Problem 1. Diffusion of PCB Through a Capping Sediment Layer
 Solve the modified form of Fick’s Second Law of Diffusion for the flux of PCB at the water-capping sediment interface. Verify equation (11) from the Thoma et. al. article.

Problem 2. The Molar Flux in Facilitated Diffusion
 Lithium, sodium, or potassium chloride is diffusing from a 0.1 M aqueous solution (for each salt) across a 32 micrometer organic membrane into pure water. The membrane is largely made of chlorinated hydrocarbon, but it also contains as a mobile carrier 6.8×10^{-3} M of the macrocyclic carrier dibenzo-18-crown-6. This carrier selectively complexes alkali metal salts. For lithium chloride, the association constant is 260 liters/mole; for sodium chloride, it is 1.3×10^{4} liters/mole; for potassium chloride, it is 4.7×10^{6} liters/mole. The partition coefficients of the various salts are 4.5×10^{-4}, 3.4×10^{-4}, and 3.8×10^{-4}, respectively. Assume that all salts and complexes have diffusion coefficients of 2×10^{-5} cm2/sec. Find the total flux for each of these alkali metals. What percentage of the total flux is due to ordinary solubility - diffusion versus facilitated diffusion?