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Introduction

The cell must control and regulate the
biosynthesis of proteins, amino acids,
lipids, etc. Chapter 4 outlines the major
cellular processes for doing this, starting
with the replication of DNA and ending
in protein synthesis.
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Elements of Genetic Information

Genetic information is stored on DNA strands in the
chromosome as sequences of nucleotides.

4-letter alphabet in DNA
A - adenine only H-bonds with T
T - thymine U-uracil in RNA  only H-bonds with A
G - guanine  only H-bonds with C
C - cytosine  only H-bonds with G

3-letter words “codons”
e Table 4.1
» each word codes for 1 amino acid
* 43 = 64 possible words

Figure 2.17.
of DNA, sho
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Genetic Code:
Codons in RNA and Amino Acids

TABLE 4.1 The Genetic Code: Correspondence between Codons and AmindAcids

Second bases.

First
base U C A G
18] UUU pher - UCU ser UAU wyr UGU cys
UUC phe UCC ser UAC tyr UGC cys
UUA len UCA ser UAA (none) UGA (none)*
UUG leu UCG ser UAG (none)® UGG try
C CUU leu CCU pro CAU his CGU arg
CUC leu CCC pro CAC his CGC arg
CUA leu " CCA pro CAA glu-N - CGA arg
. CUG ' leu CCG pro CAG gli-N . . CGG. arg
A AUU ileu _ACU - thr AAU asp-N AGU  ser
AUC ileu ACC thr AAC  asp-N AGC ser
AUA ileu ‘ACA thr AAA lys AGA arg
AUG  met ACG thr AAG lys " AGG arg
G GUU val ~~ GCU ala GAU asp GGU gly
GUC val GCC ala GAC asp GGC gly
~ GUA: val GCA ala GAA gl GGA gly
GUG val .. GCG . ala GAG glu GGG gly
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DNA Replication : Major Steps

* Unwind DNA double helix - DNA girase

* Original DNA (template) “read” in the 3’ — 5’ direction

* New DNA strand synthesized in the 5 — 3’ direction
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DNA Replication (E. Coli), Figure 4.2
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DNA Replication (E. Coli), Figure 4.3
Okazaki fragment

DNA double helix

New “complimentary”
DNA strand

A closer view of the
“ replication fork
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Overview of Information Transfer

from DNA to Proteins
) Promoter : B ' Terminator
a [ .
5 G | Gene N J 21
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Transcription

Creating RNA from a DNA Template

Types of RNA
1. Messenger RNA, m-RNA, carries genetic information
unstable, about 1 minute life time
2. Transfer RNA, t-RNA, carries one amino acid
stable
3. Ribosomal RNA, r-RNA, 65% of ribosome
stable

David R. Shonnard Michigan Technological University




| Messenger
RNA
Synthesis

Promoter  Start Stop

RNA .
region l l
A

polymerase
{(core enzyme)

) _— L—1Gene—' pNA
O (¥ Recognizes a start
sequence on DNA l

m@ﬁmmnmm

Sigma aids
in recognition

1 of start
(Fig. 4.4) ;|
Sigma released—
transcription W
i begins
One dominant o g WRNA
subunit for most 4
RNA chain
genes on the DNA growth mgﬁm
P
L~ (rho)
. P
Other o subunits B:: siops
chain growt

become active under
adverse conditions

“Bioprocess Engineering: Basic Concepts
Shuler and Kargi, Prentice Hall, 2002

David R. Shonnard

Release of polymerase,
rtho, and mRNA
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Procaryotic Cells and m-RNA Synthesis

One promotor causes a polygenic m-RNA to be made.
Polygenic means that more than one protein will be
made from that m-RNA molecule.
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Eucaryotic Cells and m-RNA Synthesis

* No polygenic m-RNA (1 protein per m-RNA)
* DNA genes contain “nonsense DNA” that do not code
for protein biosynthesis

* The resulting m-RNA contains “introns” that must be
spliced out by specific enzymes

» The presence of introns complicates eucaryotic gene
transfer to procaryotes using Genetic Engineering

* Additional m-RNA processing -
+ methylated guanine nucleotide added to 5’ end
+ adenine nucleotides added to 3’ end
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Translation (Fig. 4.7)

Protein synthesis by Ribosomes using m-RNA as a
template and t-RNA as amino acid carriers

a) Initiation -
ribosome attaches
to m-RNA at
binding site on m-
RNA

at AUG codon on
m- RNA — N -
formylmethionine
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Translation (cont.) (Fig. 4.7)

b) Elongation of
Protein - the

anticodon portion
of the t-RNA
aftaches to the m-
RNA. A second t-
RNA attaches.
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Translation (cont.) (Fig. 4.7)

c¢) Elongation of
Protein - The

amino acid from 1
is joined to the
amino acid on 2.
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Translation (cont.) (Fig. 4.7)

d) Elongation of
Protein - This

process continues
for other t-RNA
amino acids.

“Bioprocess Engineering: Basic Concepts
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Translation (cont.) (Fig. 4.7)

10-20 ribosomes at once

e) Termination - When the ribosome encounters a stop
sequence on the m-RNA (3 codons; UAA, UALIG, or UGA), it

separates and releases the polygenic peptide.
“Bioprocess Engineering: Basic Concepts
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Energy Requirements in Protein Synthesis

4 high energy phosphate bonds are required per
amino acid (aa) added.

2 required to “charge” t-RNA
2 required to elongate the protein by 1 aa unit

GTP — GDP + P; + 7.3 kcal/mole (4)(7.3)=

\ 29.2 keal
OH OH OH OH mole aa
Il =
HO-P-0-P-0O-P-O-CH, O ~_Guanine H0-|P-0H
[
O 0O o H U)
Phosphate

Y OH onm

Guanosine triphosphate

22
David R. Shonnard Michigan Technological University




Post Translational Processing of Proteins

Secretion through a membrane
20-25 amino acids clipped off

Other modifications (Eucaryotic proteins)

Phosphorlylation - addition of phosphate
Glycosylation - addition of sugars

Important to consider in choosing a host organism
for protein production
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Metabolic Regulation

Genetic-Level Control - Which Proteins are Made?

Repression of Transcription (m-RNA)
an end product of enzyme activity or of the metabolic
pathway (co-repressor) blocks m-RNA synthesis

(a)

—* —+ —+ —+ —= Transcription normally
permitted

Fiqure 4.9 )

Gene! | Gene2 | Gene3 |

Transcription blocked

Corepressor
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Metabolic Regulation

Induction of Transcription (m-RNA)

a substrate for a metabolic pathway accumulates and
induces m-RNA synthesis

(a)
| Promater | Operator | "Gene || ~ Gene2 | Gene3 |

Transcription. blocked

(b)

| Promoter [ Operator| Gene1 | Gene2 |  Gene3 |

s'.éf' ~ —& — Transcription permitted

Figure 4.10 .
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Modification to Repression/Induction

Catabolic Repression:

When multiple substrates (e.g. glucose and lactose)
are available, the preferred one will be used up first
(e.g. glucose)

How? The Lactose Operon, though it is induced by
lactose, can not yield much m-RNA because the
RNA Polymerase has a low affinity for binding to
Promotor region of the operon. This binding affinity
is under the control of glucose utilization through the
accumulation of CAP (cyclic AMP Activating Protein).
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Catabolic Repression:

| Promoter | Operator| Genei1 [ Gene2 | Genes |
NAD
:,'"- wstn —e —u Transcription permitted

CAP/c-AMP binds to RNA Polymerase and drastically
increases the affinity of RNA Polymerase for the Promotor
region of the Operon. Now Transcription can take place to
create the m-RNA needed for protein synthesis and
metabolism of lactose.
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Figure 4.11: Diauxic Growth
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Operon

A set of functionally related genes under the
control of a single promoter-operator
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Metabolic Pathway Control

After being made, enzyme activity is controlled
by end products of a metabolic pathway

a) Isozymes

-
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b) Concerted Feedback
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L-Aspartic Acid Metabolic Pathway Control

What type of control is being exerted on L-
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