PART I and
PART II

CALCULATING
FORCE ON A SURFACE
IN FLOW
FROM VELOCITY FIELD

Dr. Faith Morrison
Michigan Tech
(c) 2009
\[\text{Force} = A \cdot \text{Stress} = \left(\frac{\text{force}}{\text{area}} \right) (\text{Area}) \]

\[\text{Stress is uniform} \]

\[\text{total force} \]

\[F = \text{stress} \cdot A_1 + \text{stress} \cdot A_2 \ldots \]

\[F = \sum_{i=1}^{n} (\text{stress}) \cdot A_i \]
Total force \(F \) is given by:

\[
F = \int_A \text{stress} \, dA
\]

at the surface as a function of position.
STEADY FLOW DOWN INCLINE

\[u_z(x) = \frac{pg \cos \beta}{2\mu} (H^2 - x^2) \]
\[F = \int \int \int \text{stress} \, \text{plat surface} \, dy \, dz \]

Newton's Law

\[T_{xz} = -\nu \frac{dV_{x}}{dx} \]

flux of \(z \)-momentum in the \(x \)-dir

stress on \(x \)-surface in \(z \)-direction

\(x \)-surface = surface whose unit normal is \(\hat{e}_x \)

\[F = \int \int_0^L \int_0^W -T_{xz} \, dy \, dz \text{ surface} \]
\[F = \int_0^2 \int_0^x 2 - x \ dx \ d\gamma \text{ surface} \]

\[= \int_0^2 \int_0^x \left. 2 - x \right|_{x=H} \ dx \ d\gamma \]

\[T_{x^2} = -\gamma \frac{dV_z}{dx} \]

\[V_z = \frac{pg \cos \beta}{2\mu} (H^2 - x^2) \]

\[\frac{dV_z}{dx} = \frac{pg \cos \beta}{\mu} (-2x) \]

\[T_{x^2} = -\gamma \left(\frac{pg \cos \beta}{\mu} x \right) \]

\[T_{x^2} = pg \cos \beta x \]

\[\text{Newton's Law of Viscosity} \]
\[F = \iiint_{D} \sigma_{zz} \, dy \, dz \quad \text{where} \quad \sigma_{zz} = \rho g \cos \beta x \]

\[F = \int_{0}^{L} \int_{0}^{w} \rho g \cos \beta y \, dy \, dz \]

\[F = -\rho g \cos \beta H W L \]

Compressive force \(F = \text{tensile force} \)