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Chemical engineering is mostly concerned with incompressible flows in pipes, reactors,
mixers, and other process equipment. Gases may be modeled as incompressible fluids in
both microscopic and macroscopic calculations as long as the pressure changes are less than
about 20% of the mean pressure (Geankoplis, Denn). The friction-factor/Reynolds-number
correlation for incompressible fluids is found to apply to compressible fluids in this regime
of pressure variation (Perry and Chilton, Denn). Compressible flow is important in selected
application, however, including high-speed flow of gasses in pipes, through nozzles, in tur-
bines, and especially in relief valves. We include here a brief discussion of issues related to
the flow of compressible fluids; for more information the reader is encouraged to consult the
literature.

A compressible fluid is one in which the fluid density changes when it is subjected
to high pressure-gradients. For gasses, changes in density are accompanied by changes in
temperature, and this complicates considerably the analysis of compressible flow.

The key difference between compressible and incompressible flow is the way that forces
are transmitted through the fluid. Consider the flow of water in a straw. When a thirsty
child applies suction to one end of a straw submerged in water, the water moves - both
the water close to her mouth moves and the water at the far end moves towards the lower-
pressure area created in the mouth. Likewise, in a long, completely filled piping system, if
a pump is turned on at one end, the water will immediately begin to flow out of the other
end of the pipe.

In a compressible fluid, the imposition of a force at one end of a system does not result
in an immediate flow throughout the system. Instead, the fluid compresses near where
the force was applied; that is, its density increases locally in response to the force. The
compressed fluid expands against neighboring fluid particles causing the neighboring fluid
itself to compress and setting in motion a wave pulse that travels throughout the system.
The pulse of higher density fluid takes some time to travel from the source of the disturbance
down through the pipe to the far end of the system.

The wave-pulse mechanism of momentum transfer is a different kind of molecular
momentum transfer that needs to be included in the momentum balances. The total stress
tensor Π = pI + τ is the quantity that contains a mathematical expression for all the
molecular processes that affect stress generation in flow, and it is here that new terms are
needed for the microscopic equations of change to properly model compressible flow.
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For Newtonian fluids, we have seen that the extra stress tensor τ is given by a simple
expression that works for all flows:

τ = −µγ̇
Newtonian Constitutive

equation for
incompressible fluids

(3.185)

For compressible fluids, the relationship between stress and deformation is modified to be
(Bird et al.)

τ = −µγ̇ +
(
2

3
µ − κ

)
(∇ · v) I

Newtonian Constitutive
equation for

compressible fluids
(3.186)

The parameter κ is the dilatational or bulk viscosity, a coefficient that expresses viscous
momentum transport that takes place when density changes take place; κ is zero for ideal,
monatomic gases (Bird et al., Denn). The bulk viscosity is only important when very large
expansions take place, and it can usually be neglected (Denn). In microscopic momentum
balance calculations on compressible fluids, equation 3.186 is used as the stress constitutive
equation; the solution methods for velocity and stress profiles are unchanged. Note that for
incompressible fluids the continuity equation becomes ∇ · v = 0, and equation 3.186 reduces
to the more familiar expression τ = −µγ̇ for incompressible fluids.

In macroscopic calculations with the mechanical energy balance (MEB), we must make
some modifications to allow the MEB to be applicable to compressible fluids. The derivation
assumes ideal gas and begins with the mechanical energy balance written over a differen-
tial length of straight pipe (see attached derivation from Geankoplis). The final result for
pressure/flow rate variation in isothermal flow is given below

p2 − p1 =
4fLG2

2Dρave

+
G2

ρave

ln

(
p1

p2

)
Isothermal

Compressible flow
(3.187)

where L is pipe length, and G = vρ.

One of the most striking aspects of this result is that it predicts that there is a max-
imum velocity at high pressure drops. Taking the derivative of equation 3.187 with respect
to p2 and setting it to zero we calculate that

vmax =

√
p2

ρ2
(3.188)

To understand this maximum flow velocity and its implications, we must return again to a
discussion of the fundamental mechanism of momentum transfer in compressible fluids.

In steady flows of incompressible fluids, the instantaneous transmission of forces
through the fluid allows flow around an obstacle, for example, to rearrange to allow for
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the smooth passage of the fluid around the obstacle. In incompressible flows, forces are ap-
plied and the fluid responds directly to the forces by moving, displacing neighbor particles,
and thus establishing the appropriate flow field. In incompressible flows there is no time lag
and no difficulty transmitting stress information throughout the flow field.

In compressible fluids, the transmission of forces is not instantaneous, but rather it
occurs through the motion of transverse pressure waves. Because the pressure waves take
a finite amount of time to travel from one location to another, there are interesting effects
that occur when the speed of the flow is close to the speed of propagation of these pressure
waves. The propagation velocity of a pressure wave in a compressible medium is called the
velocity of sound.

If the pressure variation is not too large the speed of sound in a medium is given by
(Tipler)

v =

√
B

ρo
(3.189)

where B is the bulk modulus, defined as the ratio of the change in pressure to the fractional
decrease in volume

B =
∆p

−∆V/V
(3.190)

and ρo is density. The bulk modulus relates the change in volume to changes in pressure.
This is information that is found in the equation of state for a material. For example, for
an ideal gas, pressure and volume are related by the ideal gas law.

pV = nRT (3.191)

If we differentiate the ideal gas law and assume temperature is constant, we obtain

pdV + V dp = 0 (3.192)

which may be rearranged to give the bulk modulus for an ideal gas under isothermal condi-
tions:

B =
dp

−dV/V
= p

Bulk modulus
of an ideal gas
at constant T

(3.193)

The speed of sound therefore is given by

v =

√
B

ρo

(3.194)

=

√
p

ρo
=

√
RT

M
(3.195)

where we have substituted for p the expression given by the ideal gas law p = nRT/V =
ρoRT/M , and M is the molecular weight of the medium.
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This expression for the speed of sound (equation 3.195) is found to be 20% too small
when compared with experimental results (Tipler), and the reason is that the passage of
sounds through a medium does not occur isothermally. The compressions and decompres-
sions that take place tend to change the temperature of the gas locally (consider the relation-
ship between volume and temperature in the ideal gas law), and because these temperature
changes occur quite rapidly, there is no time for much heat transfer to take place. Rather
than assume isothermal passage, it is better to assume that the movement of sounds is
adiabatic, that is, that no heat transfer occurs.

Application of the first law of thermodynamics (dQ = dU + dW ), under quasistatic
(dW = pdV ), adiabatic (dQ = 0) conditions, results in an expression that relates pressure
and volume when a gas undergoes volume changes under adiabatic conditions (Tipler).

pV γ = constant (3.196)

where γ ≡ Cp/Cv, the ratio of the heat capacity at constant pressure to the heat capacity
at constant volume. We can derive B for the quasi-static, adiabatic case by taking the
derivative of equation 3.196 with respect to pressure and rearranging.

d(pV γ)

dp
= 0 (3.197)

pγV γ−1dV

dp
+ V γ = 0 (3.198)

pγdV + V dp = 0 (3.199)

B =
dp

−dV/V
= γp (3.200)

Substituting this into equation 3.189 for the speed of sound in terms of B yields a more
correct expression the speed of sound in an ideal gas.

v =

√
B

ρo

(3.201)

=

√
γp

ρo

(3.202)

v =

√
γRT

M

Speed of Sound
of an ideal gas
(adiabatic)

(3.203)

This result makes predictions that are close to experimental observations.

Returning now to the maximum velocity calculated in equation 3.188 for compressible
flows we see that the maximum fluid velocity is just the isothermal speed of sound in the
medium. Note that vmax for adiabatic flow is the adiabatic speed of sound (Geankoplis).
In other words, the maximum speed attainable in a pressure-driven compressible flow is
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the speed at which the pressure waves themselves travel. It is not possible to exceed that
speed by adjusting the pressure drop. This has extraordinarily important implications in
the design and operation of pressure relief valves, since even a very high pressure drop can
only produce relief at the speed of sound, no faster. Proper design of relief valves means
including the appropriate number and size of valves so that accidental overpressures can be
relieved safely within these constraints.
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