

Why is LCA Important? Hydrogen production options

5

- Solar photovoltaics with water electrolysis.
- Electricity generation by coal or nuclear with water electrolysis
- Gasification of coal and hydrogen recovery
- Gasification of natural gas and hydrogen recovery
- Gasification of biomass and hydrogen recovery
- Microbial production of hydrogen from biomass

Michiganicach

	(ethylene example)	
and Shonnard, Green Enginee	ring: Environmentally Conscious Design of Ch	emical Processes, Prentice Hall, 200
Table 13.2-1 Life-Cycle	Inventory Data for the Production of 1 kg	of Ethylene (Boustead, 1993).
Category	Input or Output	Unit Average
Energy content	Coal	0.94
fuels, MJ	Oil	1.8
	Gas	6.1
	Hydroelectric	0.12
11 - 11 - 11 - 11 - 11 - 11 - 11 - 11	Nuclear	0.32
· · · · · ·	Other	<0.01
	Total	9.2
Feedstock, MI	Coal	<0.01
1 000000000, 1120	Oil	31
	Gas	29
	Total	60
	· .	

(ethylene example), cont.		Environmental Lanscure Berland Processes		
Allen and Shonnard, Green Engineering: Environmentally Conscious Design of Chemical Processes, Prentice Hall, 2002				
Raw Materials, mg	Iron ore	200		
	Limestone	100		
	Water	1,900,000		
	Bauxite	300		
	Sodium chloride	5,400		
	Clay	20		
	Ferromanganese	<1		
Air emissions, mg	Dust	1,000		
	Carbon monoxide	600		
	Carbon dioxide	530,000		
· · · ·	Sulfur oxides	4,000		
	Nitrogen oxides	6,000		
	Hydrogen sulfide	10		
a second	Hydrogen chloride	20		
	Hydrocarbons	7,000		
	Other organics	1		
	Metals	1		

(ethylene example), cont.		Environmentaling Conscisues Design of Chemical Processes	
Allen and Shonnard, Green Engineering: Environmentally Conscious Design of Chemical Processes, Prentice Hall, 2002			
Water emissions, mg	Chemical oxygen demand	200	
	Biological oxygen demand	40	
	Acid, as H+	60	
	Metals	.300	
	Chloride ions	50	
	Dissolved organics	20	
	Suspended solids	200	
	Oil	200	
	Phenol	1	
P 1	Dissolved solids	500	
	Other nitrogen	10	
Solid waste, mg	Industrial waste	1,400	
	Mineral waste	8,000	
	Slags and ash	3,000	
	Nontoxic chemicals	400	
	Toxic chemicals	1	

