Chapter 4: How Cells Work

David Shonnard Department of Chemical Engineering Michigan Technological University

David R. Shonnard

Michigan Technological University

Presentation Outline:

1 Introduction : Central Dogma

1 DNA Replication: Preserving and Propagating DNA

1 Transcription: Sending the Message

1 Translation: Message to Product (Proteins)

1 Regulation of Transcription and Enzyme Activity

David R. Shonnard

Michigan Technological University

Introduction

The cell must control and regulate the biosynthesis of <u>proteins</u>, <u>amino acids</u>, <u>lipids</u>, etc. Chapter 4 outlines the major cellular processes for doing this, starting with the replication of DNA and ending in protein synthesis.

David R. Shonnard

Michigan Technological University

3

The Central Dogma Central Dogma Central Dogma Replication DNA Reverse Transcription (RNA viruses only) RNA Species i=1 to I Protein Species j=1 to J Time David R. Shonnard Michigan Technological University All life employs similar methods to store, express, and utilize the genetic information resident in DNA. "Bioprocess Engineering: Basic Concepts Shuler and Kargi, Prentice Hall, 2002

Elements of Genetic Information

Genetic information is stored on DNA strands in the chromosome as sequences of nucleotides.

4-letter alphabet in DNA

A - adenine only H-bonds with T

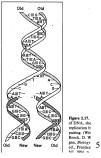
T - thymine U-uracil in RNA only H-bonds with A

G - guanine only H-bonds with C

C - cytosine only H-bonds with G

3-letter words "codons"

• Table 4.1


· each word codes for 1 amino acid

• $4^3 = 64$ possible words

"Bioprocess Engineering: Basic Concepts Shuler and Kargi, Prentice Hall, 2002

David R. Shonnard

Michigan Technological University

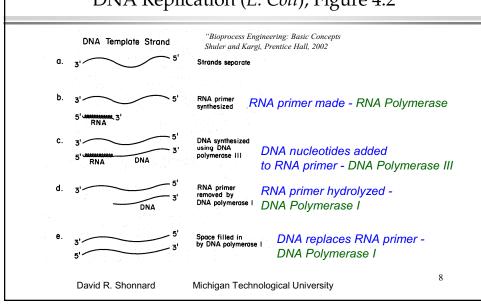
Genetic Code: Codons in RNA and Amino Acids

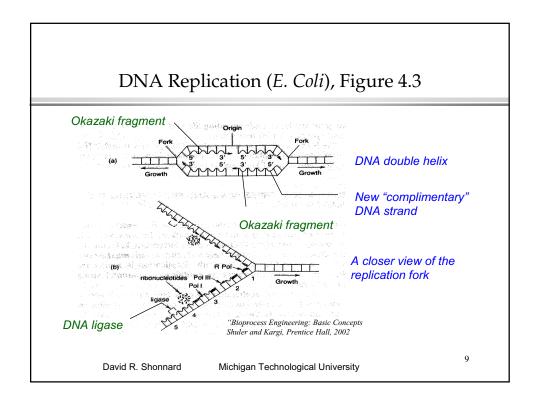
TABLE 4.1 The Genetic Code: Correspondence between Codons and Amino Acids

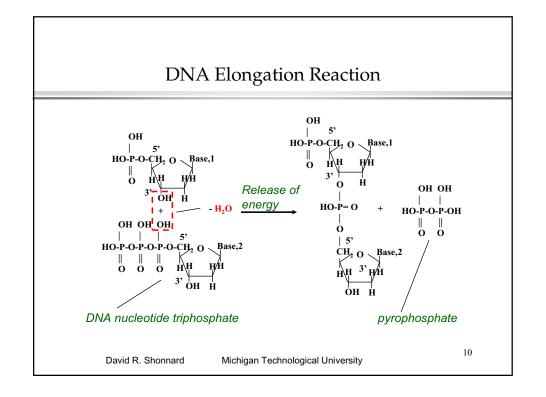
			Second bases			
First		U	c	A	G	
U	4 fat j	UUU phe ^a UUC phe UUA leu UUG leu	UCU ser UCC ser UCA ser UCG ser	UAU tyr UAC tyr UAA (none) ^b UAG (none) ^b	UGU cys UGC cys UGA (none) ^b UGG try	
С		CUU leu CUC leu CUA leu CUG leu	CCU pro CCC pro CCA pro CCG pro	CAU his CAC his CAA glu-N CAG glu-N	CGU arg CGC arg CGA arg CGG arg	
A		AUU ileu AUC ileu AUA ileu AUG met	ACU thr ACC thr ACA thr ACG thr	AAU asp-N AAC asp-N AAA lys AAG lys	AGU ser AGC ser AGA arg AGG arg	
G		GUU val GUC val GUA val GUG val	GCU ala GCC ala GCA ala GCG ala	GAU asp GAC asp GAA glu GAG glu	GGU gly GGC gly GGA gly GGG gly	

"Bioprocess Engineering: Basic Concepts, Shuler and Kargi, Prentice Hall, 2002 David R. Shonnard Michigan Technological University

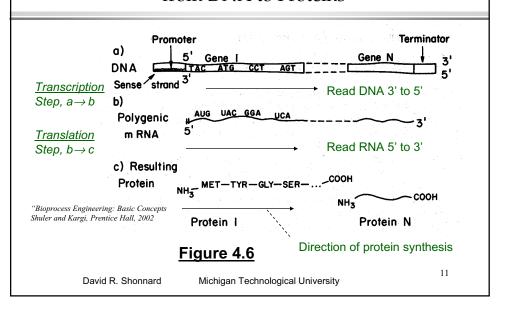
DNA Replication: Major Steps


- · Unwind DNA double helix DNA girase
- Original DNA (template) "read" in the $3' \rightarrow 5'$ direction
- New DNA strand synthesized in the $5' \rightarrow 3'$ direction


David R. Shonnard


Michigan Technological University

7


DNA Replication (E. Coli), Figure 4.2

Overview of Information Transfer from DNA to Proteins

Transcription

Creating RNA from a DNA Template

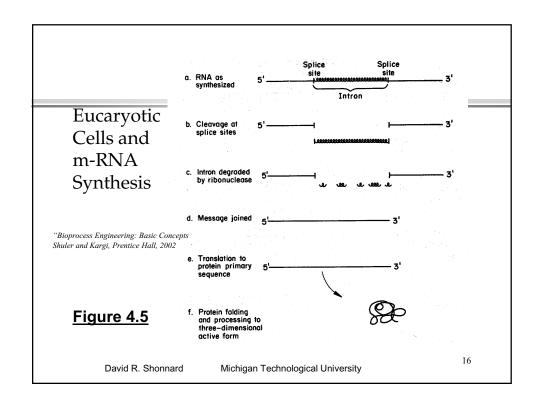
Types of RNA

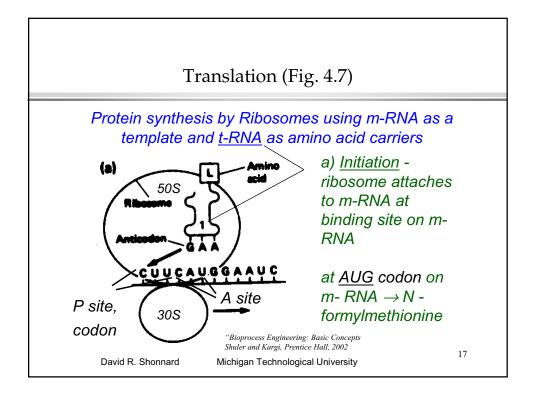
- 1. Messenger RNA, m-RNA, carries genetic information unstable, about 1 minute life time
- 2. Transfer RNA, t-RNA, carries one amino acid stable
- 3. Ribosomal RNA, r-RNA, 65% of ribosome stable

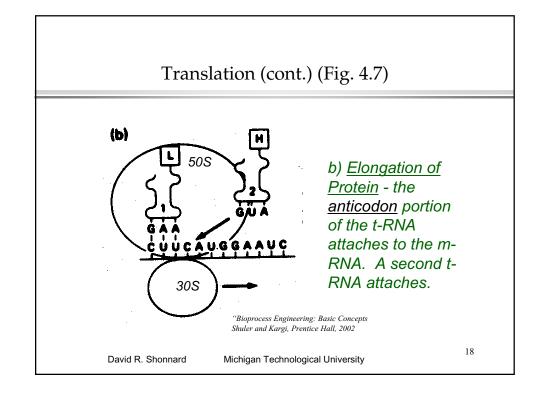
David R. Shonnard

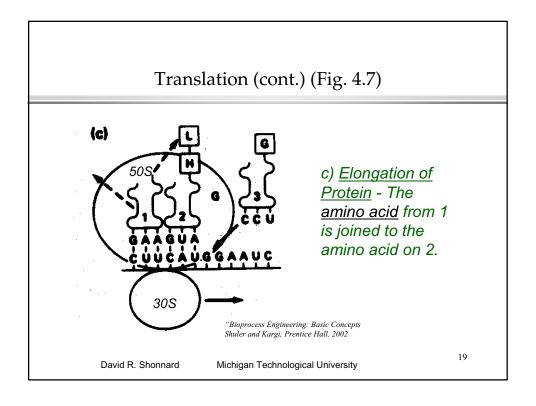
Michigan Technological University

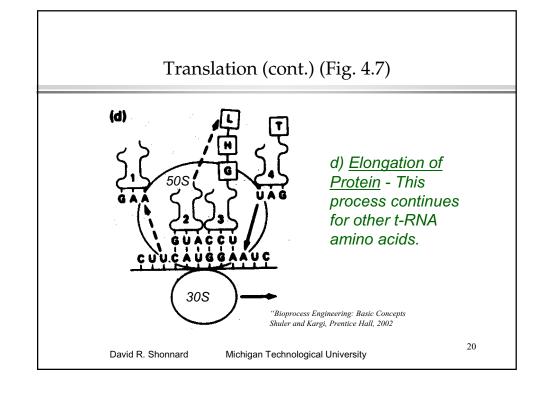
Procaryotic Cells and m-RNA Synthesis

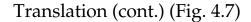

One promotor causes a polygenic m-RNA to be made. Polygenic means that more than one protein will be made from that m-RNA molecule.

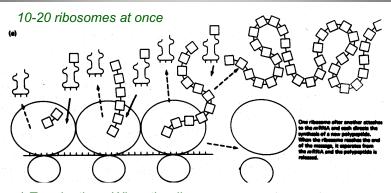

Eucaryotic Cells and m-RNA Synthesis


- No polygenic m-RNA (1 protein per m-RNA)
- DNA genes contain "nonsense DNA" that do not code for protein biosynthesis
- The resulting m-RNA contains "introns" that must be spliced out by specific enzymes
- The presence of introns complicates eucaryotic gene transfer to procaryotes using Genetic Engineering
- Additional m-RNA processing -
 - + methylated guanine nucleotide added to 5' end
 - + adenine nucleotides added to 3' end


David R. Shonnard


Michigan Technological University



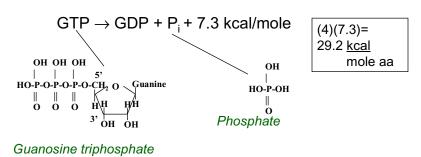


e) Termination - When the ribosome encounters a stop sequence on the m-RNA (3 codons; UAA, UA G, or UGA), it separates and releases the polygenic peptide.

"Bioprocess Engineering: Basic Concepts Shuler and Kargi, Prentice Hall, 2002

David R. Shonnard

Michigan Technological University


21

Energy Requirements in Protein Synthesis

4 high energy phosphate bonds are required per amino acid (aa) added.

2 required to "charge" t-RNA

2 required to elongate the protein by 1 aa unit

David R. Shonnard

Michigan Technological University

Post Translational Processing of Proteins

Secretion through a membrane

20-25 amino acids clipped off

Other modifications (Eucaryotic proteins)

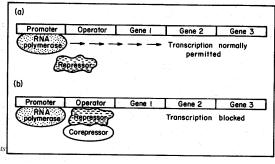
Phosphorlylation - addition of phosphate Glycosylation - addition of sugars

Important to consider in choosing a host organism for protein production

David R. Shonnard

Michigan Technological University

23


Metabolic Regulation

Genetic-Level Control - Which Proteins are Made?

Repression of Transcription (m-RNA)

an end product of enzyme activity or of the metabolic pathway (co-repressor) blocks m-RNA synthesis

Figure 4.9

"Bioprocess Engineering: Basic Concep Shuler and Kargi, Prentice Hall, 2002

David R. Shonnard

Michigan Technological University

Metabolic Regulation

Induction of Transcription (m-RNA)

a substrate for a metabolic pathway accumulates and induces m-RNA synthesis

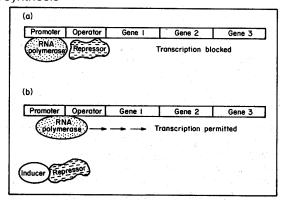


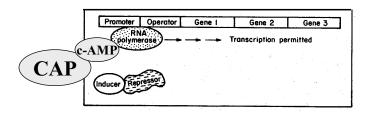
Figure 4.10

David R. Shonnard

Michigan Technological University

Modification to Repression/Induction

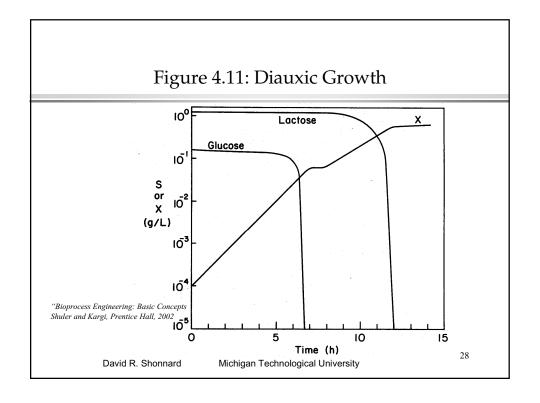
Catabolic Repression:


When multiple substrates (e.g. glucose and lactose) are available, the preferred one will be used up first (e.g. glucose)

How? The Lactose Operon, though it is induced by lactose, can not yield much m-RNA because the RNA Polymerase has a low affinity for binding to Promotor region of the operon. This binding affinity is under the control of glucose utilization through the accumulation of CAP (cyclic AMP Activating Protein).

David R. Shonnard

Michigan Technological University



CAP/c-AMP binds to RNA Polymerase and drastically increases the affinity of RNA Polymerase for the Promotor region of the Operon. Now Transcription can take place to create the m-RNA needed for protein synthesis and metabolism of lactose.

"Bioprocess Engineering: Basic Concepts Shuler and Kargi, Prentice Hall, 2002

David R. Shonnard

Michigan Technological University

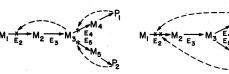
A set of functionally related genes under the control of a single promoter-operator

David R. Shonnard

Michigan Technological University

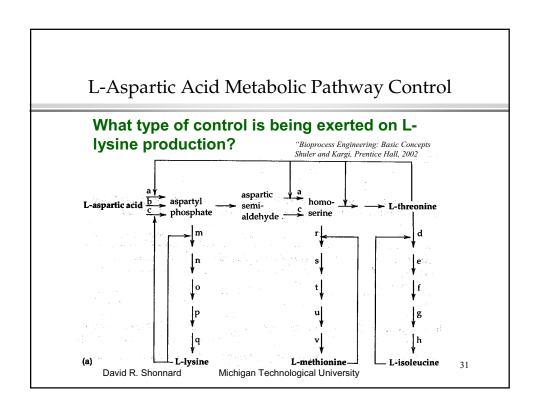
Metabolic Pathway Control

After being made, enzyme activity is controlled by end products of a metabolic pathway



 $M_1 = M_2 = M_3 = M_4 = P_1$ $M_5 = M_5$ $M_5 = P_2$

"Bioprocess Engineering: Basic Concepts Shuler and Kargi, Prentice Hall, 2002


c) Sequential Feedback

d) Cumulative Feedback

David R. Shonnard

Michigan Technological University

