
MobiCeal: Towards Secure and Practical Plausibly
Deniable Encryption on Mobile Devices

Bing Chang∗, Fengwei Zhang†, Bo Chen‡, Yingjiu Li∗, Wen-Tao Zhu§, Yangguang Tian∗,
Zhan Wang¶ and Albert Ching‖

∗School of Information Systems, Singapore Management University, {bingchang, yjli, ygtian}@smu.edu.sg
†Department of Computer Science, Wayne State University, fengwei@wayne.edu

‡Department of Computer Science, Michigan Technological University, bchen@mtu.edu
§Data Assurance and Communications Security Research Center, Chinese Academy of Sciences, wtzhu@ieee.org

¶RealTime Invent, Inc. ‖i-Sprint Innovations

Abstract—We introduce MobiCeal, the first practical Plausibly
Deniable Encryption (PDE) system for mobile devices that can
defend against strong coercive multi-snapshot adversaries, who
may examine the storage medium of a user’s mobile device at
different points of time and force the user to decrypt data.
MobiCeal relies on “dummy write” to obfuscate the differences
between multiple snapshots of storage medium due to existence
of hidden data. By incorporating PDE in block layer, MobiCeal
supports a broad deployment of any block-based file systems on
mobile devices. More importantly, MobiCeal is secure against
side channel attacks which pose a serious threat to existing PDE
schemes. A proof of concept implementation of MobiCeal is pro-
vided on an LG Nexus 4 Android phone using Android 4.2.2. It
is shown that the performance of MobiCeal is significantly better
than prior PDE systems against multi-snapshot adversaries.

Index Terms—Plausibly Deniable Encryption, Mobile Security,
Multi-snapshot Adversary, Side Channel Attack, Fast Switching

I. INTRODUCTION

Mobile devices play an increasingly important role in our

daily life and are prevalently used for processing sensitive

information (e.g., by professional journalists or human rights

workers). However, traditional encryption does not work in

certain situations where the device owner is captured by an

adversary and is coerced to disclose the key for decrypting

the sensitive information on the device. To defend against

such adversaries, various plausibly deniable encryption (PDE)

systems have been proposed recently [2], [15], [21], [32],

[33], [34], [27]. The existing PDE systems for mobile devices

(e.g., [21], [34], [35], [43], [27], [20]) work correctly under

the assumption that an adversary examines the storage medium

once only on a user’s device. However, they may not work

if an adversary can take multiple snapshots of the storage

medium at different points of time. In practice, such multi-

snapshot attacks have been reported and thus posed realistic

threats to users. For example, the Guardian [37] and the NBC

News [30] have reported that US border agents not only

demand travelers that they hand over their phones and their

passwords, but also make full copies of all of the data on

the phones, without any warrant or even suspicion. Another

example is that an independent journalist was reported to have

all of his computers, mobile phones and camera flash drives

searched and copied when he was crossing a border, and he

was inspected for seven times during five years [26].

The existing PDE systems on mobile devices [21], [34],

[35], [43], [27], [20] are not resilient against such multi-

snapshot attacks since they hide sensitive data in the ran-

domness initially filled across the entire disk. By comparing

storage snapshots at different points of time, a multi-snapshot

adversary may detect any unaccountable changes to the ran-

domness. Another drawback of these PDE systems is that users

are required to reboot their mobile devices before using PDE

functions. In emergency, users may miss the best moments

since the rebooting process is usually time consuming.

It is challenging to design a secure and practical PDE

scheme for mobile devices. All existing PDE systems that

can defend against multi-snapshot adversaries [15], [19], [32],

[33] are not suitable for mainstream mobile devices due to the

following challenges.

1) The PDE scheme should be resistant to strong multi-

snapshot adversaries on resources-limited mobile devices,

making it unsuitable to transplant existing approaches avail-

able for desktop computers, e.g., HIVE [15] and DataLair [19],

to mobile devices. Both HIVE and DataLair rely on a special

“write-only oblivious RAM” to obfuscate all write access to

the storage medium, such that no multi-snapshot adversary

can identify any unaccountable changes to the storage medium

at different points of time. Unfortunately, oblivious RAM is

known for its poor I/O performance which is not suitable

for the resources-limited mobile devices. HIVE/DataLair is

designed with the assumption that an adversary can obtain

snapshots after every single write operation is performed on

the disk, so it needs complicated mechanisms to defend against

such a strong adversary. We consider a more practical “on-

event” adversary who can obtain multiple snapshots after

the user is prepared (e.g., at border checkpoint). This more

realistic adversarial model enables us to design a lightweight

PDE scheme that is suitable for mobile devices.

2) The PDE scheme should be free from side channel
attacks [23] which pose a serious threat to security of existing

PDE schemes. Both HIVE [15] and DEFY [33] are subject

to side channel attacks [23]. The major reason is that they do

not isolate hidden data from public data sufficiently, so the

454

2018 48th Annual IEEE/IFIP International Conference on Dependable Systems and Networks

2158-3927/18/$31.00 Â©2018 IEEE
DOI 10.1109/DSN.2018.00054

information of the hidden data may be recorded in the public

data. As a result, a multi-snapshot adversary may easily learn

the existence of hidden data by analyzing the public data.

3) The PDE scheme should be fit for mainstream mobile

devices, benefiting the deniability and large-scale deploy-
ments. DEFY [33] is specifically designed for mobile devices

against multi-snapshot adversaries. However, DEFY heavily

relies on the special properties provided by flash file system

YAFFS [40]. DEFY is not immediately applicable to other

flash file systems such as JFFS, UBIFS, and F2FS due to

its strong coupling with YAFFS. In addition, a flash file

system usually requires direct access to raw NAND flash,

which is rarely supported in mainstream mobile devices since

they usually use NAND flash as block devices through flash

translation layer (FTL). Steganographic file system [32] is

originally designed for desktop computers to defend against

multi-snapshot adversaries. However, it heavily relies on the

legacy Linux kernel and specific APIs for handling hidden

files, and is thus not applicable to modern mobile devices.

4) The usability of the PDE scheme should be well treated,

so that users can easily deal with sensitive data. Some existing

designs [15], [33] do not provide details about how to use

the system appropriately, but a wrong operation may lead to

severe information leakage. Other designs [34], [21] require

users to reboot their devices so as to switch between public

mode (i.e., a mode in which the user can process public non-

sensitive data) and hidden mode (i.e., a mode in which the

user can process hidden sensitive data). The rebooting process

is usually time-consuming and may thus lead to missing the

best timing of collecting sensitive data.

These challenges motivate us to design MobiCeal, the

first secure and practical PDE system on mainstream mo-

bile devices that can defend against coercive multi-snapshot

adversaries. MobiCeal relies on several key insights. First,

we devise a “dummy write” mechanism to defend against

multi-snapshot attacks. With dummy writes, any changes to

the hidden data become accountable for the denial of the

existence of hidden data in the presence of multi-snapshot

adversaries. Second, MobiCeal is designed to be secure against

side channel attacks [23]. The public data and the hidden data

are strictly isolated in the system, eliminating the possibility of

information leakage. Third, we decouple our design from both

upper layers (e.g., file systems) and lower layers (e.g., storage

media) to make it file system friendly and fit for mainstream

mobile devices. Last, to improve usability of MobiCeal, we

add a support for fast switching to help users switch from

public mode to hidden mode. Prior PDE systems [21], [34]

require users to reboot their devices to switch modes, which

may take more than one minute in practice. The switching time

in MobiCeal is less than 10 seconds, which is made possible by

restarting Android framework instead of rebooting the device.

Contributions. The major contributions of this paper are two-

fold. First, we design the first secure PDE system for mobile

devices against multiple snapshot adversaries. A formal proof

shows that MobiCeal provides reliable deniability against

multi-snapshot adversaries. MobiCeal is also shown to be free

from side channel attacks, which pose a serious threat to many

other PDE systems.

Second, MobiCeal is practical to be implemented on main-

stream mobile devices. MobiCeal is built into the block layer

of Linux kernel such that any block file systems can be de-

ployed on top of it. MobiCeal relies on a lightweight “dummy

write” mechanism to defend against the multi-snapshot adver-

sary, which introduces an acceptable performance overhead,

making it suitable for resources-limited mobile devices. In

addition, MobiCeal is easy to use, and supports fast switching

from its public mode to hidden mode.

A proof-of-concept implementation of MobiCeal is provided

on an LG Nexus 4 Android phone using Android 4.2.2, and

an availability test is conducted on a Huawei Nexus 6P phone

using Android 7.1.2. Compared to the default Android full disk

encryption, MobiCeal introduces approximately 18% overhead

which is much smaller than that of typical prior PDE systems

secure against multi-snapshot adversaries.

II. BACKGROUND

A. Full Disk Encryption

A full disk encryption (FDE) system encrypts the entire

disk with a key to prevent unauthorized access to the data.

FDE is usually transparent to the upper layer as the data are

automatically encrypted or decrypted upon being written or

read. BitLocker [1] and FileVault [12] are two popular FDE

tools. FDE has been available on Android to encrypt userdata

partition since version 3.0 [4]. Android FDE is based on dm-
crypt [16], a Linux kernel module working in the block device

layer. In Android, the block devices (e.g., an eMMC card [9]

that is presented to the kernel as a block device) can be

encrypted by dm-crypt which creates an additional layer of

“encrypted block device” over the original block device.

To enable Android FDE, a user should choose a secret

password first. Android uses a randomly generated master

key to encrypt the entire disk using dm-crypt, and the master

key is encrypted with a key derived from the password using

PBKDF2 [14]. Note that PBKDF2 also needs a salt which is

randomly generated. The encrypted master key and the salt are

stored in the encryption footer that is located in the last 16KB

of the userdata partition. When Android boots and detects that

the userdata partition is encrypted, it asks for a password.

After having obtained the password, it derives a key from the

password using PBKDF2 with the salt read from the encryption

footer. It then decrypts the master key and passes the master

key to dm-crypt, who can then decrypt the entire disk.

B. Plausibly Deniable Encryption

Canetti et al. [17] initially explored plausibly deniable

encryption (PDE) to protect the confidentiality of messages

transmitted over networks against a coercive attacker. When

being applied to storage domain, there are two main types

of PDE techniques: hidden volumes [2], [34], [21], [15] and

steganographic file systems [13], [29], [32].

455

��� ��� ���

��

��� ���	
�����
�
���

����
�
���

���������

��� ��� ���

Fig. 1. LVM and thin provisioning architecture.

The hidden volume technique works as follows: There

are two encrypted volumes on the disk, a public volume and

a hidden volume. The public volume is encrypted by a decoy

key and the hidden volume is encrypted by a hidden key, both

using full disk encryption. The public volume is placed on the

entire disk and the hidden volume is usually placed from a

secret offset towards the end of the disk. Note that initially

the entire disk is filled with random data and the data written

to the public volume should be placed sequentially from the

beginning of the disk so as to avoid over-writing the hidden

volume. When a user is coerced to reveal the encryption key,

he/she can disclose the decoy key. If the attacker is unable

to confirm the existence of the encrypted hidden volume, the

existence of the hidden data can be denied. This mechanism

works when the attacker can only access the disk once, e.g.,

obtaining the disk after having seized the user. However, it is

problematic if the attacker periodically obtains snapshots of

the disk, because the attacker can detect changes in the “free”

space of the public volume by comparing snapshots taken at

different time, and suspect existence of hidden data [23].

The other type of PDE technique is based on stegano-
graphic file systems whose idea is to hide sensitive data

among regular file data. This can be achieved by introducing

a large number of cover files [13] or hiding the data into

abandoned/dummy file blocks [29], [32]. The main concern

of the steganographic file system is to avoid over-writing the

hidden sensitive data, which requires creating a large amount

of redundancy, leading to inefficient use of disk space.

C. LVM and Thin Provisioning

Logical volume manager (LVM) [28] is a userspace toolset

that provides logical volume management capabilities on

Linux. LVM is a device mapper [11] target which becomes

a component of the Linux kernel since version 2.6. LVM

creates a layer of abstraction over physical storage, allowing

users to create logical storage volumes. LVM introduces three

concepts: physical volumes (PV), volume groups (VG), and

logical volumes (LV). The underlying physical storage, such

as a partition or the entire disk, can be initialized as a physical

volume. Physical volumes are combined into volume groups.

A volume group can be divided into logical volumes. In

Android, LVM has gained popularity for flexibly handling

internal and external storage [38], [24].

Thin provisioning [39] has become a feature in the Linux

kernel since version 3.2. Thin provisioning is different from

the conventional provisioning known as “thick provisioning”.

In thick provisioning, storage administrators usually need to

plan ahead, and install more storage capacity than required to

avoid any potential failures caused by inadequate storage. In

thin provisioning, only the logical storage space is allocated to

a volume and the physical storage capacity is not released until

it is actually required. This “on-demand” storage eliminates

the need of installing unnecessary storage media.

The volumes provided by thin provisioning are called “thin

volumes” (TV). Two logical volumes are needed when using

thin provisioning: one for data device and the other for

metadata device. The data device contains data blocks of

the thin volumes while the metadata device contains the free

space bitmap and the block mappings for the thin volumes.

Two device mapper targets are provided by the dm-thin-pool
module, thin-pool and thin. The metadata device and the data

device are mapped to a pool device by the thin-pool target,

while the thin target maps this pool device to multiple thin

volumes (See Fig. 1). On top of a thin volume, a block-based

file system can be deployed or an encrypted block device can

be created using dm-crypt.

III. MODEL AND ASSUMPTIONS

A. Adversarial Model and Assumptions

We consider a computationally bounded adversary who can

take snapshot of the block device storage (e.g., eMMC card,

SD card, which are usually exposed as block devices using

flash translation layer) of a mobile device at different points

of time [23], [15], [32], [33]. For example, when the device

owner enters/exits a guarded facility or crosses border, the

observer takes a snapshot of the mobile device storage and tries

to compromise deniability by analyzing the snapshots. The

adversary can have full knowledge of MobiCeal’s design, but

should not know the hidden password or the encryption key of

the hidden volume. The adversary can obtain root privilege of

the device and can access both the internal and external storage

each time when capturing it. In addition, it can coerce the

device owner to reveal the passwords/encryption keys, in order

to decrypt the device to obtain sensitive data. Furthermore, the

adversary can use any password cracking programs, perform

advanced computer forensics on the disk image, or correlate

different snapshots to compromise deniability.

Similar to all the prior PDE systems for mobile devices [21],

[33], [43], our design also relies on the following assump-

tions: The adversary is assumed to be not able to capture

the device owner when he/she is working with the hidden

volume. Otherwise, the sensitive hidden data will be trivially

disclosed. We also assume that the adversary will not continue

coercing the device owner once being convinced that the

passwords or encryption keys have been revealed. The user

should refrain from revealing the hidden passwords/hidden

keys as disclosing hidden sensitive data will create life threat

to him/her. Furthermore, MobiCeal needs to be merged with

Android code stream, so that its availability itself is not a

456

red flag [21], [34], [35], [43], [20]. The mobile OS, kernel,

bootloader, firmware, and the baseband OS are malware-free,

and the user does not use any malicious apps that collect

information of the hidden volume or the hidden password.

B. Notations

We assume that there exists a sequence of independent

volumes {Vi}, i ∈ [1,max] on a hard disk, where max
denotes the maximal number of volumes. To store information

into public or hidden volumes, each user needs to choose a set

of passwords {Pi} which in turn serves as encryption keys.

Each volume Vi has a unique password Pi, and each volume

has at most ni ∈ N blocks of data, where N denotes the

number of blocks. Note that we allow users to choose a secret
number of volumes l ∈ max. A volume encryption scheme

consists of the following Setup, Read and Write operations

on the disk.

• Setup. It takes (λ, t,P,B, [n1, · · · , nl]) as input and

outputs a sequence of volumes {V1, · · · , Vl, · · · ,Vmax}.
Note that λ denotes the security parameter, t denotes the

number of available blocks, and B denotes the block size.

• Read. It takes (b, i,P) as input, returns data d in block

b of volume Vi if i ≤ l. Note that Vi is the output of

Setup(λ,P).

• Write. It takes (b, d, i,P) as input, stores data d in block

b of volume Vi if i ≤ l. Note that Vi is the output of

Setup(λ,P).

C. Security Model

Informally, a coercive multi-snapshot adversary A attempts

to obtain any stored data from a hard disk that employs a

hybrid 1 volume system. We then formally define a multi-

snapshot security game between a Probabilistic Polynomial-

Time (PPT) adversary A and a simulator S as follows.

• Setup. Upon receiving a required volume number l ∈
max from A, S first chooses a set of passwords {Pi} ∈
{0, 1}|λ|, where i ∈ [1, · · · , l]. Second, S initializes a

set of public volume {Vw} that associates with a set of

passwords {Pw} (w ∈ [1, · · · , k], k ≤ max − l). Third,

S generates two independent hybrid volume encryption

schemes Σ0 and Σ1 with respect to two sets of passwords

with size l and l−1 respectively. Eventually, S sends two

sets of passwords {Pw} and {P1, · · · Pl−1}, and an initial

snapshot D0 of the disk to A. S also tosses a random

coin b which will be used later in the game. Note that

the initial snapshot D0 is taking on two sets of volumes

{V1, · · · ,Vw}, {V1, · · · ,Vl}.
• Training. A chooses two access patterns (O0,i,O1,i) and

a value di, and sends them to S. Note that the value di
specifies whether A would like a snapshot of the disk

after execution i. S “executes” one of access patterns

based on bit b, and sends a snapshot Di of the disk to A
if di = 1; Otherwise, proceed to next execution.

1“Hybrid” means that a disk may consist of public and hidden volumes.

A ← Di ←
{

ExecuteΣ1
(O1,i) b = 1

ExecuteΣ0(O0,i) b = 0

Note that Oj,i denotes the access pattern j ∈ [0, 1]
of execution i ∈ [1, poly(λ)]. We allow A to obtain

snapshots with on-event frequency2, and we specify the

restrictions of access patterns (e.g.,O0 = [o0,1, · · · , oi,n])
as follows.

– If access o0,i is a Read/Write in volume Vj , j ∈
[0, l − 1], then access o1,i in pattern O1 must be

equal to o0,i;
– If access o0,i contains a Read/Write in volume

Vj , j ∈ [0, l], then at least one public volume Vw
is randomly refreshed after each execution i;

– If access o0,i indeed contains a Read/Write in

volume Vl, then operations can be plausibly applied

to one of public volumes {V1, · · · Vw}.
• Guess. A outputs bit b′. If b′ = b, then S outputs 1;

Otherwise, S outputs 0.

We define the advantage of A in the above game as

AdvA(λ) = |Pr[S → 1]− 1/2|.
Definition III.1. We say a hybrid volume encryption scheme
Σ has multi-snapshot security if for any PPT A, AdvA(λ) is
a negligible function of the security parameter λ.

IV. MOBICEAL DESIGN

A. Design Overview

The existing hidden volume-based PDE systems for mobile

devices [21], [34], [35], [43], [20], [27] cannot defend against

a multi-snapshot adversary. This is because, they hide sensitive

data among randomness being filled initially across the disk.

However, by comparing snapshots being captured at different

points of time, the multi-snapshot adversary can easily detect

changes over randomness which were not supposed to happen,

and may suspect existence of hidden data. A fundamental

limitation of the hidden volume-based approach is that, the

randomness is filled one time initially (i.e., static), which

is definitely not able to defend against the multi-snapshot

adversary, who is “dynamic”.

To defend against such a dynamic attacker, the intuition

is to also make the defense dynamic. A few existing PDE

schemes followed this idea by incorporating ORAM [15],

[19], in which each single write is turned to be oblivious to

the adversary. All those attempts, however, are problematic,

due to the following reasons. First, ORAM is prohibitively

expensive in terms of both computation and I/O [15], making

it unsuitable for mobile devices that are equipped with limited

resources. Second, we found all those ORAM-based PDEs
rely on an assumption that protecting every access pattern is

2Adversary is allowed to have plausible hidden access pattern choice
with on-event frequency snapshots in our proposed multi-snapshot security
model for hybrid volume encryption schemes. Please refer to [15] for detailed
description of these settings.

457

necessary for mitigating a multi-snapshot adversary. ORAM

was originally designed to hide access pattern over data being

outsourced to an untrusted third party (e.g., a cloud provider).

In this setting, the cloud provider is able to constantly monitor

access of the data (i.e., highly dynamic) due to its full control

over the data during the lifetime. In a mobile device setting

however, the adversary does not have a full control over the

victim’s mobile device during its lifetime, and is thus not

able to constantly monitor each access (i.e., less dynamic).

Therefore, we believe that hiding every access is unnecessary

for mobile devices and the ORAM-based approach is overkill

for the less dynamic attacker in the mobile device setting.

Another PDE system for mobile devices, DEFY [33], was

designed for a less dynamic attacker, but it strongly relies on

the system properties provided by a specific flash file system,

and is shown to be vulnerable to deniability compromise [27].

To achieve deniability against a less dynamic attacker with-

out relying on the expensive ORAM [15], [19] or specific

system properties [33], we propose a dummy-write approach.

Specifically, each time when writing public non-sensitive data,

the system will perform a few additional artificial writes of

randomness. In this way, although the adversary can obtain

multiple snapshots, uncountable changes (i.e., caused by s-

toring the hidden data) observed by the adversary through

comparing snapshots can be denied as being caused by the

dummy writes. Note that the hidden sensitive data should

be encrypted using a secret key, such that without having

access to the secret key, the encrypted hidden data should be

indistinguishable from the randomness created by the dummy

writes. A few questions still need to be answered.

1) How many dummy writes should be performed for each
public write?

For a good obfuscation, the number of dummy writes being

performed each time should vary. In our design, the number

of dummy writes follows exponential distribution. We choose

exponential distribution, since it can ensure that the number

of dummy writes varies in a wide range and, meanwhile, the

probability of generating a large number of dummy writes

each time can be controlled as small to avoid inefficient I/O

performance and disk utilization.

2) How to generate the data for each dummy write?
The dummy data are used to deny the existence of encrypted

hidden sensitive data. Therefore, without having access to

the decryption key, the adversary should not be able to

differentiate the encrypted hidden data from the dummy data.

To achieve this, the dummy data can be created using the

same encryption algorithm (as the hidden data) with random

input and random keys, and the corresponding key should be

discarded after each encryption.

3) How can the system prevent the public data from over-
writing the hidden data?

As the public mode has no knowledge on the existence of

the hidden data, it may easily cause overwrites to them. We

need a technique to ensure that newly written public data

will not over-write the existing hidden sensitive data. The

hidden-volume technique (Sec. II-B) addresses the over-write

issue by placing the hidden volume to the end of the disk.

However, such a technique is only suitable for file systems

that perform writes sequentially on the storage media (e.g.,

FAT32) and over-writes are still possible when the disk is

heavily used. Steganographic file systems (Sec. II-B) address

this issue by utilizing the global bitmap in the file system to

separate the hidden data from the public data. This, however,

requires extensive modifications of the large code base of the

file system being used, which contradicts our “file system

friendly” design principle.

To resolve the over-write issue, we borrow the “global

bitmap” idea of the steganographic file system, but move

it to the block layer. The global bitmap will keep track of

blocks being used by all the public, dummy, and hidden data.

Therefore, when hidden data are written, the corresponding

blocks in the bitmap will be marked as “allocated”, and will

not be used by public/dummy data. This will not lead to

deniability compromise, since the bitmap information for the

hidden data can be denied as for the dummy data.

4) What other attacks the design is still vulnerable to?
The current design is fine if the system always writes a

small amount of hidden data occasionally. However, if the

system writes a large hidden file, the adversary may observe

from the snapshot that the public data are followed by a large

amount of randomness3, and may suspect existence of hidden

sensitive information, compromising deniability. To avoid this

deniability compromise, all the data (including public, dummy,

and hidden data) should be written to random locations across

the disk. Following the aforementioned ideas, we design a

basic MobiCeal scheme which can defend against a multi-

snapshot adversary (Sec. IV-B). We also extend the basic

MobiCeal to support multiple levels of deniability (Sec. IV-

C). In addition, we describe additional design considerations

of MobiCeal (Sec. IV-D).

B. A Basic MobiCeal Scheme

We first introduce three types of virtual volumes:

(a) Public volume. A public volume is used for daily oper-

ations which provides storage encryption without deniability.

The user can enter the decoy password during booting in order

to use the public volume. The public volume is encrypted

using a decoy key via FDE (Sec. II-A). The decoy key can be

computed using the decoy password. When the user is coerced,

he/she can simply disclose the decoy password, protecting the

hidden sensitive data.

(b) Hidden volume. A hidden volume is used when the

user needs to store sensitive data, whose existence needs to

be denied when the user is coerced. The hidden volume is

encrypted using a hidden key via FDE. The hidden key can

be computed using the hidden password. The user can enter

the hidden password during booting to use the hidden volume.

(c) Dummy volume. A dummy volume only stores data created

by dummy writes. The purpose of the dummy volume is

3Writes performed by a file system (e.g., FAT and Ext4) usually exhibit a
certain level of spatial locality.

458

to obfuscate the existence of the hidden volume. Without

having access to the hidden key, the adversary is not able to

differentiate whether a volume (which is not a public volume)

is a hidden volume or a dummy volume. In this way, the user

can deny the existence of the hidden volume by interpreting

it as a dummy volume.

To ensure that a multi-snapshot adversary cannot distinguish

the hidden volume from the dummy volume, we introduce

the dummy write mechanism and the random allocation s-

trategy. Note that the system keeps the metadata (e.g., the

global bitmap, the mappings of each virtual volume and the

corresponding blocks) in a known location and the adversary

can have access to them. This will not compromise deniability,

since the metadata for the hidden volume can be interpreted

as that for the dummy volume.

Dummy Write. We use a dummy write mechanism to ob-

fuscate writes to the hidden volume. When a data block is

allocated to the public volume to store data (i.e., a public

write is issued), a dummy write will be performed with a

certain probability. To prevent the adversary from learning the

pattern of dummy writes, the dummy write will be performed

if and only if the following condition satisfies:

rand ≤ stored rand mod x.

Here, x is a positive integer constant (e.g., we can fix x as

50 when initializing the system). stored rand is a random

number which is periodically updated (e.g., daily). To obtain

a new value of stored rand, we can utilize pseudorandom

number generator, or a more secure way is to extract it from

the random noise present in mobile device hardware [41].

rand is an integer chosen uniformly at random from 1 to

2 ·x upon each dummy write, to ensure that the probability of

performing dummy write will be always under 50%.

When a dummy write is performed, m free blocks will be

allocated and the corresponding blocks should be marked as

“allocated” in the global bitmap. These blocks will be filled

with random noise, which should be indistinguishable from

the encrypted data (Sec. IV-A). m is determined as follows:

m = �m′�,m′ = −(ln(1− f))/λ.

Here, f is a random number in the range of (0, 1) and λ is

the rate parameter, making m′ follow exponential distribution.

The mean value of m′ is 1/λ, e.g., if we choose λ as 1, each

dummy write will be allocated one free block on average. The

exponential distribution is advantageous since it can ensure

that the value of m can have a large variance which is good

for deniability.

Block Allocation Strategy in Block Layer. A common block

allocation strategy in the block layer is sequential allocation,

by which when data blocks are allocated to virtual volumes,

they will be allocated sequentially from the disk (e.g., thin

provisioning [21]). A concrete example for the sequential

allocation is shown in the following:

Dv2 ||Dv1 ||Dv2 ||Dv2 ||Dv2 ||Dv2 ||Dv2 ||Dv2 ||Dv2 ||Dv1

Here, Dv1
means the data block allocated to the public volume

(identified by v1) and Dv2 means the data block allocated to

the hidden volume (identified by v2). From the aforementioned

block layout, an adversary can observe that seven data blocks

are allocated between Dv1
. To deny the existence of the hidden

data, the user will claim that the seven data blocks have

been allocated to dummy volumes. However, since the number

of dummy writes associated with each public write will be

limited, the adversary may observe that the number of dummy

blocks being claimed by the user exceeds this limit (this is

highly possible if a large file has been written to the hidden

volume), and suspects the existence of hidden volume.

To avoid this deniability compromise, we use random al-

location in the block layer. Specifically, each write from the

upper layer (performed by the public or the hidden/dummy

volume), should be allocated with an unused block at a random

location. In this manner, the adversary will not be able to

observe such a layout that a block, which has been allocated

to the public volume, is followed by a large number of blocks

being allocated to the hidden volume.

A potential deniability compromise remaining is that the

adversary can calculate the total number of blocks for the

public volume, and estimate the maximal number of blocks

for the dummy volume. If the total number of blocks being

allocated for non-public data exceeds this maximal number,

the adversary may suspect existence of hidden data. This

would happen if the user stores a very large file in the

hidden volume and does not store enough data in the public

volume. To mitigate this issue, we recommend that the user

should store a file with approximately equal size in the public

volume after storing a large file in the hidden volume. In

practice, the sensitive data (e.g., secret documents, photos,

short audio/video files) are usually small in size.

User Steps. If the user needs data encryption without denia-

bility, he/she needs to enable device encryption with one pass-

word (e.g., through settings GUI). Note that before initializing

the device encryption, the user should backup the data on the

device since the initialization erases existing data. The system

then creates a public volume (encrypted with a key derived

from the password) and a dummy volume, and reboots when

complete. The user can enter the password during pre-boot

authentication to decrypt the device.

If the user requires the deniability feature, he/she needs

to initialize the device with a decoy password and a hidden

password. The system then creates a public volume and a

hidden volume, encrypted with keys derived from the decoy

password and the hidden password, respectively. For daily

use, the user enters the decoy password during pre-boot

authentication to activate the public volume. Note that we

assume the user enables the screen lock when they are using

the public volume, and the screen lock password is different

from the hidden password. When the user wants to activate

the hidden volume, he/she enters the hidden password in the

screen lock (Sec. IV-D). The system closes the public volume,

decrypts the hidden volume and enables the hidden volume.

459

�������������
��

�������
��������
���

 ��
�!�!�
�

�������������
��

�������
��������
���

 ��
�!�!�
�

��"���������

#�
�������

$����%

&&&
&&&

�������������
��

�������������
��

�������������
��

�������������
��

Fig. 2. System architecture of the extended MobiCeal scheme.

The user then can collect and store sensitive data. After that,

the user should immediately reboot to use the public volume

(Sec. IV-D). When the user is coerced by the adversary, he/she

can supply the decoy password and claim that the other volume

is a dummy volume. The adversary can examine the device but

cannot distinguish a hidden volume from a dummy volume.

If the user does not reveal the hidden password, the adversary

will find no evidence of the hidden data.

C. An Extended MobiCeal Scheme Supporting Multi-level
Deniability

To support multi-level deniability, the system creates n
virtual volumes (by utilizing thin provisioning as introduced in

Sec. II-C) initially, among which, there are n′ hidden volumes

(n′ < n). Note that n′ should be kept secret. After n virtual

volumes (labeled as V1, V2, ..., Vn) are created, MobiCeal

simply uses the first virtual volume V1 as the public volume.

The user can provide different hidden passwords to protect

different hidden volumes and the number of hidden volumes

is controlled by the number of hidden passwords.

For example, if virtual volume Vk (2 ≤ k ≤ n) is used as the

hidden volume, k can be derived using the hidden password:

k = (H(pwd||salt) mod (n− 1)) + 2.

Here, H is a PBKDF2 [14] iterated hash function, n is the total

number of virtual volumes, pwd is the hidden password and

salt is a random salt value for PBKDF2. The salt value will

be stored in the encryption footer. If different hidden volumes

result in the same k, another random salt will be chosen. All

the remaining virtual volumes are dummy volumes. Figure 2

shows the system architecture of MobiCeal.

When generating dummy writes, the system will assign

them to a random virtual volume. The dummy write is assigned

to Vj and j is generated as follows:

j = (stored rand mod (n− 1)) + 2.

Storage Layout. The entire disk is divided into 3 parts, con-

taining the metadata, data and encryption footer, respectively.

The storage layout is shown in Figure 3. Specifically, the

metadata part stores the information of virtual volumes, e.g,

the global bitmap, the sizes and mappings of virtual volumes.

The data part stores the data blocks for the virtual volumes

while the encryption footer is a default part of Android. Note

that in Android, the encrypted decoy key and the salt are stored

in the encryption footer which is located in the last 16KB of

the userdata partition.

D. Additional Design Considerations

Defending against Side Channel Attack. Existing PDE

systems that defend against multi-snapshot adversaries like

HIVE [15] and DEFY [33] suffer from the side channel

attack [23]. Due to the shared OS, the information of the

hidden files may be recorded in the public volume [23], leading

to compromise of the deniability. However, our design can

defend against this side channel attack, since we isolate the

hidden volume from the public volume. Although the hidden

password is entered in the public mode, the Android screen

lock does not record the entered password and we assume the

mobile OS, the boot-loader, as well as the firmware and the

baseband OS are all malware-free (Sec. III). As a result, the

security of the hidden password is ensured.

We consider four possible leakage paths for the side channel

attack: 1) the public volume, 2) logs at /devlog, 3) /cache and

4) RAM. The information of the hidden volume or hidden files

may be recorded in the public volume, /devlog, or /cache,

if the hidden volume is in the system together with others.

To prevent the leakage, after the hidden password is veri-

fied, the system unmounts these three partitions immediately,

and mounts two tmpfs RAM disks to /devlog and /cache,

respectively. Then the system decrypts the hidden volume and

mounts it as the userdata partition. In this way, the information

leakage is prevented.

Additionally, if the RAM is not cleared after the hidden

mode is off, the deniability may be compromised. To prevent

this threat, we only support fast switching from the public

mode to the hidden mode. When the user wants to switch from

the hidden mode to the public mode, he/she has to reboot the

phone. In this way, the information of the hidden volume or

hidden files in the RAM will be cleared. Note that the one-

way fast switching is reasonable, since the mobile device is

assumed to be usually in the public mode. When the user

wants to switch to the hidden mode, he/she needs to enter the

hidden password and the system will begin switching.

Switching without Rebooting. The existing PDE systems for

mobile devices [21], [34], [43] all require rebooting to switch

modes. However, if time is limited which does not allow a slow

mode switching, the user may miss a best moment to capture

sensitive information (e.g., an opportunistic sensitive photo).

We propose a fast switching mechanism without rebooting the

entire device. Our main concern is how to switch fast from

the public mode to the hidden mode, without compromising

deniability. We find it unnecessary to reboot the entire device.

Instead, we can simply restart the Android framework. In

this way, the switching time can be significantly reduced. We

choose the default screen lock app of Android as the entrance

of the hidden mode, because it is widely used and allows the

user to enter the password conveniently.

460

	
����� ����������� ���
�
����

��"���������
 #�
�������
 �����������
������������
�
&&& &&&

Fig. 3. Storage layout of the extended MobiCeal scheme.

The screen lock app runs as usual if the user does not enter

the hidden password. When the user wants to switch to the

hidden mode, he/she needs to enter the hidden password. After

that, the system will unmount the public volume, decrypt and

mount the hidden volume, switching to the hidden mode. Note

that it is necessary to unmount the public volume. Otherwise,

the traces of the hidden volume and hidden files may be

leaked to the public volume which may lead to compromise of

deniability. Since the public volume is mounted to “/data” and

Android framework requires “/data” to run [7], we unmount

the public volume by shutting down the Android framework.

Key Derivation. Different keys can be derived using PBKDF2
with different passwords, and different master keys can be

derived by decrypting the same random data stored in the

encryption footer using these different keys. Further, each

virtual volume can be encrypted using a different master key

via dm-crypt (Sec. II-A).

Reclaiming Space Occupied by Dummy Writes. The data

created by dummy writes will accumulate and may fill the

entire disk space over time. This issue can be mitigated by

periodically performing garbage collection, reclaiming part of

the space occupied by dummy writes. Note that the garbage

collection cannot reclaim all the space occupied by dummy

data. Otherwise, the adversary can easily identify where the

hidden data are by comparing snapshots. This is because the

space occupied by the hidden data remains unchanged. As

a result, when performing garbage collection, the system re-

claims a random percentage of the space occupied by dummy

writes. To make the garbage collection more efficient, the

percentage should be large with a high probability. A side

effect of this approach is, when performing garbage collection,

the system may not be able to distinguish dummy data and the

hidden data. This issue can be solved by performing garbage

collection in the hidden mode4.

V. MOBICEAL IMPLEMENTATION

We implement a prototype of MobiCeal on an LG Nexus 4

phone using the 4.2.2 (Jelly Bean) Android source code and

the 3.4 Linux kernel. Note that we only implement/evaluate
the extended MobiCeal scheme supporting multiple levels of
deniability, since the basic MobiCeal scheme is a special case

4There is no need to frequently perform garbage collection as long as the
user does not frequently store large amount of public and hidden data. In
addition, the user can choose to perform garbage collection when the mobile
device is idle, e.g., during night time, to avoid disturbing regular use.

of MobiCeal with multi-level deniability support. To allow

creating multiple virtual volumes, we rely on thin provisioning

(Sec. II-C), but modify it for PDE considerations. We also

test MobiCeal on a Huawei Nexus 6P with Android 7.1.2

and Linux kernel 3.10. The transplant can be done with

a little work on SEAndroid [36]. The source code of the

implementation has been released5. There are three parts of

implementation, including changes to 1) the Linux kernel, 2)

Android volume daemon, and 3) Android screen lock. The

implementation requires approximately one thousand lines of

C and Java code. We also compile LVM and thin provisioning

tools for Android and put them in the boot image.

A. Changes to the Linux Kernel

Tweaking Thin Provisioning. To implement the random

allocation and the dummy write, we modify the thin pro-

visioning target in the device mapper. We add the dummy

write mechanism to thin provisioning and change the original

sequential allocation strategy of thin provisioning to random

allocation. The reasons why we choose thin provisioning are

as follows: First, when the thin volumes are initialized, they

do not really occupy disk space until the actual data are

written to the thin volumes. This makes it cost effective to

hide a thin volume that contains sensitive data among dummy

thin volumes. Second, thin provisioning does not allocate data

blocks for a thin volume until the data are written to it. This

feature helps us to realize a dummy write mechanism to hide

sensitive data written to a thin volume. Third, thin provisioning

has an inborn ability to prevent overlap among thin volumes

by using a free space bitmap to track allocated blocks. Fourth,

it is feasible to create an encrypted block device on a thin

volume and an arbitrary file system can be deployed.

Dummy Write Implementation. To implement the dummy

write, we use jiffies as the random seed to determine the

probability of the dummy write, which is a global variable

in the Linux kernel. Jiffies holds the number of ticks that have

occurred since the system booted. We store this variable in

the thin pool structure. It is updated when data are written

to the thin volume and the time interval is longer than one

hour since the last update. The variable is random because its

update is triggered by a write operation to the thin volume and

the time of the write operation is random. The variable rand
is a random number between 0 and 100 and it is generated by

5https://github.com/changbing1/MobiCeal

461

the function get random bytes(). To conduct a dummy write,

a free block is found using random allocation and then filled

with random noise. In the bitmap, the corresponding bit of this

block is set to “allocated”, so that it will not be reallocated.

Random Allocation Implementation. To implement the ran-

dom allocation, we first obtain the number of free blocks

(denoted by x), and then we generate a random number i
between 1 and x. The ith free block is the result. A transaction

problem happens when an allocated block is allocated again

before it is committed to the bitmap. To resolve the transaction

problem, the block numbers allocated within a transaction are

recorded. When a new block is allocated, MobiCeal judges

whether this new block has been allocated in this transaction,

so an allocated block will not be allocated again.

B. Changes to the Android Volume Daemon

In order to set up and use the public volume, the hidden

volume, and the dummy volumes, we modify Android volume

daemon (Vold) [6]. We implement the initialization process

and the boot process. We also implement a function for

switching to the hidden volume.

The Initialization Process. Users can active MobiCeal

using vdc, a command-line utility, as follows:

“vdc cryptfs pde wipe 〈pub pwd〉 〈num vol〉
〈hid pwds〉”. MobiCeal uses LVM to initialize the public,

hidden and dummy volumes. Note that MobiCeal generates a

random key as the decoy key that is used as the encryption

key of the public volume. The decoy key is encrypted by

the decoy password and the resulting cipher-text is stored in

the encryption footer. The hidden key can be derived from

decrypting the aforementioned cipher-text using the hidden

password, without wasting additional space for storing the

encrypted hidden key.

The Boot Process. MobiCeal attempts to mount the userdata

volume when the device is booted up. If the system fails to find

a valid Ext4 file system, it asks the user to enter a password.

When the user enters a password, the system enables the

thin volumes and then decrypt the decoy key (stored in the

encryption footer) using the password. After that, the system

creates an encrypted block device on the public volume using

the decrypted key. If a valid Ext4 file system can be mounted,

the password is correct and the system continues to boot.

Otherwise, the system asks the user to enter another password.

Switching to the Hidden Volume. In order to verify the

password and switch to the hidden mode, we implement a

switching function in Vold [7]. This function accepts a string

parameter (password) and switches to the hidden mode if

the password is the hidden password. Otherwise the function

returns “-1”. The switching function first reads the salt and

the encrypted decoy key from the encryption footer. Then a

number k is derived using the password and the salt. A key is

also derived by decrypting the decoy key using the password.

After that, the function reads the encrypted password at the

beginning of Vk. To verify the password, the system encrypts

the password using the derived key. If the result is the same as

the previous encrypted password, the password is correct and

the system begins to switch to the hidden mode. Otherwise

the password is wrong and the function simply returns “-1”.

To switch to the hidden mode, the system first shuts down

the Android framework to unmount “/data” partition. Then a

new encrypted block device will be created on Vk using the

hidden key. The encrypted block device will be mounted to

“/data” and the Android framework will be restarted. After the

Android framework is restarted, the hidden mode is activated,

and users can store sensitive data in the hidden volume.

C. Changes to the Android Screen Lock

We modify the default Android screen lock app as an en-

trance of the hidden mode. We add a process to verify whether

the password is the hidden password. That is, the system

checks whether the password is the screen lock password as

usual. If not, the system calls “IMountService” to pass

the password to Vold which checks whether the password is

the hidden password. If so, the system switches to the hidden

mode. Otherwise the password is wrong, the system asks the

user to enter another password.

VI. ANALYSIS AND EVALUATION

A. Security Analysis

Lemma VI.1. A hidden volume can be efficiently simulatable.

Proof. We build a simulator S, who is not allowed to reveal

the hidden passwords {Pl} or any knowledge of the access pat-

terns beyond its length, aims to simulate identical operations

on public volumes if an operation (e.g., Write) occurs on hid-

den volumes. Note that in the MobiCeal system, if a data block

is assigned to store data on public volumes, then a random

noise will be written into a “dummy” volume with probability

p (see below), we denote it as “dummy” Write. Specifically,

the random noise on “dummy” volumes can be interpreted as

either random strings or public key encryptions (e.g., IND-

CPA secure) indistinguishable from random. Therefore, the

freshly random strings Write on “dummy” volumes will be

indistinguishable from an actual Write on hidden volumes.

Remark. Note that adversary cannot estimate the amount of

“dummy” Write, since p is a random and untraceable value.

Therefore, the adversary cannot distinguish an actual Write on

hidden volume from a “dummy” Write on dummy volume by

statistical analysis.

Theorem VI.2. The extended MobiCeal scheme achieves
multi-snapshot security, if the hidden volumes are simulat-
able volumes.

Proof. According to the definition of multi-snapshot security

(see Definition III.1), the access patterns (O0,O1) chosen by

A will differ only on either a Read to volumes on disk

or a Write to specific volumes Vj , j ≥ l. It is easy to see

that a Read to Vi, i �= j is indistinguishable from a Read
to Vj , while a “dummy” Write to a volume Vj , j ≥ l is

indistinguishable from an actual Write on hidden volume in

462

 0

 5000

 10000

 15000

 20000

 25000

 30000

dd-W
rite

dd-Read

B-W
rite

B-Read

Se
qu

en
tia

l T
hr

ou
gh

pu
t i

n
K

B
/s

Android
A-T-P
A-T-H
MC-P
MC-H

Fig. 4. Average throughput and standard deviation in KB/s (B: Bonnie++).

the sense of Lemma VI.1. Therefore, A cannot win the game

with non-negligible advantage.

According to Theorem VI.2, the extended MobiCeal scheme

achieves multi-snapshot security, and the basic MobiCeal

scheme is a special case of the extended MobiCeal scheme

when the numbers of public and hidden volume are both one.

Metadata Security Issues.
The adversary can access the metadata for all virtual vol-

umes, which keep track of blocks being assigned to each

virtual volume. However, the modifications on the metadata

caused by the hidden volume can be denied since the dummy

writes can cause the same effects. Note that the adversary

cannot decrypt the virtual volumes except the public volume,

because the dummy volumes contain only random data and the

encryption keys of the hidden volumes are protected by the

hidden passwords. As a result, the adversary cannot identify

whether any data blocks in a virtual volume are storing hidden

data or dummy data.

B. Performance Evaluation

Throughput Performance. The main differences between

MobiCeal and the default Android are that MobiCeal uses thin

volumes and that the kernel is modified. We test how these

two differences impact the performance on an LG nexus 4

phone. We measure the performance in the following settings:

1) Android: the default Android FDE, 2) A-T-P (Android-

Thin-Public): the public volume of modified Android with

thin volumes and the default kernel, 3) A-T-H (Android-Thin-

Hidden): the hidden volume of modified Android with thin

volumes and the default kernel, 4) MC-P (MobiCeal-Public):

the public volume of MobiCeal, and 5) MC-H (MobiCeal-

Hidden): the hidden volume of MobiCeal.

In our experiments, we use a popular Linux command tool,

“dd” [5], to measure the sequential throughput. We measure

the write speed using the following command, “time dd
if=/dev/zero of=test.dbf bs=400M count=1 conv=fdata-sync”.

Note that “conv=fdatasync” is necessary because it ensures the

data is written to the disk instead of a RAM buffer. To measure

the read speed, we use “time dd if=test.dbf of=/dev/null
bs=400M”. Each time this command is executed, another

command, “echo 3 > /proc/sys/vm/drop caches”, should be

TABLE I
OVERHEAD COMPARISON. THE VALUES OF DEFY ARE FROM THE FIGURE

6 IN [33]. TEST ENVIRONMENT: DEFY: UBUNTU 13.04, SINGLE

PROCESSOR, 4GB RAM, SIMULATED FLASH DEVICE; HIVE: ARCH

LINUX X86-64, I7-930, 9GB RAM, SAMSUNG 840 EVO SSD;
MOBICEAL: ANDROID 4.2.2, SNAPDRAGON APQ 8064, 2GB RAM,

NEXUS 4 INTERNAL STORAGE.
Ext4 (MB/s) Encrypted (MB/s) Overhead

DEFY 800 50 93.75%
HIVE 216.04 0.97 99.55%

MobiCeal 19.5 15.2 22.05%

executed to empty the cache. Otherwise, the data in the cache

may lead to wrong results.

We conduct each test 10 times and use “dd-Write” and “dd-
Read” in Figure 4 to show the average results and standard

deviations. About the write speed, the use of thin volumes

has little influence on the performance as MobiCeal reduces

the performance by about 18%. The reason of the decrement

is that we modify the kernel to implement the dummy write

and the random allocation. About the read speed, the use of

thin volumes reduces the performance by about 18% while the

modified kernel has little influence on the performance. Thin

provisioning adds a layer between file system and disk, so the

additional operations reduce the read performance.

We also use Bonnie++ [22], a benchmark suite conduct-

ing tests on hard drives and file systems, to evaluate the

performance. We repeat each experiment 10 times and show

the results in Figure 4. Note that the files created in the

Bonnie++ benchmarks must be set to twice the size of the

system RAM (2GB in our case) so as to reliably measure the

performance. The “B-Write” and “B-Read” items in Figure 4

show the results of the average throughput from Bonnie++.

The results are similar to the results in the “dd” test. In

addition, Bonnie++ also shows the CPU overhead which

indicates the power consumption difference. It shows that the

CPU overhead results are similar in all operation cases.

Overhead Comparison. Table I shows the overhead com-

parison between MobiCeal, DEFY [33] and HIVE [15], three

solutions which can defend against multi-snapshot adversaries.

We obtained the results of DEFY by interpreting the Figure

6 in [33] since the original data are unavailable in the

paper. We derived the overheads according to the experi-

mental results. Because the test environments are different,

we cannot compare the results directly. DEFY was evaluated

with IOZone [31] on an Ubuntu 13.04 with 4GB of memory

and a single processor. The tested device was a 64MB flash

device with 2KB pages, which was emulated with the nand-
sim MTD device simulator [42]. HIVE was evaluated with

Bonnie++ [22] on an Arch Linux x86-64 with an Intel i7-

930 CPU and 9GB RAM. The tested device was an off-the-

shelf Samsung 840 EVO SSD. MobiCeal was evaluated with

Bonnie++ on Google Nexus 4 with Qualcomm Snapdragon

S4 Pro APQ8064 CPU and 2GB RAM. The tested device was

the internal storage of Nexus 4.

The different test environments cause the different results.

However, we can make comparison among the overheads. The

overheads of DEFY and HIVE are both higher than 90%,

463

TABLE II
INITIALIZATION TIME, BOOTING TIME, AND SWITCHING TIME.

Initialization
booting time
(decoy pwd)

switching time
(enter hid-mod)

switching time
(exit hid-mod)

Android FDE 18min23s±1s 0.29±0.02s N/A N/A
MobiPluto 37min2s±2s 1.36±0.02s 68±4s 64±5s
MobiCeal 2min16s±3s 1.68±0.04s 9.27±0.28s 63±6s

but the overhead of MobiCeal is only about 22%. The high

overhead of DEFY is caused by the additional computation

requirements necessary to support the cryptographic opera-

tions. The encryption of MobiCeal relies on the dm-crypt
kernel module which is more efficient. HIVE is based on

Oblivious RAM and its high overhead is caused by the high

computation cost of ORAM. MobiCeal relies on the modified

thin provisioning to provide deniability, so the overhead is

much lower. Note that HIVE can defend against a stronger

adversary who can constantly monitor the device, but the

significant performance overhead makes it impossible to be

deployed on practical devices.

Timing Measurements. We also test the initialization time,

the booting time, and the switching time, which affect the

users’ experience. The initialization time is the time used to

finish the initialization process (Sec. V-B). To measure the

initialization time, we use a timer to record the time interval

between the moment when MobiCeal is activated by the vdc
command, and the moment when the screen shows up the

password entering interface. We analyze the booting time and

the switching time by reading the logs of Android system. The

booting time is the time interval between the moment when

the decoy password is entered in the interface, and the moment

when the public volume is decrypted. The switching time is

the time interval between the moment when a password is

entered in the screen lock and the moment when the system

switches to the hidden mode.

We conduct each test 10 times and the means and standard

deviations of the results are shown in Table II. The initializa-

tion of MobiCeal takes about 2 minutes, which is much shorter

than MobiPluto [21]. The booting time is about 1.7 seconds

and the switching time is less than 10 seconds. Previous solu-

tions (Mobiflage [34], MobiHydra [43] and MobiPluto [21])

all need reboot to switch modes, which is time-consuming

(more than 1 minute). Our solution does not need to reboot

the phone and this is helpful in emergency.

VII. RELATED WORK

The concept of deniable encryption has been applied to

network communications [17], disk storage and cloud stor-

age [25]. In disk storage, the existing PDE designs can be

classified into two categories: one against single snapshot

adversaries and the other against multi-snapshot adversaries.

A. Designs against Single Snapshot Adversaries

The first file encryption scheme with PDE support is pro-

posed by Anderson et al. [13]. Two solutions are presented:

Hiding blocks within cover files and hiding blocks within

random data. However, due to the high storage and I/O

overheads, both solutions are not suitable for resource-limited

mobile devices. StegFS [29] uses the second approach in [13]

and works on Ext2 file system. However, their design relies

on Ext2 file system and may not work on other file systems.

In addition, the disk usage rate is very low due to the collision

avoidance mechanism. TrueCrypt [2], FreeOTFE [3], EDS [10]

and Fuyoal [8] are well-known desktop PDE tools that can

defend against a single snapshot adversary.

Mobiflage [34], [35] presents the first PDE scheme for

mobile devices, with two versions: One for FAT32 file system

in external storage [34], and the other for Ext4 file system

in internal storage [35]. MobiHydra [43] introduces multi-

level deniability and supports sensitive data storing without

rebooting. MobiPluto [21] introduces a file system friendly

PDE design by combining hidden volume technique and thin

provisioning. DEFTL[27] considers the nature of NAND flash

and incorporates deniability to flash translation layer.

All the aforementioned PDE systems unfortunately cannot

mitigate a multi-snapshot adversary, since they all rely on a

static defense strategy, e.g., denying existence of hidden data

using randomness being filled initially.

B. Designs against Multi-Snapshot Adversaries

Pang et al. [32] propose a steganographic file system design

where blocks used by hidden files are marked as occupied in

the bitmap. It uses “abandoned blocks” and “dummy blocks”

to hide sensitive data. Although Pang et al.’s design has the

concept of “dummy blocks”, their design and our MobiCeal

are different in the following aspects: 1) Their design is for

desktop systems, and does not provide technical details on

how the dummy data are written in order to defend against the

multi-snapshot adversary. MobiCeal, on the contrary, designs

a clear “dummy write” mechanism specifically for mobile

devices, which is clearly shown to be secure against the multi-

snapshot adversary. 2) Their design is based on legacy Linux

kernel and requires special APIs for handling hidden files

which may not be applicable to mobile devices. MobiCeal

is incorporated into the block layer, and does not rely on any

specific file system APIs.

Blass et al. present HIVE [15] to defend against a multi-

snapshot adversary. HIVE relies on the expensive write-only

ORAM, which suffers from a high system overhead and is thus

not suitable for mobile devices. Chakraborti et al. [18], [19]

improve HIVE, but their design still relies on ORAM, which

cannot fit the resources limited mobile devices. Comparatively,

MobiCeal eliminates the use of ORAM, and is lightweight

enough to be used in mobile devices. Peters et al. introduce

DEFY [33], a deniable encrypted file system for mobile

devices based on YAFFS [40]. DEFY strongly relies on the

special properties provided by YAFFS file system, which limits

464

its applications on the existing mobile devices since YAFFS

is rarely deployed. On the contrary, MobiCeal is incorporated

into the block layer, which ensures its broad applications.

VIII. CONCLUSION

In this paper, we propose MobiCeal, a practical PDE so-

lution for mobile devices. MobiCeal is the first block-layer

PDE scheme that is resistant to multi-snapshot adversaries on

mobile devices. MobiCeal is practical since it is file system

friendly and supports fast switching. We have implemented

a prototype of MobiCeal on an LG Nexus 4 phone using

Android 4.2.2 and tested it on a Huawei Nexus 6P phone

using Android 7.1.2 as well. The performance overhead of

MobiCeal is significantly lower than other PDE systems that

can defend against the multi-snapshot adversary, which justi-

fies that MobiCeal suits the application of mobile devices.

ACKNOWLEDGMENT

Chang, Li, and Ching’s work is supported by the Singapore

National Research Foundation under NCR Award Number

NCR2016NCR-NCR002-022. Dr. Fengwei Zhang is supported

by the National Science Foundation Grant No. CICI-1738929

and IIS-1724227.

REFERENCES

[1] “BitLocker Overview,” https://technet.microsoft.com/en-us/library/
hh831713.aspx, 2013.

[2] “Free open source on-the-fly disk encryption software. version 7.1a,”
Project website: https://andryou.com/truecrypt orig/, 2013.

[3] “A free “on-the-fly” transparent disk encryption program for PC &
PDAs,” Project website: http://sourceforge.net/projects/freeotfe.mirror/,
2017.

[4] “Android full disk encryption,” https://source.android.com/security/
encryption/, 2017.

[5] “Benchmarking,” https://wiki.archlinux.org/index.php/Benchmarking,
2017.

[6] “Device Configuration,” https://source.android.com/devices/storage/
config.html, 2017.

[7] “Full-disk encryption,” https://source.android.com/security/encryption/
full-disk.html, 2017.

[8] “Fuyoal - deniable encryption software,” Website: http://tsmolen.eu/
fuyoal/, 2017.

[9] “Samsung eMMC memory,” http://www.samsung.com/semiconductor/
products/flash-storage/emmc, 2017.

[10] “Sovworks — EDS,” Website: http://www.sovworks.com/, 2017.
[11] “The Device Mapper,” https://access.redhat.com/documentation/

en-US/Red Hat Enterprise Linux/6/html/Logical Volume Manager
Administration/device mapper.html, 2017.

[12] “Use FileVault to encrypt the startup disk on your Mac,” https://support.
apple.com/en-us/HT204837, 2017.

[13] R. Anderson, R. Needham, and A. Shamir, “The steganographic file
system,” in Information Hiding. Springer, 1998, pp. 73–82.

[14] B. Kaliski, “PKCS # 5: Password-based cryptography specification,
version 2.0,” RFC 2898, 2000.

[15] E.-O. Blass, T. Mayberry, G. Noubir, and K. Onarlioglu, “Toward robust
hidden volumes using write-only oblivious ram,” in Proceedings of
the 2014 ACM SIGSAC Conference on Computer and Communications
Security. ACM, 2014, pp. 203–214.

[16] M. Broz, “dm-crypt: Linux kernel device-mapper crypto target,” https:
//gitlab.com/cryptsetup/cryptsetup/wikis/DMCrypt, 2017.

[17] R. Canetti, C. Dwork, M. Naor, and R. Ostrovsky, “Deniable encryp-
tion,” in Advances in Cryptology-CRYPTO’97. Springer, 1997.

[18] A. Chakraborti, C. Chen, and R. Sion, “Poster: Datalair: A storage
block device with plausible deniability,” in Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security.
ACM, 2016, pp. 1757–1759.

[19] ——, “Datalair: Efficient block storage with plausible deniability against
multi-snapshot adversaries,” Proceedings on Privacy Enhancing Tech-
nologies, vol. 3, pp. 175–193, 2017.

[20] B. Chang, Y. Cheng, B. Chen, F. Zhang, W.-T. Zhu, Y. Li, and Z. Wang,
“User-friendly deniable storage for mobile devices,” Computers &
Security, vol. 72, pp. 163–174, 2018.

[21] B. Chang, Z. Wang, B. Chen, and F. Zhang, “Mobipluto: File system
friendly deniable storage for mobile devices,” in Proceedings of the 31st
Annual Computer Security Applications Conference. ACM, 2015, pp.
381–390.

[22] R. Coker, “Bonnie++ file system benchmark suite,” http://www.coker.
com.au/bonnie++/, 2009.

[23] A. Czeskis, D. J. S. Hilaire, K. Koscher, S. D. Gribble, T. Kohno, and
B. Schneier, “Defeating encrypted and deniable file systems: Truecrypt
v5.1a and the case of the tattling os and applications,” in Proceedings
of the 3rd Conference on Hot Topics in Security, 2008.

[24] Entropy512, “LVM Partition Remapping,” http://forum.xda-developers.
com/find-7/orig-development/ref-lvm-partition-remapping-t2865843,
2014.

[25] P. Gasti, G. Ateniese, and M. Blanton, “Deniable cloud storage: sharing
files via public-key deniability,” in Proceedings of the 9th annual ACM
workshop on Privacy in the electronic society. ACM, 2010, pp. 31–42.

[26] A. Goodman, “Dn! exclusive: Authorities search and copy u.s.
journalists notes, computer and cameras after returning from
haiti,” https://www.democracynow.org/2011/2/15/exclusive authorities
search and copy us, 2011.

[27] S. Jia, L. Xia, B. Chen, and P. Liu, “DEFTL: Implementing Plausibly
Deniable Encryption in Flash Translation Layer,” in Proceedings of the
ACM SIGSAC Conference on Computer and Communications Security.
ACM, 2017.

[28] S. Levine, “Logical Volume Manager Administration,”
https://access.redhat.com/documentation/en-US/Red Hat Enterprise
Linux/6/html/Logical Volume Manager Administration/, 2017.

[29] A. D. McDonald and M. G. Kuhn, “StegFS: A steganographic file system
for Linux,” in Proceedings of Information Hiding. Springer, 2000.

[30] C. Mcfadden, E. Cauchi, W. M. Arkin, and K. Monahan,
“American Citizens: U.S. Border Agents Can Search
Your Cellphone,” https://www.nbcnews.com/news/us-news/
american-citizens-u-s-border-agents-can-search-your-cellphone-n732746,
Mar 2017.

[31] W. D. Norcott, “IOzone Filesystem Benchmark,” http://www.iozone.org,
2016.

[32] H. Pang, K.-L. Tan, and X. Zhou, “StegFS: A steganographic file
system,” in Proceedings of the 19th International Conference on Data
Engineering, 2003.

[33] T. M. Peters, M. A. Gondree, and Z. N. Peterson, “DEFY: A deniable,
encrypted file system for log-structured storage,” in the Network and
Distributed System Security Symposium, 2015.

[34] A. Skillen and M. Mannan, “On implementing deniable storage encryp-
tion for mobile devices,” in the Network and Distributed System Security
Symposium, 2013.

[35] ——, “Mobiflage: Deniable storage encryption for mobile devices,”
IEEE Transactions on Dependable and Secure Computing, vol. 11, no. 3,
pp. 224–237, 2014.

[36] S. Smalley and R. Craig, “Security Enhanced (SE) Android: Bringing
Flexible MAC to Android.” in NDSS, 2013.

[37] O. Solon, “US border agents are doing ‘digital strip searches’. Here’s
how to protect yourself,” https://www.theguardian.com/us-news/2017/
mar/31/us-border-phone-computer-searches-how-to-protect, Mar 2017.

[38] Steven676, “[HOWTO] “Partitioning” your Nexus S using
LVM,” http://forum.xda-developers.com/nexus-s/general/
howto-partitioning-nexus-s-using-lvm-t1656794, 2012.

[39] L. Torvalds, “Thin provisioning documentation,” https://www.kernel.org/
doc/Documentation/device-mapper/thin-provisioning.txt, 2017.

[40] L. van Someren, “Yaffs — a flash file system for embeded use,” http:
//www.yaffs.net, 2017.

[41] Y. Wang, W.-k. Yu, S. Wu, G. Malysa, G. E. Suh, and E. C. Kan,
“Flash memory for ubiquitous hardware security functions: True random
number generation and device fingerprints,” in Security and Privacy
(SP), 2012 IEEE Symposium on. IEEE, 2012, pp. 33–47.

[42] D. Woodhouse, “Memory Technology Device Subsystem for Linux,”
http://www.linux-mtd.infradead.org/faq/nand.html, 2017.

[43] X. Yu, B. Chen, Z. Wang, B. Chang, W. T. Zhu, and J. Jing, “Mobihydra:
Pragmatic and multi-level plausibly deniable encryption storage for
mobile devices,” in International Conference on Information Security.
Springer, 2014, pp. 555–567.

465

