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ABSTRACT
Erasure coding is one of the main mechanisms to add redun-

dancy in a distributed storage system, by which a file with k data
segments is encoded into a file with n coded segments such that any
k coded segments can be used to recover the original k data seg-
ments. Each coded segment is stored at a storage server. Under an
adversarial setting in which the storage servers can exhibit Byzan-
tine behavior, remote data checking (RDC) can be used to ensure
that the stored data remains retrievable over time. The main previ-
ous RDC scheme to offer such strong security guarantees, HAIL,
has an inefficient repair procedure, which puts a high load on the
data owner when repairing even one corrupt data segment.

In this work, we propose RDC-EC, a novel RDC scheme for era-
sure code-based distributed storage systems that can function under
an adversarial setting. With RDC-EC we offer a solution to an open
problem posed in previous work and build the first such system that
has an efficient repair phase. The main insight is that RDC-EC is
able to reduce the load on the data owner during the repair phase
(i.e., lower bandwidth and computation) by shifting most of the
burden from the data owner to the storage servers during repair.
RDC-EC is able to maintain the advantages of systematic erasure
coding: optimal storage for a certain reliability level and sub-file
access. We build a prototype for RDC-EC and show experimen-
tally that RDC-EC can handle efficiently large amounts of data.

1. Introduction
Remote data checking (RDC) [4, 24, 27, 7, 3] allows data own-

ers to check the integrity of data stored at an untrusted server, thus
enabling data owners to audit whether the server fulfills its con-
tractual obligations. Long-term storage usually imposes certain
reliability guarantees, such that the data remains retrievable over
time. To achieve this guarantee, a distributed storage system usu-
ally stores data redundantly at multiple servers which are geograph-
ically spread throughout the world. In a benign setting where the
storage servers are trusted, this basic approach would be sufficient
to handle server failure due to natural faults. However, in an ad-
versarial setting where the storage servers are untrusted and may
behave maliciously, the basic approach may not be able to provide
the desired reliability guarantee over time. In an adversarial set-
ting, RDC can be used to ensure that valuable data is retrievable
over time even if the storage servers are malicious.

When a distributed storage system is used in tandem with remote
data checking, we distinguish several phases throughout the storage
system’s lifetime: Setup, Challenge, and Repair. During Setup,
the data owner stores data redundantly at multiple storage servers.
During Challenge, the data owner checks periodically each storage
server to ensure the data stored at each server remains intact. If the
data at one of the servers is found corrupted, the Repair phase is

activated and the data owner repairs the data at the corrupted server
using data from the healthy servers, such that the desired redun-
dancy level in the system is restored. The Challenge and Repair
phases will alternate over the lifetime of the storage system.

In a benign setting, the methods for storing data redundantly at
multiple servers fall under three categories: replication, erasure
coding, and network coding. We give an overview of these methods
in Sec. 2, but we make here a few important observations. From a
storage perspective, erasure coding is optimal since it can achieve
the same reliability as replication at only a fraction of the storage
cost. However, from the perspective of communication overhead
in the repair phase, network coding is optimal as it incurs only a
fraction of the communication imposed by erasure coding. Still,
network coding has a major drawback which limits its applicability:
small portions cannot be read without reconstructing the entire file.
The fact that network coding does not support sub-file access to
data makes it unsuitable for applications in which data read is a
frequent operation.

Current RDC schemes designed for replication (MR-PDP [16]),
erasure coding (HAIL [7]), and network coding (RDC-NC [15]) in-
cur storage and communication costs as described in Table 1. We
can see that these RDC schemes (approximately) preserve in an
adversarial setting the storage and communication parameters that
characterize a benign setting. Yet, we notice that if we were to
use HAIL (i.e., the RDC scheme which minimizes the storage cost
and allows sub-file access), then we would have to pay the highest
communication cost during the Repair phase: Repairing data at one
corrupted server requires the data owner to retrieve all the data at
all the storage servers, reconstruct the entire data and then recom-
pute the corrupted segment. This process may put a high burden
on the data owner. In fact, the design of an RDC scheme for era-
sure coding-based distributed storage systems with low-bandwidth
repair was posed as an open problem [7] and remained unsolved.

In this work, we provide a solution to this open problem by de-
signing RDC-EC, a distributed storage system which functions un-
der an adversarial setting and achieves both the storage benefits of
erasure coding and the repair bandwidth benefits of network cod-
ing. RDC-EC has the following properties:

It minimizes the storage cost (in order to achieve a certain relia-
bility level).

It allows efficient sub-file access.
It incurs low repair bandwidth between the data owner and the

storage servers.
It functions properly under an adversarial setting.

Table 1 compares the performance of our scheme (RDC-EC)
with previous RDC schemes.

1.1 Solution Overview



MR-PDP [16] HAIL [7] RDC-NC [15] RDC-EC (proposed approach)
Coding method replication erasure coding network coding erasure coding
Total server storage O(n|F|) O(

n|F|
k

) O(
2n|F|
k+1

) O(
n|F|
k

)

Communication (repair phase) O(|F|) O(
n|F|
k

) O(
2|F|
k+1

) O(
|F|
k
)

Total server computation (repair phase) O(1) O(1) O(`) O(k)

Support for sub-file access yes yes no yes

Table 1: A comparison of RDC schemes for distributed storage systems. A file F of |F| bits has originally k segments and is encoded into n segments.
For the repair phase, the costs are for the case when one storage server fails. For RDC-NC, the client retrieves data from ` servers during Repair.

Our starting point is the HAIL scheme [7], which views the orig-
inal data (e.g., a file) as a collection of k segments and encodes it
into a collection of n segments. The n coded segments are stored
at n storage servers (one segment per server). HAIL is designed
to withstand a Byzantine and mobile adversary which can corrupt
at most b servers in any time interval (i.e., an epoch). Because,
in time, all the n storage servers could be corrupted, the servers
are periodically challenged to provide a proof that they continue
to store data. If a server is found faulty, then a repair procedure
is triggered in order to bring back the system to a state in which
all data is recoverable. Whereas HAIL is designed to withstand at-
tacks while minimizing overall storage costs and communication
costs during the Challenge phase, its Repair phase is inefficient: to
repair even one corrupt segment, the data owner has to retrieve all
the n segments from the n servers, reconstruct the entire file, and
then recompute the corrupted segment.

We inherit from HAIL the optimal storage cost and low commu-
nication cost during the Challenge phase. However, we redesign
parts of HAIL to achieve an efficient Repair phase, in which the re-
pair bandwidth is (asymptotically) equal to the optimal repair band-
width. The design of our new scheme is motivated by two insights:

Insight 1. Server-side repair: We leverage server-side repair [13],
a recently proposed concept which can minimize the load on the
data owner during the Repair phase by allowing the storage servers
to collaborate in order to generate a new segment whenever an ex-
isting segment has been corrupted. By incorporating server-side
repair into RDC-EC, we obtain the following advantages:

the repair bandwidth between the data owner and the storage
servers is reduced considerably (only two segments are transmitted
instead of n segments like in HAIL). The majority of the data trans-
mission during Repair now happens between the storage servers.
This is beneficial since the data owner’s connection may have lim-
ited bandwidth, whereas the storage servers are usually connected
by a high bandwidth network.

the computational burden during the Repair phase is shifted to
the servers, allowing data owners to remain lightweight.

Insight 2. The elements of the encoding matrix are masked: To
enable server-side repair, previous work reveals certain secrets to
allow the servers to collaborate and repair the corrupted data. For
example, when the distributed storage system relies on replica-
tion [13], the data owner reveals to the servers the secret key needed
to differentiate the various replicas. A straightforward extension
to the setting of erasure coding, would mean that the data owner
must reveal the encoding matrix (i.e., the matrix used to erasure
code the original data). In all previous RDC schemes for erasure
coding-based distributed systems (HAIL [7] and [31]), this encod-
ing matrix needs to remain secret, otherwise the data can be cor-
rupted unbeknownst to the data owner (such an attack is described
in Sec. 4.3).

To overcome this potential attack, the data owner does not re-
veal the encoding matrix to the storage servers. Instead, to repair
a corrupt segment, the data owner engages in a two-round protocol

with the storage system as follows. The data owner masks certain
elements of the encoding matrix and provides them to the storage
servers. These masked elements do not reveal anything about the
original elements in the encoding matrix, but are used by the servers
to collectively perform blind computations over the segments they
store and to obtain two masked segments. The data owner receives
the two masked segments and has enough information to unmask
and combine them into one segment. This segment is sent to a new
storage server to replace the corrupt segment.

This approach has the additional advantage of reducing the com-
putational load on data owners. Instead of participating in an ex-
pensive decoding of n segments to reconstruct the entire data (like
in HAIL), the data owner only processes two segments and lets the
servers handle the bulk of the decoding and reconstruction.

What are the trade-offs? RDC-EC is able to reduce the load on
the data owner during Repair (i.e., lower bandwidth and compu-
tation) by shifting most of the burden from the data owner to the
storage servers. Basically, RDC-EC incurs the following costs in
order to achieve a more efficient Repair phase:

increased load and more complex functionality at the storage
servers (the servers are required to perform computations during
Repair, as opposed to simply “serving” their data segments in
HAIL; the servers are also required to perform additional interac-
tions with the data owner and with the other servers during Repair).

two rounds of interaction between the data owner and the storage
system (as opposed to one round in HAIL).

We believe this trade-off between the resources of the data owner
and those of the storage servers aligns well with the cloud comput-
ing model which assumes a resource-rich cloud data center.

1.2 Contributions
In this work, we propose RDC-EC, a remote data checking

scheme for erasure code-based distributed storage systems that can
function under an adversarial setting. With RDC-EC we offer a so-
lution to an open problem posed in previous work and build the first
such system that has an efficient Repair phase. The main insight is
that RDC-EC is able to reduce the load on the data owner during
Repair (i.e., lower bandwidth and computation) by shifting most of
the burden from the data owner to the storage servers. Specifically,
we make the following contributions:

• We provide an overview of the main methods to add redun-
dancy in a distributed storage system. The previous main
result that uses remote data checking (RDC) to ensure data
remains retrievable over time in an erasure coding-based dis-
tributed storage system is HAIL [7]. Whereas HAIL is able
to provide security guarantees against a strong adversary, it
has an inefficient Repair phase.

• We propose RDC-EC, a remote data checking scheme for
erasure code-based distributed storage systems that can func-
tion under an adversarial setting. With RDC-EC we offer a
solution to an open problem posed in HAIL and build the
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first such system that has an efficient Repair phase. Similar
with HAIL, RDC-EC inherits the advantages of systematic
erasure coding: the storage overhead is optimal in order to
achieve a certain reliability level, and sub-file access is pos-
sible (i.e., small portions of the coded data can be read with-
out having to decode the entire data). Like HAIL, RDC-EC
handles a strong mobile and Byzantine adversary which is
allowed to corrupt b out of the n storage servers in any time
interval (i.e., an epoch). However, unlike HAIL, RDC-EC is
able to repair one corrupt segment by placing a minimal load
on the data owner who only needs to download and process
the equivalent of two segments (whereas HAIL requires n
segments to be downloaded and processed).
RDC-EC achieves efficient repair by incorporating server-
side repair, which can minimize the load on the data owner
during the Repair phase by allowing the storage servers to
collaborate in order to generate a new segment whenever an
existing segment has been corrupted. The main challenge is
to leverage the resources of the storage servers while not re-
vealing information that would allow the adversarial servers
to attack the system and reduce its reliability over time. The
data owner achieves this by requiring the servers to perform
computation over a “masked” version of the data, which is
then “un-masked” and used to recover the corrupted segment.

• We build a prototype for RDC-EC using the Jerasure [26]
and OpenSSL [2] libraries. To achieve an appropriate secu-
rity level, we extended Jerasure’s coding functions to sup-
port 128-bit symbols. Experimental evaluations show that
RDC-EC is efficient for encoding and repairing large files
(less than 20 sec for a 1GB file). Due to space limitations, im-
plementation and experimental details are presented in [10].

2. Redundancy in Distributed Storage Sys-
tems

Data can be redundantly stored at multiple servers through repli-
cation, erasure coding, and network coding.
Replication. In replication, the data owner simply stores multi-
ple copies of a file at multiple storage servers, such that the file is
recoverable if at least one file copy remains intact. Although repli-
cation has the advantage of simplicity, it has a high storage cost.
Today’s storage systems usually handle “big data”, which can be
TBs or even PBs. Replicating multiple entire copies of the “big
data” may become prohibitively expensive.

Erasure coding-based distributed storage systems. In erasure
coding, given a file of k segments, the client encodes the file into
n coded segments, such that any k out of n coded segments can
be used to restore the original file. The client stores the n coded
segments at n servers, one segment at each server. We provide
details about the encoding/decoding process in [10].

Erasure coding was shown to be optimal in terms of redundancy-
reliability tradeoff [34] and has been used extensively to ensure re-
liability for storage systems [9, 23, 26]. In addition, an erasure code
is systematic, with its input embedded as part of its encoded output,
e.g., in an (n, k) erasure code, the first k coded segments are the k
original file segments. This has the advantage that any portion of
the file can be read efficiently (we call this property “sub-file ac-
cess”). Due to the aforementioned advantages, erasure coding was
used broadly in storage systems which require frequent reads and
can be categorized as read-frequently workloads, e.g., Microsoft
Azure [1], HYDRAstor [19], etc.

Bowers et al. [7] introduced HAIL, a distributed cloud storage
system which offers cloud users high reliability guarantees under
a strong adversarial setting. Similar to RAID [25], which builds
low-cost reliable storage from inexpensive drives, HAIL builds re-
liable cloud storage by combining cheap cloud storage providers.
However, RAID has been designed to tolerate benign failures (e.g.,
hard drive crashes), whereas HAIL is able to deal with a strong (i.e.,
mobile and Byzantine) adversarial model, in which the adversary is
allowed to perform progressive corruption of the storage providers
over time. We provide an overview of HAIL in [10].

Unfortunately, erasure coding has an inefficient repair procedure.
Repairing one corrupted segment requires to download k coded
segments and reconstruct the whole file. This is exacerbated in an
adversarial setting: to repair a corrupted segment, the client needs
to download all the n coded segments (e.g., HAIL [7])).

Network coding-based distributed storage systems. Network
coding can be used to encode and distribute a file to n servers,
such that any k out of n servers have enough data to recover the
file [17, 18]. Although network coding can achieve optimal repair
bandwidth, it is not systematic. This makes it inefficient for read
operations, because reading even a small portion of the file requires
to reconstruct the whole file. Thus, applications of network coding
to storage systems are limited to read-rarely workloads [15].

3. System and Adversarial Model
The client (i.e., data owner) divides the original file into k seg-

ments, and encodes them into n coded segments, such that: 1) the
first k coded segments are the original file segments, and the re-
maining n − k coded segments are the parity segments; 2) any k
out of n segments can be used to restore the original file. The client
stores the n coded segments at n storage servers (one segment per
server) as follows: The k original segments are stored at k primary
servers (S1, S2, . . . , Sk), whereas the n − k parity segments are
stored at n− k secondary servers (Sk+1, . . . , Sn).

We consider a mobile and Byzantine adversary, similar to the one
used in HAIL [7]. “Byzantine” means the adversary can behave
arbitrarily. “Mobile” means that the adversary can corrupt any (and
potentially all) of the servers over the lifetime of the storage system.
However, it can only corrupt at most (n − k − 1)/2 out of the n
servers within any given time interval. We refer to such a time
interval as an epoch.

From an adversarial point of view, a storage server is seen as
having two components, the code and the storage. The code refers
to the software that runs on the server and defines the server’s be-
havior in the interaction with the client, whereas the storage refers
to the data stored by the server.

At the beginning of each epoch, the adversary picks a set of at
most (n − k − 1)/2 servers, and corrupts both the code and the
storage components on them. At the end of each epoch, the code
component in each storage server will be restored to a correct state
(e.g., the data owner can simply remove the malware, and re-install
a clean code component). However, the storage component may
remain corrupted across epochs. Thus, in the absence of explicit
defense mechanisms, the storage at more than n − k servers may
become corrupted over time and the original data may become un-
recoverable. The client’s goal is to detect and repair storage corrup-
tion before it renders the data unavailable. To this end, the client
checks data possession with the servers in every epoch and if it de-
tects any corrupted data in the faulty servers, it uses the redundancy
at the remaining healthy servers to repair the corruption.

Each epoch consists of two phases:
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A challenge phase that contains two sub-phases:
(a) corruption sub-phase: The adversary corrupts up to b1
servers.
(b) challenge sub-phase: The client checks data possession
with all the servers. As a result, it may detect faulty servers
with corrupted data (i.e., faulty servers).
A repair phase that contains two sub-phases and is triggered
only if corruption is detected in the challenge phase:
(a) corruption sub-phase: The adversary corrupts up to b2
servers.
(b) repair sub-phase: The client repairs the data at any faulty
servers detected in the challenge phase.

The total number of servers that can be corrupted by the adver-
sary during an epoch is at most (n − k − 1)/2 (i.e., b1 + b2 ≤
(n− k − 1)/2).

The structure of an epoch is similar with the one in HAIL [7],
with one important modification: We explicitly allow the adversary
to corrupt data after the challenge phase. This models attackers that
act honestly during the challenge phase, but are malicious in the
repair phase. Such behavior must be considered in any scheme that
seeks to achieve a repair phase that is more efficient than simply
retrieving all the n segments.

4. Remote Data Checking for Erasure Coding-
based Distributed Storage Systems

In this section, we first introduce the key ideas in our design, and
then present our main result, the RDC-EC scheme.

4.1 Key Ideas
A novel repair tag construction. We introduce a novel repair tag
construction in which, to compute a repair tag for an erasure coded
segment, we use a seed to generate a set of pseudorandom coeffi-
cients, and then use this set of coefficients to aggregate the symbols
in the segment. A repair tag constructed in this way is publicly com-
putable, but privately verifiable. Publicly computable means any
party who knows the seed can generate the corresponding repair
tag for the stored segment. Private verifiable means the correct-
ness of the repair tags can be verified only by a party who knows
some secret. During Repair, each storage server computes a repair
tag for its stored segment based on a fresh seed sent by the client
(publicly computable). The client can then verify the correctness
of the repair tags from all the servers based on the seed and on
a secret (privately verifiable), because all the repair tags together
form a valid integrity-protected dispersal code that was constructed
based on the client’s secret (for details about the integrity-protected
dispersal code, refer to HAIL [7]).

Enabling server-side repair for erasure coding to minimize the
client’s workload. In previous erasure coding-based distributed
storage systems such as HAIL, the original file of k segments is
encoded into a code word of n segments which are outsourced to
n storage servers. To repair a corrupted segment, the client first
retrieves all the outsourced segments, decodes them to recover the
original k file segments and then restores the corrupted segment.
Our key idea is to leverage server-side repair, in which we allow
the storage servers to collaborate in order to generate a new seg-
ment whenever an existing segment has been corrupted. As a re-
sult, the communication and computation load on the client during
Repair is reduced considerably.

Enabling server-side repair to minimize the client’s load in the
setting of erasure coding-based distributed systems imposes sev-
eral design decisions. During Repair, we require the client to ver-
ify the repair tags because this verification relies on secret keys

and cannot be offloaded to the untrusted servers. The client needs
to retrieve n small tags and perform a small amount of compu-
tation on them, which impose only a small burden on the client.
In addition, to protect secret keys used to embed random values
into the parity symbols (for the integrity-protected dispersal code),
we require the client (rather than the servers) to perform the fi-
nal step of restoring the corrupted segment. In this way, the client
can remain lightweight because it only needs to perform a small
amount of computation over a limited number of segments (i.e.,
two in RDC-EC) in order to restore a corrupted segment. Most of
the repair work (e.g., aggregating a large number of segments to
decode the original file) is offloaded to the servers.

Allowing untrusted servers to aggregate segments under an ad-
versarial setting. In a benign setting, the information dispersal
matrix used to erasure code the original file is needed to repair
a corrupted segment. However, under an adversarial setting, this
matrix needs to remain secret during the server-side repair pro-
cess. Thus, the client has to leverage the computational power of
the servers without revealing this matrix. For this, the client de-
rives a set of intermediate coefficients from the dispersal matrix,
masks them based on an algebraic function and sends them to the
untrusted servers. Due to the algebraic properties of our masking
function and of the erasure coding, the servers are able to perform
useful computation over their stored segments based on the masked
coefficients. This approach ensures the secrecy of the information
dispersal matrix while allowing server-side repair.

4.2 The RDC-EC scheme
In the following, we present RDC-EC, the first erasure coding-

based remote data checking scheme that allows server-side repair.
This is the main result of the paper.

Let κ be a security parameter. The original file F is divided into k
segments: F = {b1, . . . ,bk}. Each segment bi can be viewed as a
column vector: bi = (bi1,bi2, . . . ,bi`), where bij (1 ≤ j ≤ `) is
a symbol in GF (2w) and ` is the number of symbols in a segment.
Throughout the paper, all the arithmetic operations are performed
in GF (2w). We make use of a PRF g with the following parame-
ters: g : {0, 1}∗ × {0, 1}κ → GF (2w). We use file_handle to
uniquely identify the file to be encoded.

RDC-EC overview. Our RDC-EC scheme consists of three phases:
Setup, Challenge, and Repair. During the Setup phase, the client
preprocesses the original file F. The client first generates an n× k
information dispersal matrix M and then uses M to encode the k
segments of F, generating n coded segments such that: (a) the first
k coded segments are the original file segments, (b) the remaining
n − k coded segments are the parity segments, and (c) any k out
of n coded segments can be used to recover F. This part of the
encoding process is described in more details in Sec. 2 and in [10].
The client further adds to each parity symbol a secret value, such
that each parity symbol is converted into a message authentication
code (MAC) of the corresponding file symbols [7]. The client then
stores the n segments at n servers (one segment per server).

In the Challenge phase, the client challenges each of the n
servers, requiring them to prove data possession of the stored seg-
ments. This integrity check can be achieved efficiently based on
spot checking, in which the client only checks a random subset
of symbols from each outsourced segment. Prior work shows that
spot checking provides a probabilistic guarantee for corruption de-
tection, but the detection probability can be made arbitrarily high
by increasing the number of symbols being challenged [4]. In
RDC-EC, the client challenges the same random subset of sym-
bols from each of the n stored segments. Each server aggregates
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the challenged symbols based on the same set of random coeffi-
cients and sends back an aggregated response. After having re-
ceived all the n aggregated responses, the client can check and lo-
calize the corrupted responses, because the n responses constitute
a valid integrity-protected dispersal code. The Challenge phases in
RDC-EC and HAIL [7] are similar.

The Repair phase is activated when the client detected at least
one corrupted segment during Challenge. We do not differentiate
between corruptions caused by malicious server behavior and nat-
ural faults because servers which allow natural faults to be visible
to clients should be avoided just as well. To repair a corrupted seg-
ment, the client randomly picks a seed and sends it to the n servers.
Each server computes and sends back a repair tag, which is gen-
erated based on the stored segment and the random seed. After re-
ceiving the n repair tags, the client verifies all the n repair tags, and
is able to detect and localize any corrupted repair tags because the
n repair tags constitute a valid integrity-protected dispersal code
(see Sec. 4.1). The client then picks k repair servers, each of which
will provide data for repairing the corrupted segment. Note that
when picking the repair servers, the client will exclude the servers
which were found corrupted either in the Challenge phase or in the
aforementioned repair tag verification. From the remaining n − k
servers, the client randomly picks an Aggregation Server (AS),
who will be responsible for aggregating the data provided by the
repair servers. The following steps occur next:

1. Based on the information dispersal matrix M , the client gen-
erates a set of intermediate coefficients. These coefficients
are used to linearly combine the segments stored in the repair
servers in order to recover the corrupted segment. To avoid
leaking information about M , the intermediate coefficients are
masked using secret random values before being sent to the
repair servers.

2. Each repair server computes two partial segments based on its
stored segment and the masked coefficients sent by the client.
A partial segment is computed by multiplying the stored seg-
ment with a masked coefficient provided by the client.

3. The client restores AS’s code component1. Since the AS’s
code component has been restored, we assume the AS acts
honestly until the end of the Repair phase. The client sends
to the AS both the masked intermediate coefficients and the k
repair tags corresponding to the k repair servers.

4. Each repair server sends its two partial segments to the AS.

5. AS aggregates the partial segments, generating two intermedi-
ate segments. It verifies whether the intermediate segments are
correctly computed based on the repair tags sent by the client.
If the verification fails, it can further localize the faulty servers
based on these repair tags. Ultimately, two correctly computed
intermediate segments are sent back to the client.

6. The client uses the intermediate segments and some secret key
material to recover the corrupted segment.

The client has to restore the code component on one of the
servers (the AS) for a short period of time during the Repair phase.
Although this requirement is not present in HAIL’s Repair phase,
we argue it is reasonable because code restoration is already re-
quired for all the servers at the end of each epoch in both HAIL
and RDC-EC (see the adversarial model in Sec. 3).

1This can be achieved by removing the malware, and re-installing
a clean code component. See the adversarial model in Sec. 3.

We construct RDC-EC in three phases, Setup, Challenge, and
Repair. All the arithmetic operations are performed over the finite
fieldGF (2w). We use file_handle to identify the file to be encoded.

Setup: The client C runs sk ← KeyGen(1κ). C divides the file F
into k segments, b1, . . . ,bk , then executes:
1. Generate the information dispersal matrix M by running

M ← GenInformationDispersalMatrix(sk, k, n)

2. For k + 1 ≤ i ≤ n:
Generate the parity segment bi: (bi1, . . . ,bi`) ←
ComputeParityHAIL(sk,b1, . . . ,bk,M, i)

3. For 1 ≤ i ≤ n: Send segment bi to server Si for storage

4. Delete the file F and store only the secret key sk

Challenge: Similar with the challenge phase in HAIL: The client
cross-checks the n storage servers as described in [7].

Figure 1: The Setup and Challenge Phases of RDC-EC

KeyGen(1κ):
1. Choose 2n− k + 2 keys at random from {0, 1}κ:

K1,K2, . . . ,Kn,K′k+1, . . . ,K
′
n,Ka,Kb

2. Return (K1,K2, . . . ,Kn,K′k+1, . . . ,K
′
n,Ka,Kb)

GenInformationDispersalMatrix(sk, k, n):
1. Parse sk as (K1,K2, . . . ,Kn,K′k+1, . . . ,K

′
n,Ka,Kb)

2. For 1 ≤ i ≤ n
• For 1 ≤ j ≤ k: Mij = Kj

i (that is, Ki raised to power j)

3. TransformM into a matrix in which the first k rows form an iden-
tity matrix

4. Return M

ComputeParityHAIL(sk,b1, . . . ,bk,M, i):
1. Parse sk as (K1,K2, . . . ,Kn,K′k+1, . . . ,K

′
n,Ka,Kb)

2. For 1 ≤ j ≤ `:
bij =

∑k
α=1Miαbαj + gK′

i
(file_handle||i||j)

3. Return (bi1, . . . ,bi`)

Figure 3: Components of the RDC-EC scheme (1)

The RDC-EC scheme. The details of the RDC-EC scheme are pre-
sented in Figures 1 (Setup and Challenge) and 2 (Repair), whereas
Figures 3 and 4 contain components used in these phases.

The Setup phase. The client first generates keysK1,K2, . . . ,Kn,
K′k+1,K

′
k+2, . . . ,K

′
n at random2 and then an n × k information

dispersal matrix M by running GenInformationDispersalMatrix.
The client further computes n coded segments, in which the
first k coded segments are the original file segments, and the
remaining n − k coded segments are computed by running
ComputeParityHAIL. All the n coded segments are sent for stor-
age at n storage servers, one segment per server. The client may
now delete the original file F and only keep the key material.

In GenInformationDispersalMatrix, the client generates the in-
formation dispersal matrix M . It first computes an n × k Van-
dermonde matrix (as described in [10]), in which each element is
computed as Kj

i , where i is the row index (1 ≤ i ≤ n) and j is the
column index (1 ≤ j ≤ k). The client then transforms this matrix
into a matrix whose first k rows form the identity matrix.

In ComputeParityHAIL, the client computes a parity segment
with index i, where k + 1 ≤ i ≤ n, and embeds a MAC into
each symbol of this segment. The client uses the set of elements in

2Note that we can save storage by using a PRF and a master key to
generate all these keys on the fly when needed.

5



Repair: Assume during Challenge the client C has detected a corrupted segment by and has identified the corresponding faulty server Sy .

1. C generates a key K at random from {0, 1}κ. C sends K to each of the n servers.

2. Each of the n servers computes and sends back a repair tag:
For 1 ≤ i ≤ n: Si runs ti ← ComputeRepairTag(K,bi), and sends ti back to C

3. C verifies all the repair tags received from the n servers by running
(G, flag)← VerifyAllRepairTag(sk, t1, t2, . . . , tn,K,M, n, k). If flag = 0, exit (the file cannot be repaired, too many servers are faulty).

4. C chooses k different repair servers i1, . . . , ik , each of which is randomly picked from the healthy servers (i.e., excluding server Sy and the servers
in G which were found to have sent invalid repair tags). Note that i1, . . . , ik are in ascending order. C then computes the set of intermediate
coefficients zi1 , . . . , zik : (zi1 , . . . , zik )← GenRepairServerCoefficient(sk, y, k, n, i1, . . . , ik).

5. C generates k + 2 random numbers a, r, x1, . . . , xk by running (a, r, x1, . . . , xk) ← GenRandom(sk, y, i1, i2, . . . , ik), and masks
zi1 , . . . , zik : For 1 ≤ j ≤ k: Zij = azij + rxj

6. C sends to the repair servers the masked coefficients (Zi1 , Zi2 , . . . , Zik , x1, x2, . . . , xk)

7. Each of the k repair servers computes two partial segments:
For 1 ≤ j ≤ k:
(a) Sij computes a first partial segment b′ij = (b′ij1, . . . ,b

′
ij`

): For 1 ≤ α ≤ `: b′ijα = Zijbijα

(b) Sij computes a second partial segment b′′ij = (b′′ij1, . . . ,b
′′
ij`

): For 1 ≤ α ≤ `: b′′ijα = xjbijα

8. C randomly picks an Aggregation Server (AS) from the remaining n−k servers, and restores the code component atAS (i.e., theAS will behave
honestly up to the end of this epoch). C sends (Zi1 , Zi2 , . . . , Zik , x1, x2, . . . , xk, ti1 , ti2 , . . . , tik ,K) to the AS

9. Each of the k repair servers sends the computed partial segments to AS: For 1 ≤ j ≤ k: Sij sends b′ij and b′′ij to AS

10. AS aggregates the partial segments received from the k repair servers and generates two intermediate segments b′y and b′′y :

(a) AS computes the first intermediate segment b′y = (b′y1, . . . ,b
′
y`): For 1 ≤ α ≤ `: b′yα =

∑k
j=1 b

′
ijα

(b) AS computes the second intermediate segment b′′y = (b′′y1, . . . ,b
′′
y`): For 1 ≤ α ≤ `: b′′yα =

∑k
j=1 b

′′
ijα

11. AS computes the repair tags for the two intermediate segments by running t′ ← ComputeRepairTag(K,b′y) and t′′ ←
ComputeRepairTag(K,b′′y ), and checks the correctness of t′ and t′′:

(a) If t′ 6=
∑k
j=1 Zij tij , AS localizes the corrupted partial segments among b′i1 , b′i2 , . . . , b′ik by running G ←

VerifyPartialRepairTag(b′i1 ,b
′
i2
, . . . ,b′ik ,K, ti1 , ti2 , . . . , tik , Zi1 , Zi2 , . . . , Zik ). AS informs C to pick new repair servers to replace

the faulty repair servers in G

(b) Otherwise, if t′′ 6=
∑k
j=1 xjtj , AS localizes the corrupted partial segments among b′′i1 , b′′i2 , . . . , b′′ik by running G ←

VerifyPartialRepairTag(b′′i1 ,b
′′
i2
, . . . ,b′′ik ,K, ti1 , ti2 , . . . , tik , x1, x2, . . . , xk). AS informs C to pick new repair servers to replace the

faulty repair servers in G

(c) Otherwise, if t′ =
∑k
j=1 Zij tij and t′′ =

∑k
j=1 xjtj , AS sends b′y and b′′y back to C, and C uses them to restores by by running

(by1, . . . ,by`)← RepairOneSegment(sk,b′y ,b
′′
y , i1, . . . , ik, zi1, . . . , zik, y, a, r). C stores by at a new server S′.

Figure 2: The Repair Phase of RDC-EC

the i-th row of M to linearly combine the k original file segments,
generating the corresponding parity segment. Each symbol in this
parity segment is further converted into a MAC (for the k file sym-
bols used to generate this parity symbol) by adding to it a secret
random value, which is generated by applying PRF g keyed with
K′i over the concatenation of the unique file handle, the segment
index i, and the location j of this symbol in the parity segment.

The Repair phase. To repair one corrupted segment, the client first
generates a key K at random and sends it to the n servers. Each
server Si computes a repair tag by running ComputeRepairTag,
and sends back the repair tag ti, where 1 ≤ i ≤ n. The client veri-
fies the n repair tags t1, t2, . . . , tn by running VerifyAllRepairTag.
If VerifyAllRepairTag returns successfully, the client picks k repair
servers, excluding the servers being found corrupted in either the
Challenge phase or the aforementioned repair tag verification. It
then runs GenRepairServerCoefficient to generate a set of indices
i1, . . . , ik and a set of intermediate coefficients zi1 , . . . , zik . The
indices i1, . . . , ik will be used to identify the k repair servers which
will provide data for repairing the corrupted segment. The interme-
diate coefficients zi1 , . . . , zik will be used to linearly aggregate the
segments stored in the repair servers to restore the corrupted seg-
ment. To prevent the intermediate coefficients from being leaked
to the untrusted servers, the client masks each of the intermediate

coefficients in the following way: Zij = azij + rxj , in which a,
r, xj (where 1 ≤ j ≤ k) are random values generated by running
GenRandom. It then sends the masked coefficients Zi1 , . . . , Zik
and x1, . . . , xk to the k repair servers. Each repair server Sij com-
putes two partial segments based on the stored segment bij and the
corresponding masked coefficients Zij and xj , where 1 ≤ j ≤ k.

Meanwhile, the client picks an Aggregation Server (AS) ran-
domly from the remaining n− k servers. It restores the code com-
ponent at the AS and discloses to the AS the values Zi1 , . . . , Zik ,
x1, . . . , xk, ti1 , ti2 , . . . , tik and K. Each repair server then sends
the computed partial segments to the AS and the AS aggregates
the partial segments, generating two intermediate segments b′y and
b′′y . AS further computes the repair tags t′ and t′′ for the inter-
mediate segments by running ComputeRepairTag, and verifies the
correctness of t′ and t′′ using ti1 , ti2 , . . . , tik . If the verification
succeeds, the AS will send back b′y and b′′y to the client. Other-
wise, it runs VerifyPartialRepairTag to localize the faulty repair
servers, and informs the client to pick new repair servers to replace
the faulty repair servers. After receiving b′y and b′′y , the client calls
RepairOneSegment to restore the corrupted segment.

In ComputeRepairTag, to generate the repair tag for segment bi
based on key K, we first generate ` random numbers and then use
these numbers to linearly aggregate all the symbols in bi.
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ComputeRepairTag(K,bi):

1. Return t =
∑`
j=1(gK(file_handle||j))bij

VerifyAllRepairTag(sk, t1, t2, . . . , tn,K,M, n, k):
1. Parse sk as (K1,K2, . . . ,Kn,K′k+1, . . . ,K

′
n,Ka,Kb)

2. G← ∅ (this is the set of servers that have sent invalid repair tags)

3. For k + 1 ≤ i ≤ n:
t′i = ti −

∑`
j=1 gK(file_handle||j)gK′

i
(file_handle||i||j)

4. Decode (t1, t2, . . . , tk, t
′
k+1, . . . , t

′
n) using the decoding al-

gorithm of Reed-Solomon codes to obtain message m =
(m1,m2, . . . ,mk)

5. If the decoding algorithm fails, return (G, 0)

6. Otherwise, use M to encode (m1,m2, . . . ,mk), and generate
the parity (mk+1,mk+2, . . . ,mn)

7. If none of mk+1,mk+2, . . . ,mn matches t′k+1, . . . , t
′
n, return

(G, 0)

8. For 1 ≤ i ≤ k: if mi 6= ti, G = {i} ∪G

9. For k + 1 ≤ i ≤ n: if mi 6= t′i, G = {i} ∪G

10. Return (G, 1)

GenRepairServerCoefficient(sk, y, k, n, i1, . . . , ik):
1. Re-generate the information dispersal matrix M by

running M ← GenInformationDispersalMatrix(sk, k, n)

(a) For 1 ≤ j ≤ k: For 1 ≤ α ≤ k: Ajα =Mijα

(b) Compute matrix B as the inverse of A: B = A−1

2. If y 6∈ {1, . . . , k}:
• C =My ×B /*My is a vector in the y-th row of M*/
• For 1 ≤ j ≤ k: zij = C1j

3. Otherwise:
• For 1 ≤ j ≤ k: zij = Byj

4. Return (zi1 , . . . , zik )

GenRandom(sk, y, i1, i2, . . . , ik):
1. Parse sk as (K1,K2, . . . ,Kn,K′k+1, . . . ,K

′
n,Ka,Kb)

2. a = gKa (file_handle||y||i1||i2|| . . . ||ik||1)

3. r = gKa (file_handle||y||i1||i2|| . . . ||ik||2)

4. For 1 ≤ j ≤ k: xj = gKb
(file_handle||y||i1||i2|| . . . ||ik||j)

5. Return (a, r, x1, . . . , xk)

VerifyPartialRepairTag(bi1 ,bi2 , . . . ,bik ,K, ti1 , ti2 , . . . , tik ,
x1, x2, . . . , xk):
1. G← ∅

2. For 1 ≤ j ≤ k:
If xjtij 6=

∑`
α=1(gK(file_handle||α))bijα, G = G ∪ {ij}

3. Return G

RepairOneSegment(sk,b′y ,b
′′
y , i1, . . . , ik, zi1 , . . . , zik , y, a, r):

1. Parse sk as (K1,K2, . . . ,Kn,K′k+1, . . . ,K
′
n,Ka,Kb)

2. If y ∈ {1, . . . , k}:
• For 1 ≤ j ≤ `:
byj = a−1(b′yj−rb′′yj)−zikgK′

ik

(file_handle||ik||j)

3. Otherwise:
• For 1 ≤ j ≤ `:
byj = a−1(b′yj − rb′′yj) + gK′

y
(file_handle||y||j)

4. Return (by1, . . . ,by`)

Figure 4: Components of the RDC-EC scheme (2)

In VerifyAllRepairTag, the client verifies the n repair tags sent
back by the n servers based on the secret keys. The client can also
localize the corrupted repair tags.

In GenRepairServerCoefficient, the client generates a set of in-
termediate coefficients, which will be used by the k repair servers
to linearly combine their stored segments in order to restore the
corrupted segment by . The intermediate coefficients are generated
as follows: the client first constructs a k × k square matrix A, in
which the elements in the j-th row are copied from the ij-th row
of the information dispersal matrix M , where 1 ≤ j ≤ k. The
client then computes B as the inverse of A. If by is a file segment,
then the set of intermediate coefficients will be the set of elements
in the y-th row of B. If by is a parity segment, then the set of in-
termediate coefficients will be the set of elements in the first row of
My×B, where My is a 1×k matrix formed by the elements from
the y-th row of M .

In GenRandom, the client generates the random numbers used
to mask the intermediate coefficients. To repair the same segment
by using the same set of k other segments, the client will use the
same set of the random numbers when masking the coefficients.

In VerifyPartialRepairTag, the AS relies on the repair tags
ti1 , ti2 , . . . , tik to localize the corrupted partial segments, which
is feasible because: 1) the client has verified the correctness of
ti1 , ti2 , . . . , tik , and 2) the repair tag for a partial segment can be
derived from the repair tag of the corresponding stored segment.
For example, if tij is the repair tag for the stored segment bij , then
xtij will be the repair tag for its partial segment xbij , considering
both repair tags are generated based on the same key.

In RepairOneSegment, the client uses intermediate segments b′y
and b′′y (received from the servers) to repair corrupted segment by .

4.3 Security Analysis for RDC-EC

A unique attack on erasure coding-based storage systems. By
knowing the information dispersal matrixM , an adversary can suc-
cessfully corrupt an erasure coding-based distributed storage sys-
tem without being detected. The attack can be performed as fol-
lows: 1) re-compute the parity by applyingM over the original file;
2) compute the secret random numbers embedded into the stored
parity by using the stored parity to subtract the parity computed in
step 1); 3) replace the original file with a bogus file (with the same
size), and apply M over the bogus file, generating the forged par-
ity; 4) embed the secret random numbers into the forged parity, and
re-use the server codes as well as the parity for the server codes; 5)
upon Challenge, the adversary answers a challenge request relying
on the bogus file and the forged parity, and can pass the verification
without being detected.

Our RDC-EC scheme can defend against the aforementioned at-
tack, since the adversary cannot learn the information dispersal ma-
trix (Theorem 4.1). In addition, RDC-EC can ensure data recover-
ability over time under an adversarial setting (Theorem 4.2). Due
to space limitations, proofs are provided in [10].

THEOREM 4.1. In RDC-EC, the probability that the adversary
can learn the information dispersal matrix M is negligibly small.

THEOREM 4.2. RDC-EC can ensure data recoverability over
time under an adversarial setting.

5. Related Work
RDC for the single-server setting. Early remote data checking
(RDC) protocols (PDP [4] and PoR [24, 27]) were designed for
static data. Later, RDC protocols were designed to allow efficient
updates on the outsourced data [5, 20, 32, 29, 36, 12, 11, 35, 28,
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30]. Recently, several RDC schemes have been designed for ver-
sion control systems [21, 14].

RDC for distributed setting. In a distributed RDC, the outsourced
data is stored redundantly across multiple servers to achieve a
certain reliability level. Distributed RDC protocols include MR-
PDP [16], HAIL [7], WWRL [31], RDC-NC [15]. MR-PDP seeks
to audit data that is replicated. Like RDC-EC, both HAIL and
WWRL are built for erasure coding-based distributed storage sys-
tems. However, HAIL is expensive in Repair, because it requires to
retrieve all the outsourced data in order to repair a single segment.
WWRL is vulnerable to a mobile and Byzantine adversary, because
it does not incorporate techniques to address small corruptions, and
it only repairs the symbols in a segment being found corrupted dur-
ing Challenge (spot checking-based). This will lead to a situation
that un-checked corrupted symbols remain corrupt at the end of an
epoch, and a mobile and Byzantine adversary can possibly corrupt
the whole storage system by making a stripe (i.e., the unit of an
erasure code) unrecoverable in the following epochs.

New paradigms for RDC. Recently, RDC was applied in several
other areas: (a) server-side repair [13], in which a data owner is able
to outsource both the data and the management of the data, and
thus can remain lightweight during both the challenge and repair
phases; (b) proofs of fault tolerance [8], in which a data owner
can obtain a proof that the outsourced file is distributed across an
expected number of physical storage devices in a single datacenter;
and (c) proofs of location (PoL) [6, 33, 22], in which a data owner is
offered a guarantee that multiple replicas are stored in data centers
located in different or specific geographic locations.

6. Conclusion
We have proposed RDC-EC, an RDC scheme for erasure coding-

based distributed storage systems, which functions under an adver-
sarial setting. Unlike previous schemes for this setting, RDC-EC
achieves an efficient Repair phase by leveraging server-side repair
to shift the burden from the data owner to the storage servers. In the
future, we plan to explore mechanisms that can repair multiple data
segments more efficiently, and to reduce some of the assumptions
related to restoration of the code component at the storage servers.
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