Exam I
CBE614
October 5, 2005

Please be neat.
Please write on only one side of each piece of paper in your solution.

Navier-Stokes Equation: \[\rho \left(\frac{\partial \mathbf{v}}{\partial t} + \mathbf{v} \cdot \nabla \mathbf{v} \right) = -\nabla p + \mu \nabla^2 \mathbf{v} + \rho \mathbf{g} \]

Continuity Equation: \[\frac{\partial \rho}{\partial t} = -\nabla \cdot (\rho \mathbf{v}) \]

Newtonian Incompressible Constitutive Equation: \[\mathbf{e} = -\mu \left[\nabla \mathbf{v} + (\nabla \mathbf{v})^T \right] \]

Shear flow: \[\mathbf{v} = \begin{pmatrix} \zeta(t)x_2 \\ 0 \\ 0 \end{pmatrix}_{123} \]

Elongational flow: \[\mathbf{v} = \begin{pmatrix} \frac{1}{2} \varepsilon(t)x_1 \\ -\frac{1}{2} \varepsilon(t)x_2 \\ \varepsilon(t)x_3 \end{pmatrix}_{123} \]

1. (20 points) What is \(\mathbf{A} \cdot \mathbf{B}^T \) written in Einstein notation?

2. (20 points) For the scalar function \(f \) written below, what is \(\nabla \cdot \nabla f \)?

\[f(x_1, x_2, x_3) = 4x_1^2 + 2x_2 + x_3 \]

3. (10 points) In shear flow, which components of the stress tensor are equal to zero for all fluids (Newtonian and non-Newtonian)?
4. (20 points) What does the Newtonian incompressible constitutive equation predict for \(\overline{\eta}'(t) \), the material function for start-up of steady uniaxial elongational flow? The kinematics of the flow and the definition of the material function are shown below. Please show how you obtain your answer. Please sketch your answer.

\[
v = \begin{cases}
-\frac{1}{2} \varepsilon(t)x_1 \\
\frac{1}{2} \varepsilon(t)x_2 \\
\varepsilon(t)x_3
\end{cases}_{123}
\]

\[
\varepsilon(t) = \begin{cases}
0 & t < 0 \\
\varepsilon_0 & t \geq 0
\end{cases}
\]

\[
\overline{\eta}' = -\frac{\tau_{33} - \tau_{11}}{\varepsilon_0}
\]

5. (30 points) A steady flow of an incompressible, Newtonian fluid is created between two very wide, parallel plates as shown below. The pressure at position \(x=0 \) is \(P_0 \) and the pressure at position \(x=L \) is \(P_L \). The top plate moves with a steady velocity \(V \). What is the steady state velocity profile? You may neglect gravity. Please show your work.
6. (5 point bonus problem) For the tensor given below, the first invariant \(I_1 = \text{trace}(\mathbf{T}) = 0 \). What is the first invariant equal to in the cylindrical coordinate system?

\[
\mathbf{T} = \begin{pmatrix}
-4 & 0 & 0 \\
0 & -4 & 0 \\
0 & 0 & 8
\end{pmatrix}_{123}
\]