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CM3110 
Transport I
Part II:  Heat Transfer

1

Complex Heat 
Transfer –
Dimensional Analysis

Professor Faith Morrison

Department of Chemical Engineering
Michigan Technological University
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Examples of (simple) Heat Conduction

(what have we been up to?)
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But these are 
highly simplified 

geometries

Examples of (simple) Heat Conduction

How do we handle complex geometries, 
complex flows, complex machinery?

© Faith A. Morrison, Michigan Tech U.
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Engineering Modeling

© Faith A. Morrison, Michigan Tech U.

•Choose an idealized problem and solve it

•From insight obtained from ideal problem, identify 
governing equations of real problem

•Nondimensionalize the governing equations; deduce 
dimensionless scale factors (e.g. Re, Fr for fluids)

•Design experiments to test modeling thus far

•Revise modeling (structure of dimensional analysis, 
identity of scale factors, e.g. add roughness lengthscale)

•Design additional experiments

•Iterate until useful correlations result
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1T 
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1T 2T
cold less cold

less hot

hot
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1T 2T
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hot

(Answer:  Use the same techniques we 
have been using in fluid mechanics)

Experience with Dimensional Analysis thus far:

© Faith A. Morrison, Michigan Tech U.

•Rough pipes

•Non-circular conduits

•Flow around obstacles (spheres, other complex shapes

Solution:  Navier-Stokes, Re, Fr, ܦ/ܮ, 
dimensionless wall force ൌ 	݂; ݂ ൌ ݂ሺRe, ሻܦ/ܮ

Solution:  Navier-Stokes, Re, 
dimensionless drag 	ൌ ;ܦܥ ܦܥ	

	 ൌ 	
ሺReሻܦܥ

Solution:  add additional length scale; then 
nondimensionalize

Solution:  Use hydraulic diameter as the length 
scale of the flow to nondimensionalize

Solution:  Two components of velocity 
need independent lengthscales

•Flow in pipes at all flow rates (laminar and turbulent)

•Boundary layers



Lectures 4-5 CM3110 Heat Transfer 2013

4

© Faith A. Morrison, Michigan Tech U.

Turbulent flow (smooth pipe) Rough pipe

Around obstacles

f

Re

Noncircular cross section

© Faith A. Morrison, Michigan Tech U.

Turbulent flow (smooth pipe) Rough pipe

Around obstacles

f

Re

Noncircular cross section

These have been 
exhilarating victories 

for dimensional 
analysis
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Now, move to heat transfer:
•Forced convection heat transfer from fluid to wall

•Natural convection heat transfer from fluid to wall

•Radiation heat transfer from solid to fluid

Solution:  ?

Solution:  ?

Solution:  ?

© Faith A. Morrison, Michigan Tech U.

Now, move to heat transfer:
•Forced convection heat transfer from fluid to wall

•Natural convection heat transfer from fluid to wall

•Radiation heat transfer from solid to fluid

Solution:  ?

Solution:  ?

Solution:  ?

We have already started 
using the results/techniques 

of dimensional analysis 
through defining the heat 

transfer coefficient, ݄
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Now, move to heat transfer:
•Forced convection heat transfer from fluid to wall

•Natural convection heat transfer from fluid to wall

•Radiation heat transfer from solid to fluid

Solution:  ?

Solution:  ?

Solution:  ?

We have already started 
using the results/techniques 

of dimensional analysis 
through defining the heat 

transfer coefficient, ݄

(recall that we did this in fluids too:  
we used ݂ Re long before we knew 
where that all came from)

12

)(xT

x

bulkT

wallT

wallx

solid wallbulk fluid

wallbulk TT 

The temperature difference at the fluid-wall interface is caused by 
complex phenomena that are lumped together into the heat transfer 

coefficient, h

© Faith A. Morrison, Michigan Tech U.

Handy tool:  
Heat Transfer Coefficient

ܶ ݔ 	in	solid

ܶ ݔ 	in	
liquid
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13

x
bulk wall

q
h T T

A
 

The flux at the wall is given by the empirical expression known as 

Newton’s Law of Cooling

This expression serves as the definition of 
the heat transfer coefficient.

h depends on:

•geometry
•fluid velocity
•fluid properties
•temperature difference

© Faith A. Morrison, Michigan Tech U.

14

x
bulk wall

q
h T T

A
 

The flux at the wall is given by the empirical expression known as 

Newton’s Law of Cooling

This expression serves as the definition of 
the heat transfer coefficient.

ࢎ depends on:

•geometry
•fluid velocity
•fluid properties
•temperature difference

© Faith A. Morrison, Michigan Tech U.

To get values of ݄ for various 
situations, we need to measure 

data and create data correlations 
(dimensional analysis)
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•Forced convection heat transfer from fluid to wall

•Natural convection heat transfer from fluid to wall

•Radiation heat transfer from solid to fluid

Solution:  ?

Solution:  ?

Solution:  ?

• The values of ݄ will be different for 
these three situations (different 
physics)

• Investigate simple problems in each 
category, model them, take data, 
correlate

Complex Heat transfer Problems to Solve:

© Faith A. Morrison, Michigan Tech U.

Following procedure familiar from pipe flow, 

• What are governing equations?  

• Scale factors (dimensionless numbers)? 

• Quantity of interest? 

Heat flux at the wall 

Chosen problem:  Forced Convection Heat Transfer
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General Energy Transport Equation
(microscopic energy balance)

V

n̂dS
S

As for the derivation of the microscopic momentum balance, 
the microscopic energy balance is derived on an arbitrary 
volume, V, enclosed by a surface, S. 

STkTv
t
T

Cp 





 

 2ˆ

Gibbs notation:

see handout for 
component notation

© Faith A. Morrison, Michigan Tech U.

General Energy Transport Equation
(microscopic energy balance)

see handout for 
component notation

rate of change

convection

conduction 
(all directions)

source

velocity must satisfy 
equation of motion, 
equation of continuity

(energy 
generated 

per unit 
volume per 

time)

STkTv
t

T
Cp 






 

 2ˆ

© Faith A. Morrison, Michigan Tech U.
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Note:  this handout is on the web:  
www.chem.mtu.edu/~fmorriso/cm310/energy2013.pdf

Equation of energy for Newtonian fluids of constant density, , and
thermal conductivity, k, with source term (source could be viscous dissipation, electrical
energy, chemical energy, etc., with units of energy/(volume time)).

CM310 Fall 1999 Faith Morrison

Source:  R. B. Bird, W. E. Stewart, and E. N. Lightfoot, Transport Processes, Wiley, NY,
1960, page 319.

Gibbs notation (vector notation)
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Cylindrical (rz) coordinates:
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Spherical (r) coordinates:
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© Faith A. Morrison, Michigan Tech U.

R1

Example:  Heat flux in a cylindrical shell

Assumptions:
•long pipe
•steady state
•k = thermal conductivity of wall
•h1, h2 = heat transfer coefficients

What is the steady state 
temperature profile in a cylindrical 
shell (pipe) if the fluid on the 
inside is at Tb1 and the fluid on 
the outside is at Tb2? (Tb1>Tb2)

Cooler fluid 
at Tb2

Hot fluid at Tb1

R2

r

** REVIEW ** REVIEW **
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© Faith A. Morrison, Michigan Tech U.
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Consider:  Heat-transfer to from flowing fluid inside of a 
tube – forced-convection heat transfer

T1= core bulk temperature
To= wall temperature

T(r,,z) = temp distribution 
in the fluid

© Faith A. Morrison, Michigan Tech U.

In principle, with the right math/computer 
tools, we could calculate the complete 
temperature and velocity profiles in the 

moving fluid.

Now:  How do develop correlations for h?

How is the heat transfer 
coefficient related to the full 

solution for T(r,,z)?

What are governing equations?  

Microscopic energy balance plus Navier-Stokes, 
continuity

Scale factors?  

Re, Fr, L/D plus whatever comes from the rest of the 
analysis

Quantity of interest (like wall force, drag)?

Heat transfer coefficient

The quantity of interest in 
forced-convection heat 

transfer is h

© Faith A. Morrison, Michigan Tech U.
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1T

0T
pipe w

all
fluid

),,( zrT 

Unknown function:

© Faith A. Morrison, Michigan Tech U.

  
2

1

0 0

2
L

o
r R

T
k Rdzd Q h RL T T

r



 



   

 

may vary 
with	ߠ, z Total heat flow through 

the wall in terms of h

Total heat conducted to the 
wall from the fluid 

At the wall (r = R), we can relate T profile to h through 
the total heat flow through the wall, Q:

Now, non-dimensionalize 
this expression

© Faith A. Morrison, Michigan Tech U.

ܳ ൌඵ ො݊ ⋅ ෤പݍ ௦௨௥௙௔௖௘
	݀ܵ

ௌ
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non-dimensional variables:

position:
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© Faith A. Morrison, Michigan Tech U.

Non-dimensionalize 
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one additional 
dimensionless group

© Faith A. Morrison, Michigan Tech U.
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This is a function of Re
through ݒപ
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© Faith A. Morrison, Michigan Tech U.
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no free surfaces









D

L
NuNu ,FrPr,Re,

© Faith A. Morrison, Michigan Tech U.

According to our dimensional analysis calculations, the 
dimensionless heat transfer coefficient should be found to 

be a function of four dimensionless groups:

Now, do the experiments.

© Faith A. Morrison, Michigan Tech U.

Correlations for Forced Convection Heat Transfer Coefficients
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14.0
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PrRe86.1 






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
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
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w
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


Heat Transfer in Laminar flow in pipes: data correlation for h

Geankoplis, 4th ed. eqn 4.5-4, page 260

Re<2100, (RePrD/L)>100, horizontal pipes; all properties evaluated at 
the temperature of the bulk fluid except w which is evaluated at the wall 
temperature.

the subscript “a” refers to 
the type of average 
temperature used in 

reporting the correlation

   
2

bowbiw
a

aa
TTTT

T

TAhq






© Faith A. Morrison, Michigan Tech U.
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
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



w
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D
k
Dh

Nu



We assumed constant ߩ, k, m, etc.  Therefore we did not 
predict a viscosity-temperature dependence.  If viscosity 
is not assumed constant, the dimensionless group shown 
below is predicted to appear in correlations.

?

© Faith A. Morrison, Michigan Tech U.

(reminiscent of pipe wall roughness; needed to modify 
dimensional analysis to correlate on roughness)
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Viscous fluids with large DT

ref:  McCabe, Smith, Harriott, 5th ed, p339

heating

cooling

lower viscosity fluid layer 
speeds flow near the 
wall  ==> higher h

higher viscosity fluid 
layer retards flow near 
the wall  ==> lower h

14.0










w

b




wb  

wb  

empirical result:

© Faith A. Morrison, Michigan Tech U.

Why does L/D appear in laminar flow correlations and 
not in the turbulent flow correlations?

h(z)

Lh

10 20 30 40 50 60 70 L/D

Less lateral mixing in laminar flow 
means more variation in ݄ሺݔሻ.

LAMINAR

© Faith A. Morrison, Michigan Tech U.
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h(z)

Lh

10 20 30 40 50 60 70 L/D

7.0

1










D

L

h

h

L

L/D

In turbulent flow, good lateral mixing reduces the 
variation in ݄ along the pipe length.

TURBULENT

© Faith A. Morrison, Michigan Tech U.

laminar flow
in pipes

14.0
3

1

PrRe86.1 















w

ba
a L

D

k

Dh
Nu




Re<2100, (RePrD/L)>100,
horizontal pipes, eqn 4.5-4,
page 238; all properties
evaluated at the temperature of
the bulk fluid except w which
is evaluated at the wall
temperature.

turbulent flow
in smooth

tubes

14.0

3

1
8.0 PrRe027.0 










w

blm
lm k

Dh
Nu




Re>6000, 0.7 <Pr <16,000,
L/D>60 , eqn 4.5-8, page 239;
all properties evaluated at the
mean temperature of the bulk
fluid except w which is
evaluated at the wall
temperature.  The mean is the
average of the inlet and outlet
bulk temperatures; not valid
for liquid metals.

air at 1atm in
turbulent flow

in pipes
2.0

8.0

2.0

8.0

)(

)/(5.0

)(

)/(52.3

ftD

sftV
h

mD

smV
h

lm

lm




equation 4.5-9, page 239

water in
turbulent flow

in pipes

    

    
2.0

8.0

2.0

8.0

)(

/
011.01150

)(

/
0146.011429

ftD

sftV
FTh

mD

smV
CTh

o
lm

o
lm




4 < T(oC)<105, equation 4.5-
10, page 239

Example of partial solution to Homework

© Faith A. Morrison, Michigan Tech U.
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© Faith A. Morrison, Michigan Tech U.

Complex Heat transfer Problems to Solve:

•Forced convection heat transfer from fluid to wall

•Natural convection heat transfer from fluid to wall

•Radiation heat transfer from solid to fluid

Solution:  ?

Solution:  ?

Solution:  ?

Free Convection i.e. hot air rises

•heat moves from hot surface to cold air (fluid) by radiation and conduction
•increase in fluid temperature decreases fluid density
•recirculation flow begins
•recirculation adds to the heat-transfer from conduction and radiation

 coupled heat and momentum transport

© Faith A. Morrison, Michigan Tech U.
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Free Convection i.e. hot air rises

How can we solve real problems 
involving free (natural) convection?

We’ll try this:  Let’s review how we 
approached solving real problems in 
earlier cases, i.e. in fluid mechanics, 

forced convection.

© Faith A. Morrison, Michigan Tech U.

Engineering Modeling

© Faith A. Morrison, Michigan Tech U.

•Choose an idealized problem and solve it

•From insight obtained from ideal problem, identify 
governing equations of real problem

•Nondimensionalize the governing equations; deduce 
dimensionless scale factors (e.g. Re, Fr for fluids)

•Design experiments to test modeling thus far

•Revise modeling (structure of dimensional analysis, 
identity of scale factors, e.g. add roughness lengthscale)

•Design additional experiments

•Iterate until useful correlations result

inQ
onsW ,

Process 
scale

1T 

2T 

1T 2T
cold less cold

less hot

hot

1T 

2T 

1T 2T
cold less cold

less hot

hot
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Example: Free convection between long parallel plates or
heat transfer through double-pane glass windows

T2 T1
12 TT 

y
z

assumptions:
long, wide slit
steady state
no source terms
viscosity constant
density varies with T

Calculate: T, v profiles

(warm) (cool)b

© Faith A. Morrison, Michigan Tech U.

In our analyses of momentum transport so far, we have 
assumed constant density

 use Navier-Stokes equation

Actually, we can use the Navier-Stokes equation for any 
problem for which the following equation holds:

0












z

v

y

v

x

v zyx

© Faith A. Morrison, Michigan Tech U.
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y
z

Let P=Po 

at z=0

at z, P=P(z)

Is Pressure a function of z?
YES, there should be hydrostatic pressure ሺ݄݃ߩሻ

average 
density

“Pressure at the bottom of 
a column of fluid = 

pressure at top ൅݄݃ߩ.”

© Faith A. Morrison, Michigan Tech U.

⇒
݀ܲ
ݖ݀

ൌ െ̅݃ߩ

଴݌ ൌ ݌ ݖ ൅ ݖ݃ߩ̅
݌ ݖ ൌ ଴݌ െ ݖ݃ߩ̅

To account for the temperature variation of ߩ:

 TT  

2
21 TT

T










volumetric coefficient of expansion at തܶ

mean density

© Faith A. Morrison, Michigan Tech U.

(look up the physics in the literature)
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© Faith A. Morrison, Michigan Tech U.

45

Example :  Natural convection between vertical plates

You try.

T2 T1
12 TT 

y
z

(warm) (cool)b

Final Result: (free convection between two slabs)

 



























b

y

b

ybTTg
yvz

32
12

12
)(




(see next slide for plot)

© Faith A. Morrison, Michigan Tech U.
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-1.5

-1

-0.5

0

0.5

1

1.5

-1 -0.5 0 0.5 1 b

y

max,z

z

v

v

Velocity profile for free convection between two wide,
 tall, parallel plates

© Faith A. Morrison, Michigan Tech U.

© Faith A. Morrison, Michigan Tech U.

Nondimensionalize the 
governing equations; 

deduce dimensionless 
scale factors 

To nondimensionalized the Navier-
Stokes for free convection problems,  we 
follow the simple problem we just 
completed (=(T), vav=0).

gvPvv
t

v  





 

 2

?

?

?

Following the previous 
example, how do we handle 
the various densities?
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EXAMPLE I: Pressure-
driven flow of a 
Newtonian fluid in a 
tube:  

•steady state
•well developed
•long tube

g

cross-section A:

r

z

L

R
fluid

A

 r
 z

zv

How did we nondimensionalized the Navier-Stokes before?

FORCED CONVECTION

There was an average 
velocity used as the 

characteristic velocity

© Faith A. Morrison, Michigan Tech U.

z-component of the Navier-Stokes Equation:
























z

v
v

v

r

v

r

v
v

t

v z
z

zz
r

z


 

z
zzz g

z

vv

rr

v
r

rrz

P 


 

































2

2

2

2

2

11

Choose:

D = characteristic length
V = characteristic velocity
D/V = characteristic time
૛ࢂ࣋ = characteristic pressure

This velocity is an 
imposed (forced) 
average velocity

FORCED CONVECTION FORCED CONVECTION FORCED CONVECTION

© Faith A. Morrison, Michigan Tech U.
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V

v
v z

z 
*

non-dimensional variables:

D

tV
t *

D

z
z *

D

r
r *

2
*

V

P
P




g

g
g z

z 
*

time: position: velocity:

driving 
force:

V

v
v r

r 
*

V

v
v 
 
*

FORCED CONVECTION FORCED CONVECTION FORCED CONVECTION

© Faith A. Morrison, Michigan Tech U.

z-component of the 
nondimensional Navier-Stokes 
Equation:

























*

**

*

*

*

*
*

*

**

z

v
v

v

r

v

r

v
v

t

v

Dt

Dv z
z

zz
r

zz




  *
2

*2
*

**

g
V

gD
v

VDz

P

Dt

Dv
z

z 







 
2*

*2

2

*2

2**

*
*

**

*2 11

z

vv

rr

v
r

rr
v zzz

z

























Re

1

Fr

1

FORCED CONVECTION FORCED CONVECTION FORCED CONVECTION

© Faith A. Morrison, Michigan Tech U.
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For free convection, what is the average velocity?  
Answer:  zero!

V

v
v z

z 
*

for forced convection we used:

for free convection 〈ݒ〉 ൌ 0;what	V should we use for free convection?


 Dv

v z
z 
*

Solution:  use a Reynolds-number type expression so that no 
characteristic velocity imposes itself (as we’ll see now how that 
works): 




D
V 

FREE CONVECTION FREE CONVECTION FREE CONVECTION

© Faith A. Morrison, Michigan Tech U.

ܸ ≡ 〈ݒ〉

When non-dimensionalizing the Navier-Stokes, what do I 
use for ߩ? (answer from idealized problem)
























z

v
v

v

r

v

r

v
v

t

v z
z

zz
r

z


 

z
zzz g

z

vv

rr

v
r

rrz

P 


 

































2

2

2

2

2

11

here we use ̅ߩ
because the issue 

is volumetric
flow rate

here we use ߩሺܶሻ
because the issue 
is driving the flow

by density differences
affected by gravity

as before, for 
pressure 
gradient we 
use െ̅݃ߩ

FREE CONVECTION FREE CONVECTION FREE CONVECTION

© Faith A. Morrison, Michigan Tech U.
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
Dv

v z
z 
*

non-dimensional variables:



2

*

D

t
t 

D

z
z *

D

r
r *

time: position: velocity:


 Dv

v r
r 
*


 


Dv

v *

FREE CONVECTION FREE CONVECTION FREE CONVECTION

driving 
force:

TT

TT
T





2

*

© Faith A. Morrison, Michigan Tech U.

    *
2

2
23*2

*

T
TTgD

v
Dt

Dv
z

z











 





SOLUTION:  z-component of the nondimensional
Navier-Stokes Equation (free convection):

























*

**

*

*

*

*
*

*

**

z

v
v

v

r

v

r

v
v

t

v

Dt

Dv z
z

zz
r

zz




  2*

*2

2

*2

2**

*
*

**

*2 11

z

vv

rr

v
r

rr
v zzz

z

























Grashof number

FREE CONVECTION FREE CONVECTION FREE CONVECTION

Or any appropriate 
characteristic Δܶ

© Faith A. Morrison, Michigan Tech U.
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  **2
*

*

GrTv
Dt

Dv
z

z 

*2****
*

*

Pr

1
TTv

t

T














Dimensionless Equation of Motion (free convection)

Dimensionless Energy Equation (free convection; Re = 1)
















D

L

D

L
T ,GrPr,NuNu,NuNu *

FREE CONVECTION FREE CONVECTION FREE CONVECTION

© Faith A. Morrison, Michigan Tech U.

mma
k

hL
PrGrNu 

Example: Natural convection from vertical planes and 
cylinders

•a,m are given in Table 4.7-1, page 255 Geankoplis for 
several cases
•L is the height of the plate
•all physical properties evaluated at the film temperature, Tf

2
bw

f

TT
T




FREE CONVECTION FREE CONVECTION FREE CONVECTION

© Faith A. Morrison, Michigan Tech U.
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Experience with Dimensional Analysis thus far:
•Flow in pipes at all flow rates (laminar and turbulent)

Solution:  Navier-Stokes, Re, Fr, L/D, 
dimensionless wall force = f; f=f(Re, L/D)

Solution:  Navier-Stokes, Re, 
dimensionless drag= CD; CD = CD(Re)

•Forced convection heat transfer from fluid to wall
Solution:  Microscopic energy, Navier-Stokes, Re, Pr, L/D, 
heat transfer coefficient=h; h = h(Re,Pr,L/D)

•Flow around obstacles (spheres, other complex shapes

•Natural convection heat transfer from fluid to wall
Solution:  Microscopic energy, Navier-Stokes, Gr, Pr, L/D, 
heat transfer coefficient=h; h = h(Gr,Pr,L/D)

© Faith A. Morrison, Michigan Tech U.

•Flow in pipes at all flow rates (laminar and turbulent)
Solution:  Navier-Stokes, Re, Fr, L/D, 
dimensionless wall force = f; f=f(Re, L/D)

Solution:  Navier-Stokes, Re, 
dimensionless drag= CD; CD = CD(Re)

Now, move to last heat-transfer mechanism:
•Radiation heat transfer from solid to fluid?

Solution:  ?

•Forced convection heat transfer from fluid to wall
Solution:  Microscopic energy, Navier-Stokes, Re, Pr, L/D, 
heat transfer coefficient=h; h = h(Re,Pr,L/D)

•Flow around obstacles (spheres, other complex shapes

•Natural convection heat transfer from fluid to wall
Solution:  Microscopic energy, Navier-Stokes, Gr, Pr, L/D, 
heat transfer coefficient=h; h = h(Gr,Pr,L/D)

© Faith A. Morrison, Michigan Tech U.

Experience with Dimensional Analysis thus far:
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•Flow in pipes at all flow rates (laminar and turbulent)
Solution:  Navier-Stokes, Re, Fr, L/D, 
dimensionless wall force = f; f=f(Re, L/D)

Solution:  Navier-Stokes, Re, 
dimensionless drag= CD; CD = CD(Re)

Now, move to last heat-transfer mechanism:
•Radiation heat transfer from solid to fluid?

Solution:  ?

•Forced convection heat transfer from fluid to wall
Solution:  Microscopic energy, Navier-Stokes, Re, Pr, L/D, 
heat transfer coefficient=h; h = h(Re,Pr,L/D)

•Flow around obstacles (spheres, other complex shapes

•Natural convection heat transfer from fluid to wall
Solution:  Microscopic energy, Navier-Stokes, Gr, Pr, L/D, 
heat transfer coefficient=h; h = h(Gr,Pr,L/D)

© Faith A. Morrison, Michigan Tech U.

Actually, we’ll hold off on 
radiation and spend some 

time on heat exchangers and 
other practical concerns

Experience with Dimensional Analysis thus far:


