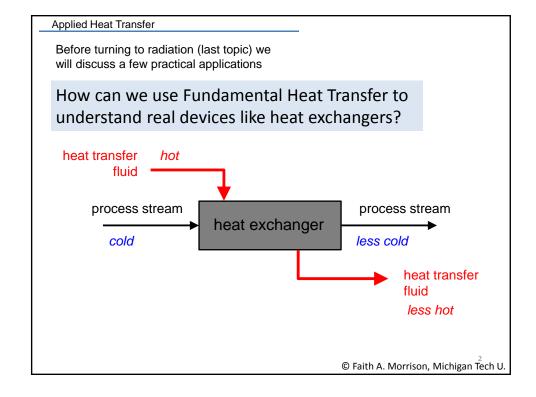
CM3110 Transport I Part II: Heat Transfer

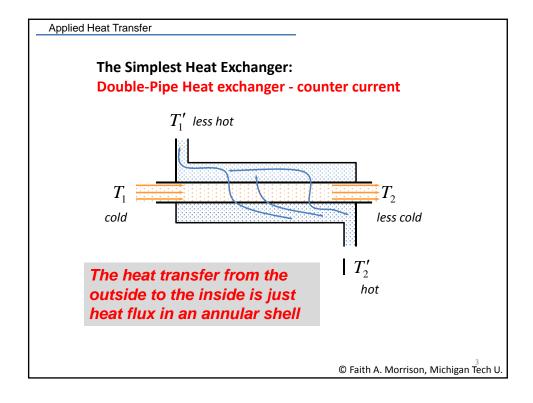
Michiganiceli

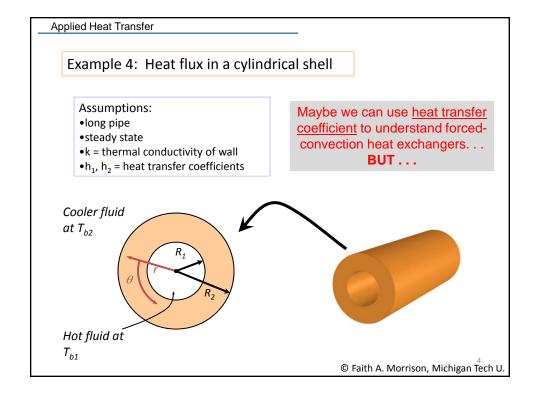
Applied Heat Transfer: Heat Exchanger Modeling, Sizing, and Design

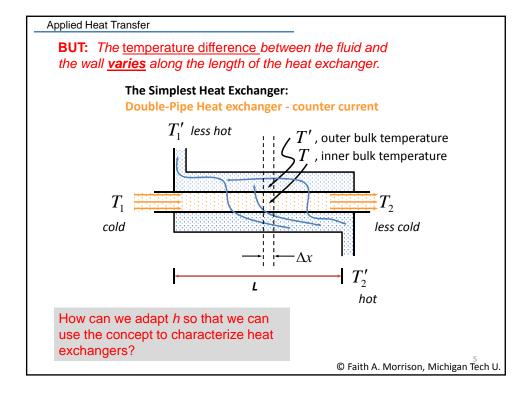
Professor Faith Morrison

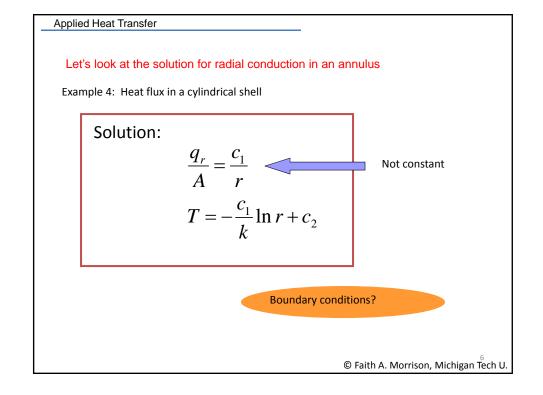
Department of Chemical Engineering Michigan Technological University











Applied Heat Transfer

Example 4: Heat flux in a cylindrical shell, Newton's law of cooling boundary Conditions

Results: Radial Heat Flux in an Annulus

$$T - T_{b2} = \frac{(T_{b1} - T_{b2}) \left(\ln \left(\frac{R_2}{r} \right) + \frac{k}{h_2 R_2} \right)}{\frac{k}{h_2 R_2} + \ln \left(\frac{R_2}{R_1} \right) + \frac{k}{h_1 R_1}}$$

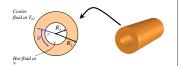
$$\frac{q_r}{A} = \frac{(T_{b1} - T_{b2})}{\frac{1}{h_2 R_2} + \frac{1}{k} \ln\left(\frac{R_2}{R_1}\right) + \frac{1}{h_1 R_1}} \left(\frac{1}{r}\right)$$

© Faith A. Morrison, Michigan Tech U.

Applied Heat Transfer

Example 4: Heat flux in a cylindrical shell

Solution for Heat Flux:

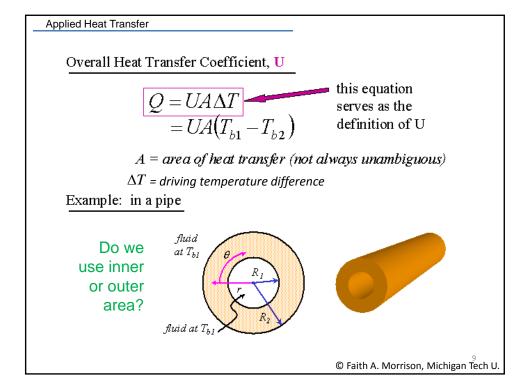


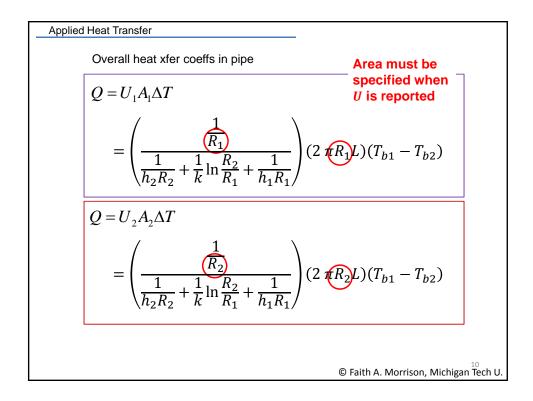
$$\frac{q_r}{A} = \frac{(T_{b1} - T_{b2})}{\frac{1}{h_2 R_2} + \frac{1}{k} \ln\left(\frac{R_2}{R_1}\right) + \frac{1}{h_1 R_1}} \left(\frac{1}{r}\right)$$

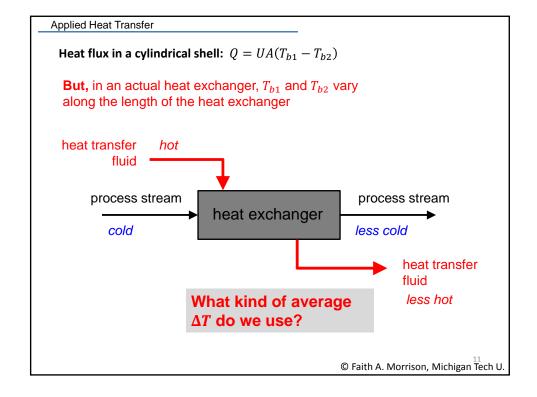
Calculate Total Heat flow:

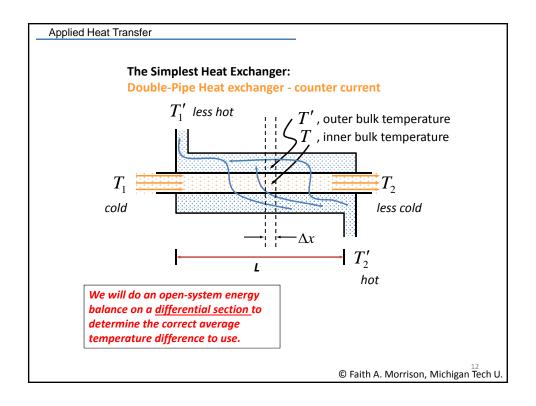
$$Q = \frac{q_r}{A}(2\pi r L) = \frac{(T_{b1} - T_{b2})(2\pi L)}{\frac{1}{h_2 R_2} + \frac{1}{k} \ln\left(\frac{R_2}{R_1}\right) + \frac{1}{h_1 R_1}}$$

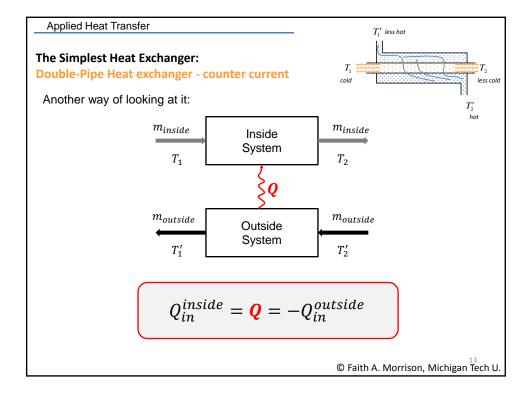
Note that total heat flow is proportional to bulk ΔT and (almost) area of heat transfer

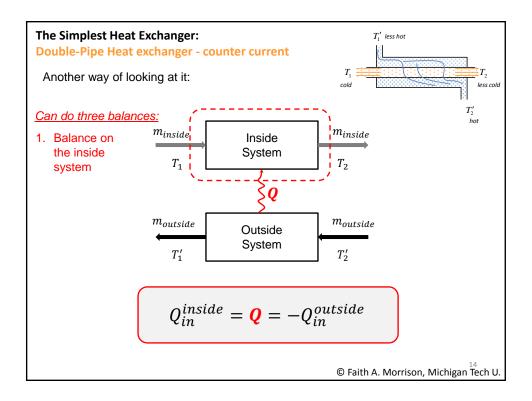


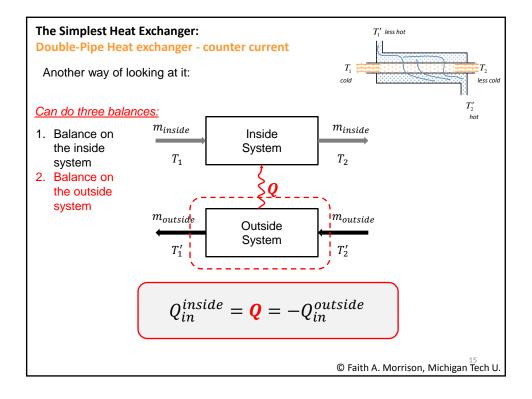


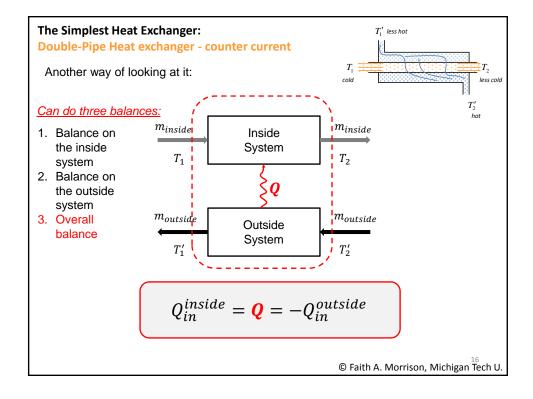


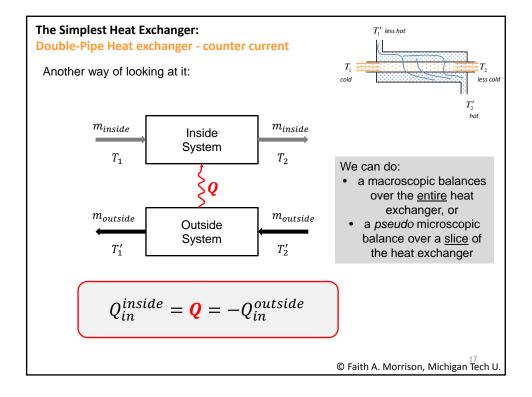


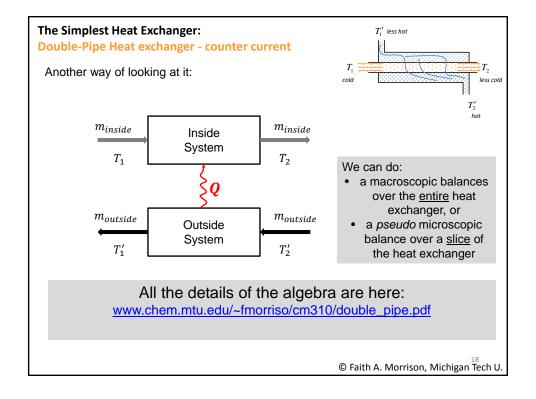


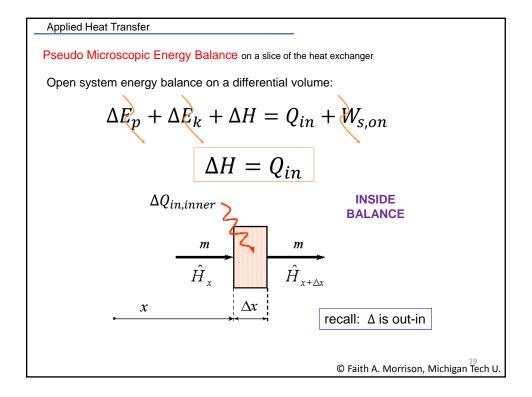


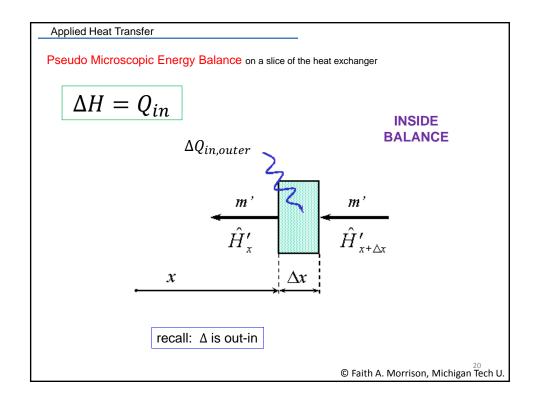


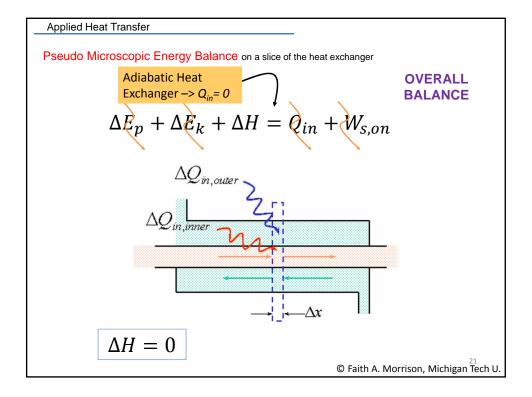


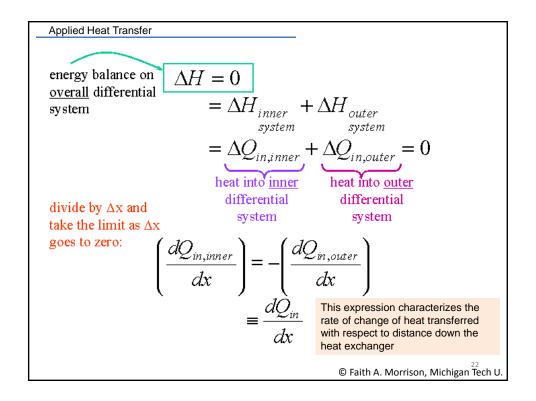












The Simplest Heat Exchanger:

Double-Pipe Heat exchanger - counter current

Result of inside balance:

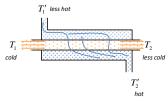
$$\frac{dQ_{inner}}{dx} = m\hat{C}_p\left(\frac{dT}{dx}\right)$$

Result of outside balance:

$$-\frac{dQ_{outer}}{dx} = m'\hat{C}_p'\left(\frac{dT'}{dx}\right)$$

Result of overall balance:

$$-\frac{dQ_{outer}}{dx} = \frac{dQ_{inner}}{dx} \equiv \frac{dQ_{in}}{dx}$$



Solve for temperature derivatives, and subtract:

This
$$\frac{dQ_{in}}{dx} \left(\frac{1}{m'\hat{C}'_p} - \frac{1}{m\hat{C}_p} \right) = \left(\frac{dT'}{dx} - \frac{dT}{dx} \right)$$

$$= \frac{d(T' - T)}{dx}$$

This depends on T' - T

All the details of the algebra are here: www.chem.mtu.edu/~fmorriso/cm310/double_pipe.pdf

© Faith A. Morrison, Michigan Tech U.

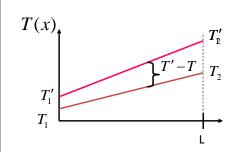
Analysis of double-pipe heat exchanger T(x) T' T'

Analysis of double-pipe heat exchanger

$$\frac{d(T'-T)}{dx} = \frac{dQ_{in}}{dx} \left(\frac{1}{m'\hat{C}'_p} - \frac{1}{m\hat{C}_p} \right)$$

Want to integrate to solve for T' - T,

but this is a function of T' - T



For the differential slice of the heat exchanger that we are considering (modeling our ideas on Newton's law of cooling),

$$\frac{dQ_{in}}{dA} = (?)(T' - T)$$

© Faith A. Morrison, Michigan Tech U.

Analysis of double-pipe heat exchanger

For the differential slice of the heat exchanger that we are considering (modeling our ideas on Newton's law of cooling),

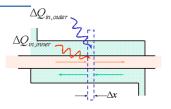
$$\frac{dQ_{in}}{dA} = (?)(T' - T)$$

$$dQ_{in} = (U)dA(T' - T)$$

= $U(2\pi R dx(T' - T))$

$$\frac{dQ_{in}}{dx} = U(2\pi R)(T' - T)$$

This is the missing piece that we needed.



We can write $\frac{dQ_{in}}{dx}$ in terms of T'-T if we define an "overall" heat transfer coefficient, U

$$\frac{d(T'-T)}{dx} = \frac{dQ_{in}}{dx} \left(\frac{1}{m'\hat{C}_p'} - \frac{1}{m\hat{C}_p} \right)$$

$$\frac{dQ_{in}}{dx} = 2\pi RU(T'-T)$$

$$\frac{d(T'-T)}{dx} = 2\pi R U(T'-T) \left(\frac{1}{\hat{C}_p' m'} - \frac{1}{\hat{C}_p m} \right)$$

$$\frac{d(T'-T)}{(T'-T)} = \left[2\pi RU\left(\frac{1}{\hat{C}_p'm'} - \frac{1}{\hat{C}_pm}\right)\right]dx$$

© Faith A. Morrison, Michigan Tech U.

Analysis of double-pipe heat exchanger

$$\frac{d(T'-T)}{(T'-T)} = \left[2\pi RU\left(\frac{1}{\hat{C}_p'm'} - \frac{1}{\hat{C}_pm}\right)\right]dx$$

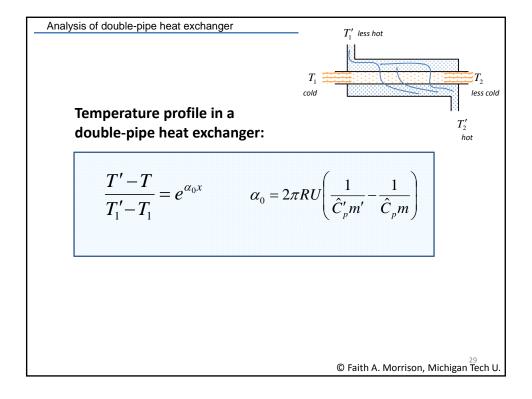
$$\Phi \equiv T' - T
\alpha_0 \equiv 2\pi R U \left(\frac{1}{\hat{C}_p' m'} - \frac{1}{\hat{C}_p m} \right)$$
 (we'll assume
 U is constant)

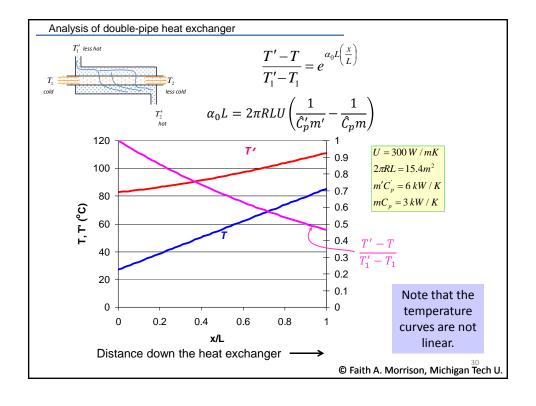
$$\frac{d\Phi}{\Phi} = \alpha_0 dx$$
$$\int \frac{d\Phi}{\Phi} = \alpha_0 \int dx$$

$$\ln \Phi = \alpha_0 x + \text{constant}$$

$$\Phi = \Phi_0 e^{\alpha_0 x}$$

B.C:
$$x = 0, T - T' = T_1 - T_1'$$





Analysis of double-pipe heat exchanger

Temperature profile in a double-pipe heat exchanger:

$$\frac{T'-T}{T_1'-T_1}=e^{\alpha_0x}$$

$$\frac{T'-T}{T_1'-T_1} = e^{\alpha_0 x} \qquad \alpha_0 = 2\pi R U \left(\frac{1}{\hat{C}_p'm'} - \frac{1}{\hat{C}_p m} \right)$$

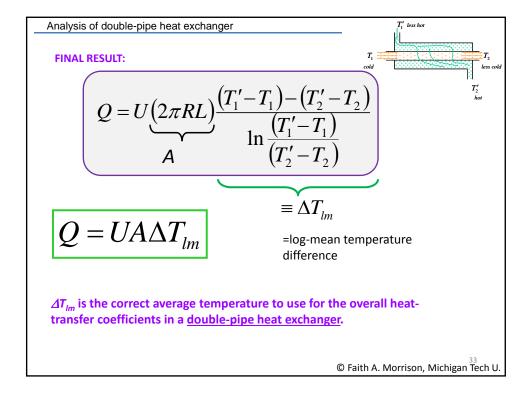
Useful result, but what we **REALLY** want is an easy way to relate $Q_{in\ overall}$ to inlet and outlet temperatures.

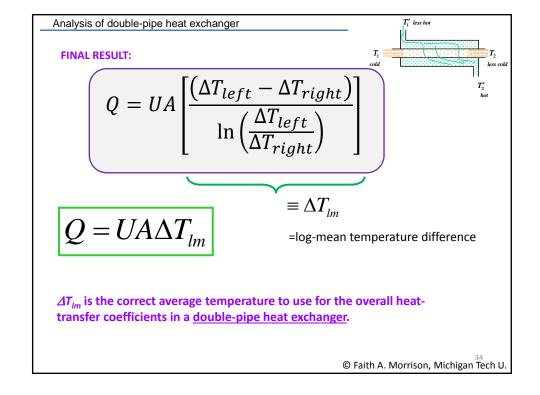
At the exit: x = L, $(T - T') = (T_2 - T'_2)$

$$\ln\left(\frac{T_{2}'-T_{2}}{T_{1}'-T_{1}}\right) = U\left(2\pi RL\right)\left(\frac{1}{\hat{C}_{p}'m'}-\frac{1}{\hat{C}_{p}m}\right)$$

© Faith A. Morrison, Michigan Tech U.

Analysis of double-pipe heat exchanger $\ln\left(\frac{T_2'-T_2}{T_1'-T_1}\right) = U\left(2\pi RL\right)\left(\frac{1}{\hat{C}_p'm'} - \frac{1}{\hat{C}_pm}\right)$ $Q_{in} = m\hat{C}_p(T_2 - T_1)$ $\Rightarrow \frac{1}{m\hat{C}_n} = \frac{T_2 - T_1}{Q_{in}}$ The $m\hat{C}_n$ terms appear in the overall macroscopic energy balances. We can therefore rearrange this equation by $\begin{aligned} -Q_{in} &= m\hat{C}_p'(T_1' - T_2') \\ \Rightarrow \frac{1}{m\hat{C}_p'} &= \frac{-(T_1' - T_2')}{Q_{in}} \end{aligned}$ replacing the $m\hat{C}_p$ terms with Q_{in} : total heat transferred in average temperature exchanger driving force © Faith A. Morrison, Michigan Tech U.

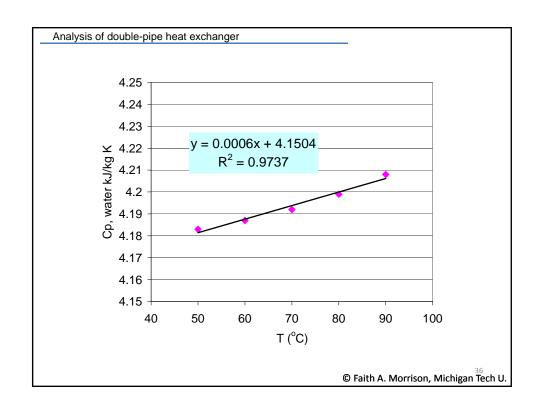


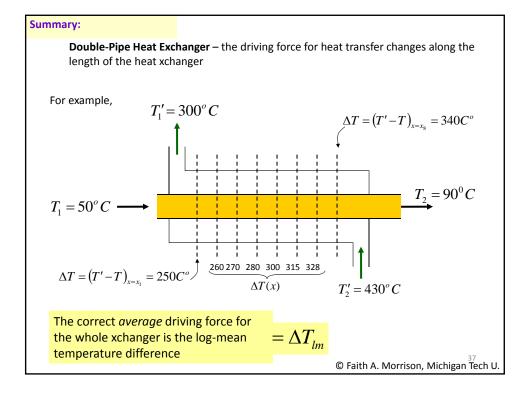


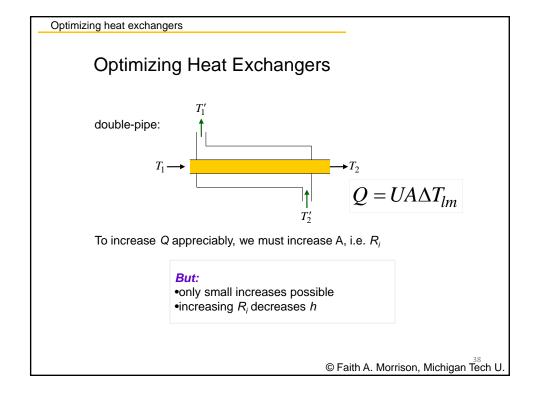
Analysis of double-pipe heat exchanger

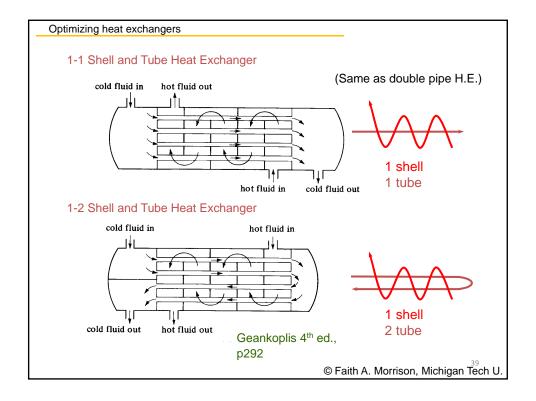
Example: Heat Transfer in a Double-Pipe Heat Exchanger: Geankoplis 4th ed. 4.5-4

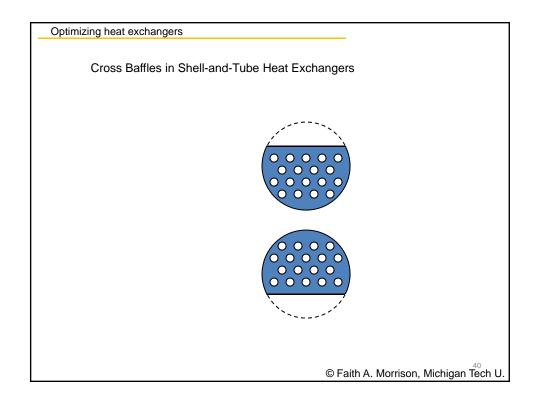
Water flowing at a rate of 13.85 kg/s is to be heated from 54.5 to 87.8°C in a double-pipe heat exchanger by 54,430 kg/h of hot gas flowing counterflow and entering at 427°C ($\hat{C}_{pm}=1.005~kJ/kg~K$). The overall heat-transfer coefficient based on the outer surface is U_o =69.1 W/m² K. Calculate the exit-gas temperature and the heat transfer area needed.



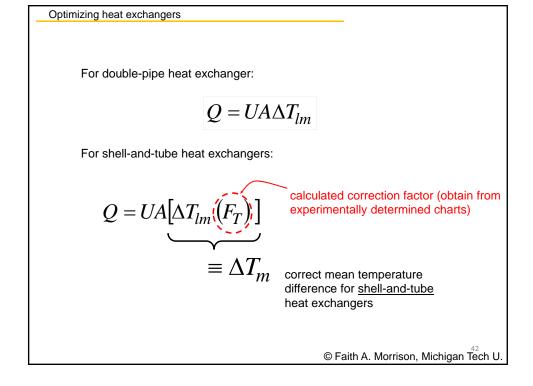


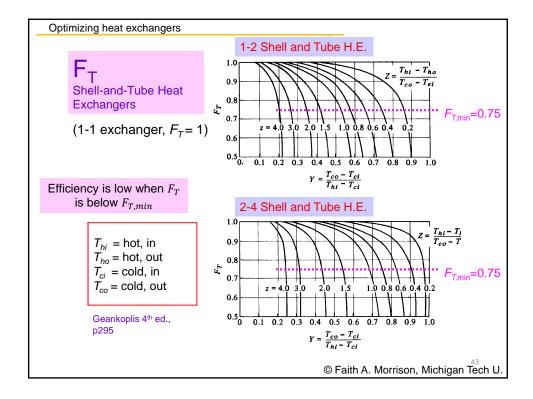


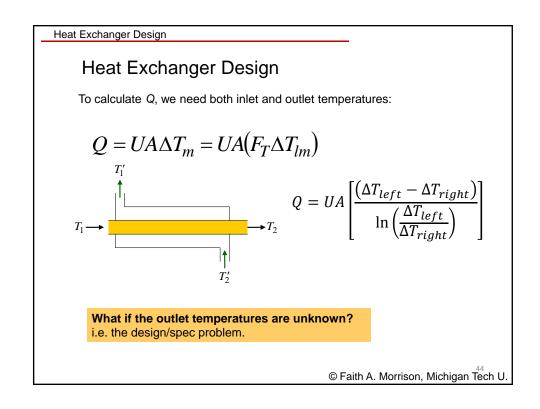




And other more complex arrangements: 2 shell 4 tube



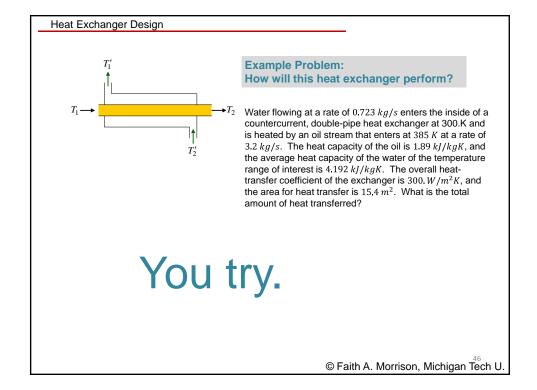




Heat Exchanger Design

Example Problem:How will this heat exchanger perform?

Water flowing at a rate of 0.723~kg/s enters the inside of a countercurrent, double-pipe heat exchanger at 300.K and is heated by an oil stream that enters at 385~K at a rate of 3.2~kg/s. The heat capacity of the oil is 1.89~kJ/kgK, and the average heat capacity of the water of the temperature range of interest is 4.192~kJ/kgK. The overall heat-transfer coefficient of the exchanger is $300.~W/m^2K$, and the area for heat transfer is $15.4~m^2$. What is the total amount of heat transferred?



Example Problem:

How will this heat exchanger perform?

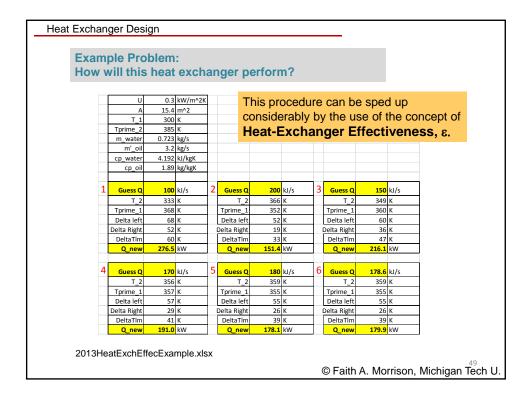
Heat Exchanger Design

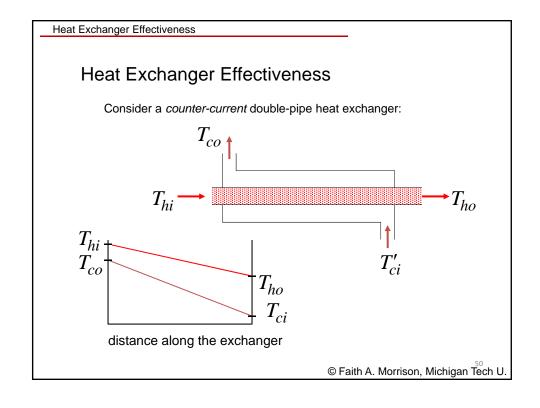
To calculate unknown outlet temperatures:

Procedure:

- 1. Guess Q
- 2. Calculate outlet temperatures
- 3. Calculate ΔT_{lm}
- 4. Calculate Q
- 5. Compare, adjust, repeat

W	ill this	heat	exch	ar	nger p	erforr	n?						
••		mout	OXOTI	٠.	.go. p	0							
_													
\perp	U		kW/m^2K					_					
+	А		m^2										
+	T_1	300											
+	Tprime_2	385											
+	m_water m' oil	0.723	kg/s kg/s					-					
+	cp water		kJ/kgK					-					
+	cp_water cp_oil		kg/kgK										
+	ср_оп	1.09	Kg/ KgK										
1	Guess Q	100	kJ/s	2	Guess Q	200	kJ/s	3	Guess Q	150	kJ/s		
	T_2	333	K		T_2	366	K		T_2	349	K	ĺ	
	Tprime_1	368	K		Tprime_1	352	K		Tprime_1	360	K		
	Delta left	68			Delta left	52	K		Delta left	60			
[Delta Right	52	K		Delta Right	19	K		Delta Right	36	K		
L	DeltaTlm	60			DeltaTlm	33			DeltaTlm	47		l	
L	Q_new	276.5	kW		Q_new	151.4	kW		Q_new	216.1	kW	ı	
_													
4	Guess Q	170	kJ/s	5	Guess Q	180	kJ/s	6	Guess Q	178.6	kJ/s		
Г	T_2	356	K		T_2	359	K		T_2	359	K	ĺ	
	Tprime_1	357	K		Tprime_1	355	K		Tprime_1	355	K	ĺ	
	Delta left	57	K		Delta left	55	K		Delta left	55		ĺ	
[Delta Right	29			Delta Right	26			Delta Right	26		!	
L	DeltaTlm	41			DeltaTlm	39			DeltaTlm	39		l	
	Q_new	191.0	kW		Q_new	178.1	kW		Q_new	179.9	kW	j	





Heat Exchanger Effectiveness

Energy balance cold side:

$$Q_{in,cold} = Q = (mC_p)_{cold} (T_{co} - T_{ci})$$

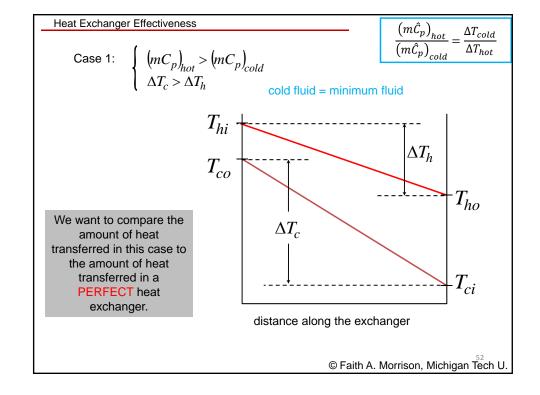
Energy balance hot side:

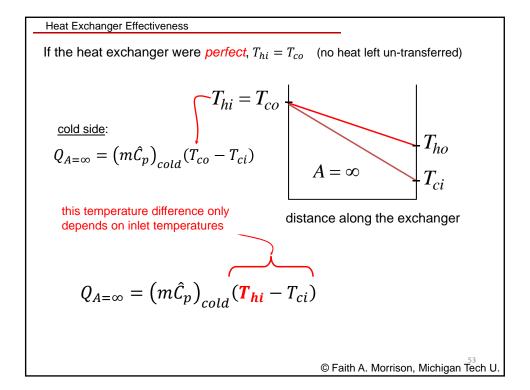
$$Q_{in,hot} = -Q = (mC_p)_{hot}(T_{ho} - T_{hi})$$

Equate:

$$\left(m\hat{C}_{p}\right)_{cold}(T_{co}-T_{ci})=-\left(m\hat{C}_{p}\right)_{hot}(T_{ho}-T_{hi})$$

$$\frac{\left(mC_{p}\right)_{hot}}{\left(mC_{p}\right)_{cold}} = \frac{\left(T_{co} - T_{ci}\right)}{-\left(T_{ho} - T_{hi}\right)} = \frac{\Delta T_{c}}{\Delta T_{h}}$$





Heat Exchanger Effectiveness

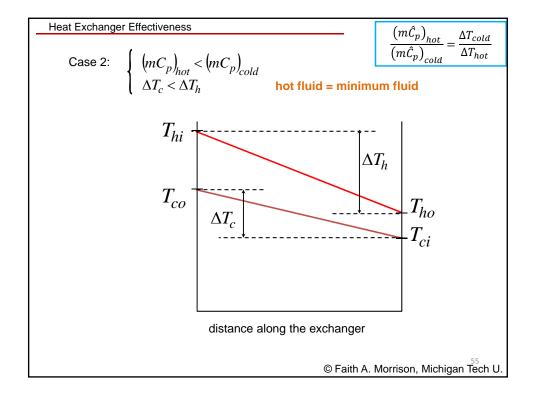
Heat Exchanger Effectiveness, $\boldsymbol{\epsilon}$

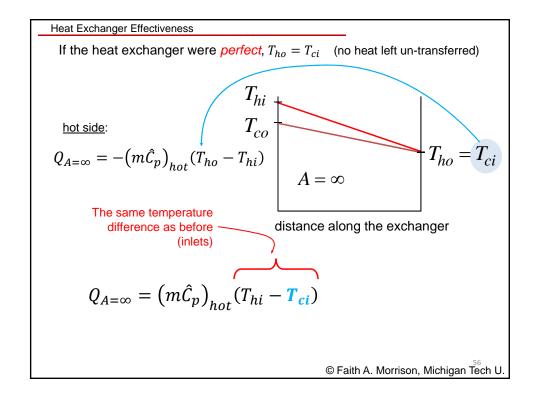
$$\varepsilon \equiv \frac{Q}{Q_{A=\infty}}$$

$$\Rightarrow Q = \varepsilon \left(mC_p \right)_{cold} \left(T_{hi} - T_{ci} \right)$$

cold fluid = minimum fluid

if ε is known, we can calculate Q without iterations





Heat Exchanger Effectiveness

Heat Exchanger Effectiveness

$$\varepsilon \equiv \frac{Q}{Q_{A=\infty}}$$

$$\Rightarrow Q = \varepsilon \left(mC_p \right)_{hot} \left(T_{hi} - T_{ci} \right)$$

hot fluid = minimum fluid

in general,

$$Q = \varepsilon \left(mC_p \right)_{\min} \left(T_{hi} - T_{ci} \right)$$

if ϵ is known, we can calculate Q without iterations

© Faith A. Morrison, Michigan Tech U.

Heat Exchanger Effectiveness

But where do we get ε ?

The same equations we use in the trial-and-error solution can be combined algebraically to give ε as a function of $(mC_p)_{min}$, $(mC_p)_{max}$.

countercurrent flow:

$$\varepsilon = \left(\frac{1 - e^{\frac{-UA}{(mC_p)_{\min}} \left(1 - \frac{(mC_p)_{\min}}{(mC_p)_{\min}}\right)}}{1 - \frac{(mC_p)_{\min}}{(mC_p)_{\min}} e^{\frac{-UA}{(mC_p)_{\min}} \left(1 - \frac{(mC_p)_{\min}}{(mC_p)_{\min}}\right)}}\right)$$

This relation is plotted in Geankoplis, as is the relation for co-current flow.

