SIGMA QUALITY CONTROL TEST PROCEDURE

Enzymatic Assay of SACCHAROPINE DEHYDROGENASE, NAD⁺,
Lysine Forming
(EC 1.5.1.7)

PRINCIPLE:

L-Lysine + α-Ketoglutaric + β-NADH Saccharopine Dehydrogenase > Saccharopine + β-NAD

Abbreviations used:
β-NADH = β-Nicotinamide Adenine Dinucleotide, Reduced Form
β-NAD = β-Nicotinamide Adenine Dinucleotide, Oxidized Form

CONDITIONS: T = 25°C, pH = 6.8, A₃₄₀nm, Light path = 1 cm

METHOD: Continuous Spectrophotometric Method

REAGENTS:

A. 100 mM Potassium Phosphate Buffer with
1 mM Ethylenediaminetetraacetic Acid (EDTA), pH 6.8 at
25°C
(Prepare 100 ml in deionized water using Potassium
Phosphate, Monobasic, Prod. No. P-5379 and
Ethylenediaminetetraacetic Acid, Tetrasodium Hydrate,
Hydrate, Sigma Stock No. ED495. Adjust to pH 6.8 at 25°C
with 1 M NaOH.)

B. 0.23 mM β-Nicotinamide Adenine Dinucleotide, Reduced Form
(β-NADH)
(Prepare 50 ml in Reagent A using β-Nicotinamide Adenine
Dinucleotide, Reduced Form, Disodium Salt, Sigma Prod.
No. N-8129.)

C. 79.8 mM α-Ketoglutarate Solution
(Prepare 1.0 ml in Reagent A using α-Ketoglutaric Acid,

D. 300 mM L-Lysine Solution (L-Lysine)
(Prepare 10 ml in Reagent A using L-Lysine
Monohydrochloride, Prod. No. L-5626.)

E. Saccharopine Dehydrogenase Enzyme Solution
(Immediately before use, prepare a solution containing
0.1 - 0.5 units/ml of Saccharopine Dehydrogenase in cold
Reagent A.)
Enzymatic Assay of SACCHAROPHINE DEHYDROGENASE, NAD+, Lysine Forming (EC 1.5.1.7)

PROCEDURE:

Pipette (in milliliters) the following reagents into suitable cuvettes:

<table>
<thead>
<tr>
<th></th>
<th>Test</th>
<th>Blank</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reagent B (β-NADH)</td>
<td>2.75</td>
<td>2.75</td>
</tr>
<tr>
<td>Reagent C (α-Ketoglutarate)</td>
<td>0.10</td>
<td>0.10</td>
</tr>
<tr>
<td>Reagent D (L-Lysine)</td>
<td>0.10</td>
<td>0.10</td>
</tr>
</tbody>
</table>

Mix by inversion and equilibrate to 25°C. Monitor the $A_{340 nm}$ until constant, using a suitably thermostatted spectrophotometer. Then add:

<table>
<thead>
<tr>
<th></th>
<th>Test</th>
<th>Blank</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reagent E (Enzyme Solution)</td>
<td>0.10</td>
<td>-----</td>
</tr>
<tr>
<td>Reagent A (Buffer)</td>
<td>-----</td>
<td>0.10</td>
</tr>
</tbody>
</table>

Immediately mix by inversion and record the decrease in the $A_{340 nm}$ for approximately 5 minutes. Obtain the $\Delta A_{340 nm}$/minute using the maximum linear rate for both the Test and Blank.

CALCULATIONS:

$$\text{Unit/mg enzyme} = \frac{(\Delta A_{340 nm}/\text{min Test} - \Delta A_{340 nm} \text{ Blank})(3.05)(df)}{(6.22)(0.1)}$$

3.05 = Volume (in milliliters) of assay
df = Dilution factor
6.22 = Millimolar extinction coefficient of β-NADH at 340 nm
0.1 = Volume (in milliliters) of enzyme used

Units/mg solid = \frac{\text{units/ml enzyme}}{\text{mg solid/ml enzyme}}

Units/mg protein = \frac{\text{units/ml enzyme}}{\text{mg protein/ml enzyme}}

UNIT DEFINITION:

One unit will catalyze the conversion of 1.0 μmole of L-lysine and α-ketoglutaric acid to saccharopine per minute at pH 6.8 at 25°C.
Enzymatic Assay of SACCHAROPINE DEHYDROGENASE, NAD^+, Lysine Forming
(EC 1.5.1.7)

FINAL ASSAY CONCENTRATION:

In a 3.05 ml reaction mix, the final concentrations are 100 mM potassium phosphate, 1 mM ethylenediaminetetraacetic acid, 0.21 mM β-icotinamide adenine dinucleotide, reduced form, 2.6 mM α-ketoglutaric acid, 9.8 mM L-lysine, and 0.01 - 0.05 units saccharopine dehydrogenase.

REFERENCES:

NOTES:

1. Precipitate and refrigerate vials containing 14.7 mg of α-ketoglutaric acid. Dissolve each vial with 1.0 ml of Reagent A. PREPARE FRESH, STORE ON ICE.)

2. Where Sigma Product or Stock numbers are specified, equivalent reagents may be substituted.

Sigma warrants that the above procedure information is currently utilized at Sigma and that all Sigma-Aldrich, Inc. products conform to the information in this and other Sigma-Aldrich, Inc. publications. Purchaser must determine the suitability of the information and product(s) for their particular use. Additional terms and conditions may apply. Please see reverse side of the invoice or packaging slip.