nodes remain in flash. To reclaim space, we
can periodically perform “garbage collection”, erasing those
flash blocks that accumulate a certain number (e.g., 50%)
of obsolete data nodes.

6. ANALYSIS AND DISCUSSION

6.1 Security Analysis

Theorem 6.1. Deleting elements from the random place-
ment table can achieve the truly secure deletion guarantee.

7

Proof. Let S1 = {Ot1 , ..., Oti , ..., Otl , Otl+1} be the
sequence of l insert operations and 1 delete operation per-
formed on the random placement table, in which Oti repre-
sents the operation being performed at time ti. The opera-
tion Otl+1 is the delete operation. The adversary can have
access to the table at time tp, where tp is after tl+1. Let
Otj be the operation of inserting the corresponding element
being deleted by operation Otl+1 , where 1 ≤ j ≤ l. Let S2

be the sequence of operations excluding Otl+1 and Otj . We
need to discuss 3 cases: 1) j = l; 2) j = 1; 3) 1 ≤ j < l.

Case 1: If j = l, S2 = {Ot1 , ..., Oti , ..., Otl−1}. Note that
we initialize all the slots of the random placement table to
0, and a delete operation will reset the corresponding slot to
0. In S1, the operation Otl sets a slot to non-zero, while the
subsequent operation Otl+1 resets this slot to 0. Thus, for
the adversary who can only access the table at time tp, S1 is
equivalent to an operation sequence in which Otl and Otl+1

never appear, which is S2. In other words, the adversary
cannot differentiate which operation sequence, S1 or S2, led
to the state at time tp.

Case 2: If j = 1, S2 = {Ot2 , ..., Oti , ..., Otl}. Let A
be the same insert operation as Ot1 . We construct a new
operation sequence S3 = {Ot2 , ..., Oti , ..., Otl , A, Otl+1}.
Based on our discussion for Case 1, we know that by access-
ing the state at time tp, the adversary cannot differentiate
which operation sequence, S3 or S2, led to the state. The
only difference between sequence S1 and S3 is when to per-
form the operation A which inserts an element x into the
table: S1 inserts x at time t1, while S3 inserts x at time
t′, where tl < t′ < tl+1. As the random placement table
always places the element to a randomly selected location,
from the adversary point of view (who can access the state
at time tp), no difference can be observed between inserting
x at time t1 and t′. Thus, S1 and S3 is equivalent from the
adversary’s viewpoint. In other words, the adversary cannot
differentiate which operation sequence, S1 or S2, led to the
state at time tp.

Case 3: if 1 < j < l, S2 = {Ot1 , ..., Otj−1 , Otj+1 , ..., Otl}.
We separate the operation sequence S1 into 2 sub-sequences,
S′1 and S′′1 , in which S′1={Ot1 , ..., Otj−1} and S′′1 ={Otj , ...,
Otl , Otl+1}. We also separate the operation sequence S2 into
2 sub-sequences, S′2 and S′′2 , in which S′2={Ot1 , ..., Otj−1}
and S′′2 ={Otj+1 , ..., Otl}. Since S′1 = S′2, case 3 can be
further reduced to a new case: we want to judge whether
the adversary can differentiate which operation sequence,
S′′1 or S′′2 , led to the state at time tp after removing all the
elements created by S′1 from this state. This new case is
exactly what we have discussed in Case 2.

The aforementioned proof can be easily generalized to
the case where multiple pairs of insert/delete operations are
present.

Theorem 6.1 proves that the random placement table can
achieve the truly secure deletion guarantee. TedFlash relies
on the random placement table to write/delete data nodes
to/from flash, and thus is able to achieve the truly secure
deletion guarantee. However, to improve the efficiency of
updating mappings, TedFlash chooses to batch multiple up-
dates in journal blocks and perform them together later. By
accessing the journal blocks, the adversary will learn which
data nodes have been deleted recently, leading to leakage of
a few most recent delete operations (e.g., if the number of

journal blocks being used is 1, and each block has 64 pages,
the maximal leakage will be 64 most recent delete opera-
tions). This leakage will be eliminated when the journal
blocks are filled and erased.

Similar to the original TedFlash, the optimized TedFlash
has the leakage of a few most recent delete operations stored
in the journal blocks (for the purpose of efficiently updating
keys and mappings). In addition, as the optimized TedFlash
only deletes keys, the corresponding encrypted data nodes
will remain in flash until the corresponding flash block is
erased. Thus, the adversary will observe the existence of
these encrypted data nodes. However, the adversary cannot
obtain more knowledge except some randomness, because:
First, the encrypted data nodes cannot be decrypted by the
adversary as their corresponding keys have been deleted.
Thus, for the adversary, those encrypted data nodes are no
more than randomness; Second, the adversary cannot corre-
late the flash pages storing those encrypted data nodes with
the block-device addresses, as the corresponding mappings
have been deleted; Third, the adversary cannot learn any-
thing from the locations of those encrypted data nodes, as
the entire flash layout has been randomized.

6.2 Discussion
Truly secure deletion and history independence. His-
tory independence [31] ensures that by having access to a
storage state, the adversary is not able to identify the op-
eration sequence which leads to this state. Thus, given two
operation sequences leading to the same storage state: one
sequence has a delete operation and its corresponding insert
operation, and the other sequence does not have the afore-
mentioned delete and insert operation, the adversary will not
be able to differentiate which operation sequence led to this
storage state. In other words, history independence guaran-
tees after having removed a data record, all the correspond-
ing structural artifacts will have been removed, achieving
truly secure deletion (under an implied assumption that the
storage state itself will not leak any information about the
deleted data, e.g., there is no correlation between the con-
tent remaining in the current state and the deleted data).
However, a scheme that achieves the truly secure deletion
guarantee is not necessarily able to achieve the history in-
dependence guarantee. This is because: 1) History indepen-
dence ensures that no structural artifacts will be introduced.
However, truly secure deletion only ensures that the struc-
tural artifacts introduced by the data being deleted will be
removed; 2) History independence ensures that an adver-
sary cannot identify the operation order in the past, e.g.,
the order of insert operations in a voting machine, preserv-
ing order privacy. However, truly secure deletion does not
provide any guarantees on the past operation order.

Note that when using“pre-processing”approach to achieve
the truly secure deletion guarantee, we need to plan ahead
and ensure that every new data will not bring in structural
artifacts, as we cannot predict which data will be deleted
in the future. In this sense, using “pre-processing” approach
seems overkill and can achieve a guarantee stronger than
truly secure deletion, but it is still unclear the relationship
between this guarantee and history independence4.

4Although Molnar at al. [30] claimed that the random place-
ment table can achieve history independence, but there is no
proof available to justify their claim.

8

Truly secure deletion and undetectable secure dele-
tion. Jia et al. [26] proposed undetectable secure deletion
that can hide the deletion history from the adversary. Un-
detectable secure deletion is a security notion weaker than
the truly secure deletion, because: 1) A scheme that can
achieve undetectable secure deletion guarantee is not neces-
sarily able to achieve the truly secure deletion guarantee, as
it cannot sanitize the structural artifacts introduced by the
deleted data; 2) A scheme that can achieve the truly secure
deletion guarantee can always achieve the undetectable se-
cure deletion guarantee, as it can always hide the deletion
history.

Handling cache-related issues. To efficiently read map-
pings/keys, we choose to cache all or a portion of map-
pings/keys in the SRAM/DRAM. Two issues need to be ad-
dressed: 1) The mappings/keys being cached may become
inconsistent if the corresponding mappings/keys stored in
flash have been updated; 2) If only a portion of mappings/keys
is cached, a target mapping/key may not be satisfied from
the cache (i.e., a cache miss). To handle the first issue, when
a mapping/key is updated, we update it in both the cache
and the flash. To handle the second issue, upon a cache miss,
we read the target mapping/key from flash, and update the
cache using a certain replacement strategy like FIFO and
LRU.

The nature of the data residing on flash. TedFlash
removes both the obsolete data and the structural artifacts
brought by these data, such that by having access to the
current storage state, the adversary cannot differentiate it
from the storage state that the deleted data never appeared.
In this sense, the adversary should not be able to learn any-
thing about the deleted data, because by accessing the stor-
age state after deletion, he/she does not gain any additional
advantages compared to having access to the storage state
in which the deleted data never appear. Thus, we believe
TedFlash should work for both encrypted and non-encrypted
file system. For example, considering plain-text “Tim is an
HIV patient”, after removing sensitive information “HIV”,
we obtain “Tim is a patient”. TedFlash ensures that, by hav-
ing access to the storage state of “Tim is a patient” after
having deleted “HIV”, the adversary gains no additional ad-
vantages over having access to the storage state of “Tim is
a patient” in which “HIV” never appears. Therefore, the ad-
versary should not be able to learn anything about “HIV”.
And also, we need to emphasize that TedFlash aims to pro-
tect the secrecy of the data having been deleted from flash,
rather than the data still residing on flash.

System robustness. Corruption of either MAP table or
key table may lead to failures of the entire flash. Therefore,
protecting the MAP table and the key table is of signifi-
cant importance to increase the robustness of flash devices
equipped with TedFlash. The solution could be to introduce
redundancy. In storage domain, multiple coding techniques
like replication [20], erasure coding [16] and network cod-
ing [17] can be utilized to add redundancy. Considering both
the MAP table and the key table are small in size as well as
their dynamic nature, we can simply use replication and cre-
ate duplicate copies for both of them. This will increase the
overhead for committing data to flash, as we need to update
the duplicate copies of both tables. One remediation could
be to synchronize the updates to the duplicate copies after
a certain number of writes. This can reduce the additional

overhead for robustness, but the most recent updates may
be lost upon failures of these tables.

7. IMPLEMENTATION AND EVALUATION

7.1 Implementation
We implemented TedFlash based on OpenNFM [7], an

open source NAND flash controller framework. For com-
parison, we also implemented DNEFS [35] and HiFlash [18]
using OpenNFM. DNEFS encrypts each data node with a
different key and collocates keys in a key storage area on the
flash. It can sanitize the data by efficiently deleting keys.
However, it cannot achieve truly secure deletion as the struc-
tural artifacts remain in the flash layout. HiFlash relies on a
one-one mapping technique to achieve history independence,
hence truly secure deletion guarantee (Sec. 6.2). However,
the one-one mapping technique cannot satisfy design con-
straint C1 or C2, and is thus impractical for flash.

OpenNFM uses an architecture consisting of three lay-
ers: FTL, UBI, and MTD. FTL mainly handles mappings
between block device and flash, so that the flash device can
provide a uniform block device interface to the external com-
puting components like file systems. UBI mainly takes care
of wear leveling and bad block management. MTD provides
a raw flash abstraction, handling the physical characteristics
of different flash chips. To implemented DNEFS, HiFlash,
and TedFlash, we modified OpenNFM as follows:

• DNEFS: We added encryption/decryption as well as
key management to FTL.

• HiFlash: We modified FTL to support one-one map-
ping, and modified UBI to support the special wear
leveling required by HiFlash [18].

• TedFlash: We modified FTL to support random place-
ment. We also incorporated encryption/decryption as
well as key management described in the optimized
TedFlash. We introduced journal blocks to efficient
update the MAP table and the key table.

We ported the modified OpenNFM to LPC-H3131 [4], a
development board equipped with 180 MHz ARM micro-
controller, 512MB NAND flash, and 32 MB SDRAM. The
NAND flash has 128KB block size and 2KB page size, thus
the entire NAND flash has approximately 4, 000 erase blocks,
and each block is composed of 64 pages. For TedFlash, the
MAP table is less than 1MB in size, as it contains 4, 000∗64
mappings, each of which can be represented by 18 bits.

We benchmarked the original OpenNFM, DNEFS, Hi-
Flash, and TedFlash using fio [2]. When running fio, we
used the non-buffered I/O option. The fio is run in a host
computer with 8 Intel i7 CPUs at 3.40GHz, 4GB RAM, and
Windows 7 Pro 32-bit.

7.2 Evaluation

7.2.1 Throughput

The impact of encryption on throughput. The de-
velopment board (LPC-H3131) we used is equipped with a
low-end microcontroller (180 MHz) without hardware en-
cryption module, and software-based encryption runs ex-
tremely slow on it. Therefore, the experimental results in-
cluding the overhead of encryption/decryption will be bi-
ased for this board, as encryption/decryption will dominate

9

READ (MB/s) WRITE (MB/s)
without encryption 520 470

with encryption 460 460
throughput decrease 11.5% 2.1%

Table 2: The impact of encryption on read/write
throughout for a board equipped with encryption
hardware module. The data were obtained for AES-
128 from SAGE S881 [8], a board with 1 MB SRAM
and a built-in encryption & decryption module

of journal blocks SW RW
(1, 1) 225 211
(2, 2) 596 534
(3, 3) 668 650
(0, 0) 680 658

Table 3: The write throughput (KB/s) of TedFlash
when varying the number of journal blocks. (x, y)
means x journal blocks for mappings and y journal
blocks for keys. (0, 0) means no updates are per-
formed on the metadata/key area. SW - sequential
write, RW - random write

the entire overhead. We observed that a large number of
flash controller chips in the new-generation smartphones and
SSDs have been equipped with hardware encryption mod-
ule. For example, most of the SSDs manufactured by SAM-
SUNG [9] support AES hardware encryption. With encryp-
tion hardware enabled, the impact of encryption on through-
put should be very small. Our experimental evaluation in
Table 2 confirmed the aforementioned statement. Therefore
in the following, we excluded the overhead resulted from
encryption/decryption for all the schemes.

The impact of journal blocks on throughput. To ef-
ficiently update mappings and keys, we use a few journal
blocks to accumulate multiple updates and perform them
together on the metadata/key area. Table 3 shows the
throughput of TedFlash when the number of journal blocks
varies. Note that each block has 64 pages, and each page
can be used to store 1 update operation5, therefore, a journal
block can at most accumulate 64 update operations.

We observed that when the number of journal blocks in-
creases, the write throughput increases. This is because,
using more journal blocks is able to accumulate more up-
dates before performing them together, leading to a higher
probability that more updates will belong to the same erase
blocks, hence reducing the overall number of erasures. How-
ever, as the operations in the journal blocks will be leaked,
using more journal blocks will have more leakages (Sec. 6.1).

Throughput comparisons. We compared the read/write
throughput among DNEFS, HiFlash, and TedFlash. Bench-
marking results are shown in Table 4. To efficiently read
mappings, we cached the MAP table in the board’s DRAM
for all the schemes. To efficiently read keys, we cached the
keys in the DRAM for both DNEFS and TedFlash. In addi-
tion, we used 3 journal blocks for key updating and 3 journal
blocks for mapping updating, respectively. We have several
observations:

5The I/O granularity of NAND flash is a page, thus we can
only use 1 page to store 1 update

Scheme SR RR SW RW
OpenNFM 1,831 1,524 1,155 968

DNEFS 1,259 1,218 766 672
TedFlash 1,125 1,099 668 650
HiFlash 1,099 1,065 277 87

Table 4: Comparisons of read/write throughput
(KB/s) among TedFlash and other secure deletion
schemes. SR - sequential read, RR - random read

(a) The read/write throughput of both DNEFS and TedFlash
is decreased compared to the original OpenNFM. This is
mainly due to the additional overhead in key management,
including both key reading and updating.

(b) The read/write throughput of TedFlash is slightly re-
duced compared to DNEFS (approximately 10%). This is
because, random seek is not significantly but slightly slow
than sequential seek. This justifies that TedFlash can achieve
a much stronger secure deletion guarantee with a small ad-
ditional overhead.

(c) The write (especially random write) throughput of Hi-
Flash is significantly reduced compared to TedFlash. This is
due to the significant write amplification caused by the large
number of over-writes resulted from the one-one mapping
technique. This justifies that by relaxing the security of-
fered by HiFlash, TedFlash can achieve a significantly better
performance.

7.2.2 Wear Leveling
To evaluate the wear leveling effectiveness of TedFlash, we

used the Hoover economic wealth inequality indicator [35].
This metric is originally used to quantify the unfairness of
wealth distributions. It corresponds to an appropriately nor-
malized sum of the difference of each measurement to the
mean. In terms of flash memory, it indicates the fraction of
erasures that must be re-assigned to other erase blocks in
order to obtain completely even wear. Assuming the era-
sure counts of all the erase blocks are e1, e2,..., en, and
E =

∑n
i=1 en, then the wear levering inequality can be com-

puted as: 1
2

∑n
i=1‖

ei
E
− 1

n
‖.

We repeatedly wrote data to the board, filled the 512MB
flash storage, and then erased the data. After having writ-
ten 500GB data, we calculated the number of erasures per-
formed on each flash block, and computed the wear levering
inequality, obtaining 6× 10−4. This small value indicates a
good wear leveling effectiveness, and justifies that random
placements indeed can achieve good wear leveling, as it dis-
tributes data nodes among the entire flash in a uniformly
random manner so that each flash location has an equal op-
portunity to be programmed/erased.

8. RELATED WORK
Encryption-based secure deletion. Lee et al. [28, 29]
proposed a secure deletion scheme for YAFFS. They forced
the current and the previous keys of a file to be stored in
the same flash block, so that a file can be deleted by a single
block erase. Lee et al. [27] further extended this solution
with standard data sanitization operations on the key con-
taining blocks. Reardon et al. [35] introduced DNEFS, in
which they encrypted each data node with a unique key and
collocated keys in a key storage area on the flash.

10

Overwriting-based secure deletion. Sun et al. [38] used
zero overwriting and block cleaning to securely delete data
from flash. Reardon et al. [36] introduced purging and bal-
looning at the user-level, and zero overwriting at the ker-
nel level for secure deletion in YAFFS. Wei et al. [35] pro-
posed to use scrubbing to efficiently sanitize data from flash
pages without performing block erasures. In flash, program-
ming “0” bit to “1” bit is not possible except performing
a block erasure. However, programming “1” bit to “0” bit
is feasible. Based on this observation, they sanitized data
from a page by programming all the remaining “1” bits to
“0” bits. TrueErase [21] was a framework which relied on
block erasure to delete data and metadata upon user re-
quest. DEFY [34] performed all-or-nothing transform on
the data, creating a small message expansion for the data.
In this way, the data can be securely and efficiently removed
by only removing this small expansion.

The aforementioned secure deletion schemes can sanitize
data from flash, but none of them can sanitize structural
artifacts. NFPS [26] aimed to conceal the past existence of
the deleted data in flash memory. However, it still cannot
sanitize the structural artifacts introduced by the deleted
data. HiFlash [18] can achieve history independence, and
is thus able to sanitize the structural artifacts, achieving
truly secure deletion (Sec. 6.2). To achieve history indepen-
dence, HiFlash always places the data written to the same
block-device address to the same flash location, so that the
placements of any data are independent and the resulting
storage layout is canonical and not impacted by the “his-
tory”. Such a “one-one mapping” mechanism unfortunately
will cause significant over-writes to a few hot locations, lead-
ing to significant overhead as well as write unevenness. This
may be the unavoidable cost for achieving such a strong
security guarantee. In some sense, the design rational of
truly secure deletion is to achieve a good trade-off between
security and performance by slightly reducing the desired
security guarantee.

9. CONCLUSION
In this paper, we propose TedFlash, a truly secure deletion

scheme for flash-based block devices. Truly secure deletion
is a security notion that is much stronger than conventional
secure deletion, as it can sanitize both the obsolete data
as well as the corresponding structural artifacts, while the
conventional secure deletion can only sanitize the obsolete
data. TedFlash places data nodes to flash using a random
placement table which can ensure that placing a new data
node will not introduce structural artifacts. This random
placement technique well fits the nature of NAND flash in
terms of random seek and wear leveling. Security analysis
and experimental evaluation show that TedFlash can achieve
the truly secure deletion guarantee with a small additional
overhead compared to the conventional secure deletion.

Acknowledgment
This work was supported by ARO W911NF-15-1-0576. Bo
Chen would also like to thank the support from Center for
Information Assurance at the University of Memphis. Shijie
Jia and Luning Xia were supported by National 973 Program
of China under award No. 2014CB340603. Peng Liu was
supported by NSF CNS-1422594, NSF CNS-1505664, and
ARO W911NF-13-1-0421 (MURI). The authors would like
to thank anonymous ACSAC reviewers for their insightful

suggestions and advice. We would also like to thank Radu
Sion for his contribution in the early stages of the work.

10. REFERENCES
[1] Blockchain. https://blockchain.info/.

[2] fio, http://freecode.com/projects/fio.

[3] Jasmine openssd platform,
http://www.openssd-project.org/wiki/Jasmine_

OpenSSD_Platform.

[4] Lpc-h3131, https:
//www.olimex.com/Products/ARM/NXP/LPC-H3131/.

[5] Multibit. https://multibit.org/.

[6] New ssd-backed elastic block storage.
https://aws.amazon.com/blogs/aws/

new-ssd-backed-elastic-block-storage/.

[7] Opennfm, https://code.google.com/p/opennfm/.

[8] Sage s881.
http://www.sage-micro.com/chip-7.html.

[9] Samsung ssd.
http://www.samsung.com/cn/consumer/memory/ssd.

[10] Scalability - bitcoin wiki.
https://en.bitcoin.it/wiki/Scalability.

[11] Trim, http:
//en.wikipedia.org/wiki/Trim_%28computing%29.

[12] Uk data protection act 1998 (dpa).
http://www.legislation.gov.uk/ukpga/1998/29.

[13] 106th United States Congress. Gramm-Leach-Bailey
Act. http://www.gpo.gov/fdsys/pkg/
PLAW-106publ102/pdf/PLAW-106publ102.pdf, 1999.

[14] Guy E. Blelloch and Daniel Golovin. Strongly
history-independent hashing with applications. In
Proceedings of IEEE Symposium on Foundations of
Computer Science, FOCS ’07, pages 272–282. IEEE
Computer Society, 2007.

[15] Bing Chang, Zhan Wang, Bo Chen, and Fengwei
Zhang. Mobipluto: File system friendly deniable
storage for mobile devices. In Proceedings of the 31st
Annual Computer Security Applications Conference,
pages 381–390. ACM, 2015.

[16] Bo Chen, Anil Kumar Ammula, and Reza Curtmola.
Towards server-side repair for erasure coding-based
distributed storage systems. In Proceedings of the 5th
ACM Conference on Data and Application Security
and Privacy, pages 281–288. ACM, 2015.

[17] Bo Chen, Reza Curtmola, Giuseppe Ateniese, and
Randal Burns. Remote data checking for network
coding-based distributed storage systems. In
Proceedings of the 2010 ACM workshop on Cloud
computing security workshop, pages 31–42. ACM,
2010.

[18] Bo Chen and Radu Sion. Hiflash: A history
independent flash device. arXiv preprint
arXiv:1511.05180, 2015.

[19] United States Congress. Health Insurance Portability
and Accountability Act.
http://www.hhs.gov/ocr/privacy/index.html, 1996.

[20] Reza Curtmola, Osama Khan, Randal Burns, and
Giuseppe Ateniese. Mr-pdp: Multiple-replica provable
data possession. In Distributed Computing Systems,
2008. ICDCS’08. The 28th International Conference
on, pages 411–420. IEEE, 2008.

11

https://blockchain.info/
http://freecode.com/projects/fio
http://www.openssd-project.org/wiki/Jasmine_OpenSSD_Platform
http://www.openssd-project.org/wiki/Jasmine_OpenSSD_Platform
https://www.olimex.com/Products/ARM/NXP/LPC-H3131/
https://www.olimex.com/Products/ARM/NXP/LPC-H3131/
https://multibit.org/
https://aws.amazon.com/blogs/aws/new-ssd-backed-elastic-block-storage/
https://aws.amazon.com/blogs/aws/new-ssd-backed-elastic-block-storage/
https://code.google.com/p/opennfm/
http://www.sage-micro.com/chip-7.html
http://www.samsung.com/cn/consumer/memory/ssd
https://en.bitcoin.it/wiki/Scalability
http://en.wikipedia.org/wiki/Trim_%28computing%29
http://en.wikipedia.org/wiki/Trim_%28computing%29
http://www.gpo.gov/fdsys/pkg/PLAW-106publ102/pdf/PLAW-106publ102.pdf
http://www.gpo.gov/fdsys/pkg/PLAW-106publ102/pdf/PLAW-106publ102.pdf
http://www.hhs.gov/ocr/privacy/index.html

[21] Sarah Diesburg, Christopher Meyers, Mark Stanovich,
Michael Mitchell, Justin Marshall, Julia Gould,
An-I Andy Wang, and Geoff Kuenning. Trueerase:
Per-file secure deletion for the storage data path. In
Proceedings of the 28th Annual Computer Security
Applications Conference, pages 439–448. ACM, 2012.

[22] Simson L Garfinkel and Abhi Shelat. Remembrance of
data passed: A study of disk sanitization practices.
IEEE Security & Privacy, (1):17–27, 2003.

[23] Roxana Geambasu, Tadayoshi Kohno, Amit A Levy,
and Henry M Levy. Vanish: Increasing data privacy
with self-destructing data. In USENIX Security
Symposium, pages 299–316, 2009.

[24] Peter Gutmann. Secure deletion of data from
magnetic and solid-state memory. In Proceedings of
the Sixth USENIX Security Symposium, San Jose,
CA, volume 14, 1996.

[25] Jason D Hartline, Edwin S Hong, Alexander E Mohr,
William R Pentney, and Emily C Rocke.
Characterizing history independent data structures.
Algorithmica, 42(1):57–74, 2005.

[26] Shijie Jia, Luning Xia, Bo Chen, and Peng Liu. Nfps:
Adding undetectable secure deletion to flash
translation layer. In Proceedings of The 11th ACM
Asia Conference on Computer and Communications
Security (ASIACCS ’16). ACM, 2016.

[27] Byunghee Lee, Kyungho Son, Dongho Won, and
Seungjoo Kim. Secure data deletion for usb flash
memory. J. Inf. Sci. Eng., 27(3):933–952, 2011.

[28] Jaeheung Lee, Junyoung Heo, Yookun Cho, Jiman
Hong, and Sung Y. Shin. Secure deletion for nand
flash file system. In Proceedings of the 2008 ACM
symposium on Applied computing, SAC ’08, pages
1710–1714, New York, NY, USA, 2008. ACM.

[29] Jaeheung Lee, Sangho Yi, Junyoung Heo, Hyungbae
Park, Sung Y Shin, and Yookun Cho. An efficient
secure deletion scheme for flash file systems. J. Inf.
Sci. Eng., 26(1):27–38, 2010.

[30] David Molnar, Tadayoshi Kohno, Naveen Sastry, and
David Wagner. Tamper-evident, history-independent,
subliminal-free data structures on prom
storage-or-how to store ballots on a voting machine. In
Security and Privacy, 2006 IEEE Symposium on,
pages 6–pp. IEEE, 2006.

[31] Moni Naor and Vanessa Teague. Anti-persistence:
History independent data structures. In In Proceedings
of ACM symposium on Theory of computing, pages
492–501. ACM Press, 2001.

[32] Radia Perlman. The ephemerizer: Making data
disappear. In Journal of Information System Security.
Citeseer, 2005.

[33] Radia Perlman. File system design with assured
delete. In Security in Storage Workshop, 2005.
SISW’05. Third IEEE International, pages 6–pp.
IEEE, 2005.

[34] Timothy M Peters, Mark A Gondree, and Zachary NJ
Peterson. Defy: A deniable, encrypted file system for
log-structured storage. 2015.

[35] Joel Reardon, Srdjan Capkun, and David Basin. Data
node encrypted file system: Efficient secure deletion
for flash memory. In Proceedings of the 21st USENIX
conference on Security symposium, pages 17–17.
USENIX Association, 2012.

[36] Joel Reardon, Claudio Marforio, Srdjan Capkun, and
David Basin. Secure deletion on log-structured file
systems. arXiv preprint arXiv:1106.0917, 2011.

[37] U.S. Senator Paul Sarbanes and U.S. Representative
Michael G. Oxley. Sarbanes-Oxley Act.
http://www.sec.gov/about/laws.shtml#sox2002,
2002.

[38] Kyoungmoon Sun, Jongmoo Choi, Donghee Lee, and
Sam H Noh. Models and design of an adaptive hybrid
scheme for secure deletion of data in consumer
electronics. Consumer Electronics, IEEE Transactions
on, 54(1):100–104, 2008.

[39] Yang Tang, Patrick PC Lee, John Lui, and Radia
Perlman. Secure overlay cloud storage with access
control and assured deletion. Dependable and Secure
Computing, IEEE Transactions on, 9(6):903–916,
2012.

[40] Michael Yung Chung Wei, Laura M Grupp,
Frederick E Spada, and Steven Swanson. Reliably
erasing data from flash-based solid state drives. In
FAST, volume 11, pages 8–8, 2011.

[41] Xingjie Yu, Bo Chen, Zhan Wang, Bing Chang,
Wen Tao Zhu, and Jiwu Jing. Mobihydra: Pragmatic
and multi-level plausibly deniable encryption storage
for mobile devices. In Information Security, pages
555–567. Springer, 2014.

[42] Apostolis Zarras, Katharina Kohls, Markus Dürmuth,
and Christina Pöpper. Neuralyzer: Flexible expiration
times for the revocation of online data. In Proceedings
of the Sixth ACM on Conference on Data and
Application Security and Privacy, pages 14–25. ACM,
2016.

12

http://www.sec.gov/about/laws.shtml#sox2002

	Introduction
	Background
	Flash Memory
	Re-thinking ``secure deletion''
	Why Structural Artifacts Matter

	Attack Scenarios
	Model and Definitions
	System Model
	Adversarial Model
	Security Definition

	TedFlash
	Overview
	A Random Placement Table
	TedFlash Design
	How to Sanitize the Structural Artifacts
	Handling Metadata
	Operations of TedFlash

	Optimizing TedFlash

	Analysis and Discussion
	Security Analysis
	Discussion

	Implementation and Evaluation
	Implementation
	Evaluation
	Throughput
	Wear Leveling

	Related Work
	Conclusion
	References

