

Sterilization of Gases			
→ aerobic fermentations require 0.1 to 1.0 (L air / → 50,000 L fermenter requires $7x10^6$ to $7x10^7$ L a → microorganism concentrations in air are about 7	(L liquid • min)) ir/day 1-10 / L air		
Methods for Air Sterilization at Inlet 1. Adiabatic compression, 220°C for 30 seconds 2. Continuous Filtration: → depth filters (glass wool filters) → surface filters (membrane cartridges) 3. Economics ≈ 25% of production costs for air systematical seconds	Exit gas must be filtered → pathogenic → recombinant DNA cells		
David R. Shonnard Michigan Technological University	14		

Table 10.1	TABLE 10.1 Typical Respiration Rate Cells in Culture Cells in Culture	es of Microbes and	
	Organism	902 (mmol O2/g dw-h)	
	Bacteria E. coli Azotobacter sp. Streptomyces sp. Yeast Saccharomyces cerevisiae Molds Penicillium sp. Aspergillus niger Plant cells Acer pseudoplatanus (sycamore) Saccharum (sugar cane) Asimel celle	10-12 30-90 2-4 8 3-4 ca. 3 0.2 1-3	
"Bioprocess Engineering: Basic Concepts" Shuler and Kargi, Prentice Hall, 2002	HeLa Diploid embryo WI-38	$0.4 \frac{\text{mmol } O_2/\text{l-h}}{10^6 \text{ cells/ml}} \\ 0.15 \frac{\text{mmol } O_2/\text{l-h}}{10^6 \text{ cells/ml}}$	
David R. Shonna	rd Michigan Technological Universit	У	24

k _L a for Stirred Tanks	
Oxygen Transfer Rate: OTR = $k_L a (C * -C)$ $k_L a = k \left(\frac{P_g}{V_R}\right)^{0.4} (v_S)^{0.5} (N)^{0.5}$ see equation 10.2a k = empirical constant (fluid and reactor - specific) $P_g =$ power requirement for an aerated bioreactor V_R = bioreactor volume v_S = superficial gas exit speed = (F_a / A) F_a = volumetric flow rate of air A = bioreactor cross - sectional area N = impeller rotation speed	Units depend upon correlation data
David R. Shonnard Michigan Technological University	26

Heat Balance			
HRR (Heat Removal Rate) = U A ΔT_{LM}			
U = overall heat transfer coefficient			
A = surface area of heat transfer surface			
$\Delta T_{LM} = \log$ mean temperature difference between			
the bioreactor fluid and cooling fluid			
$=\frac{(T-t_1)-(T-t_2)}{\ln[(T-t_1)/(T-t_2)]}$			
T = bioreactor fluid temperature			
$t_1 = cooling$ water inlet temperature			
$t_2 = cooling water outlet temperature$			
David R. Shonnard Michigan Technological University	40		