## CM3110 Transport I Part II: Heat Transfer

# Michiganiceli



Applied Heat Transfer: Heat Exchanger Modeling, Sizing, and Design

### **Professor Faith Morrison**

Department of Chemical Engineering Michigan Technological University











## **Applied Heat Transfer**

Example 4: Heat flux in a cylindrical shell, Newton's law of cooling boundary Conditions

## Results: Radial Heat Flux in an Annulus

$$T - T_{b2} = \frac{(T_{b1} - T_{b2}) \left( \ln \left( \frac{R_2}{r} \right) + \frac{k}{h_2 R_2} \right)}{\frac{k}{h_2 R_2} + \ln \left( \frac{R_2}{R_1} \right) + \frac{k}{h_1 R_1}}$$

$$\frac{q_r}{A} = \frac{(T_{b1} - T_{b2})}{\frac{1}{h_2 R_2} + \frac{1}{k} \ln\left(\frac{R_2}{R_1}\right) + \frac{1}{h_1 R_1}} \left(\frac{1}{r}\right)$$

© Faith A. Morrison, Michigan Tech U.

Applied Heat Transfer

## Example 4: Heat flux in a cylindrical shell

Solution for Heat Flux:



$$\frac{q_r}{A} = \frac{(T_{b1} - T_{b2})}{\frac{1}{h_2 R_2} + \frac{1}{k} \ln\left(\frac{R_2}{R_1}\right) + \frac{1}{h_1 R_1}} \left(\frac{1}{r}\right)$$

Calculate Total Heat flow:

$$Q = \frac{q_r}{A}(2\pi r L) = \frac{(T_{b1} - T_{b2})(2\pi L)}{\frac{1}{h_2 R_2} + \frac{1}{k} \ln\left(\frac{R_2}{R_1}\right) + \frac{1}{h_1 R_1}}$$

Note that total heat flow is proportional to bulk  $\Delta T$  and (almost) area of heat transfer





























## The Simplest Heat Exchanger:

**Double-Pipe Heat exchanger - counter current** 

Result of inside balance:

$$\frac{dQ_{inner}}{dx} = m\hat{C}_p\left(\frac{dT}{dx}\right)$$

Result of outside balance:

$$-\frac{dQ_{outer}}{dx} = m'\hat{C}_p'\left(\frac{dT'}{dx}\right)$$

Result of overall balance:

$$-\frac{dQ_{outer}}{dx} = \frac{dQ_{inner}}{dx} \equiv \frac{dQ_{in}}{dx}$$



Solve for temperature derivatives, and subtract:

This
$$\frac{dQ_{in}}{dx} \left( \frac{1}{m'\hat{C}'_p} - \frac{1}{m\hat{C}_p} \right) = \left( \frac{dT'}{dx} - \frac{dT}{dx} \right)$$

$$= \frac{d(T' - T)}{dx}$$

This depends on T' - T

All the details of the algebra are here: www.chem.mtu.edu/~fmorriso/cm310/double\_pipe.pdf

© Faith A. Morrison, Michigan Tech U.

Analysis of double-pipe heat exchanger T(x) T' T'

Analysis of double-pipe heat exchanger

$$\frac{d(T'-T)}{dx} = \frac{dQ_{in}}{dx} \left( \frac{1}{m'\hat{C}'_p} - \frac{1}{m\hat{C}_p} \right)$$

Want to integrate to solve for T' - T,

but this is a function of T' - T



For the differential slice of the heat exchanger that we are considering (modeling our ideas on Newton's law of cooling),

$$\frac{dQ_{in}}{dA} = (?)(T' - T)$$

© Faith A. Morrison, Michigan Tech U.

Analysis of double-pipe heat exchanger

For the differential slice of the heat exchanger that we are considering (modeling our ideas on Newton's law of cooling),

$$\frac{dQ_{in}}{dA} = (?)(T' - T)$$

$$dQ_{in} = (U)dA(T' - T)$$
  
=  $U(2\pi R dx(T' - T))$ 

$$\frac{dQ_{in}}{dx} = U(2\pi R)(T' - T)$$

This is the missing piece that we needed.



We can write  $\frac{dQ_{in}}{dx}$  in terms of T'-T if we define an "overall" heat transfer coefficient, U

$$\frac{d(T'-T)}{dx} = \frac{dQ_{in}}{dx} \left( \frac{1}{m'\hat{C}_p'} - \frac{1}{m\hat{C}_p} \right)$$

$$\frac{dQ_{in}}{dx} = 2\pi RU(T'-T)$$

$$\frac{d(T'-T)}{dx} = 2\pi R U(T'-T) \left( \frac{1}{\hat{C}_p' m'} - \frac{1}{\hat{C}_p m} \right)$$

$$\frac{d(T'-T)}{(T'-T)} = \left[2\pi RU\left(\frac{1}{\hat{C}_p'm'} - \frac{1}{\hat{C}_pm}\right)\right]dx$$

© Faith A. Morrison, Michigan Tech U.

Analysis of double-pipe heat exchanger

$$\frac{d(T'-T)}{(T'-T)} = \left[2\pi RU\left(\frac{1}{\hat{C}_p'm'} - \frac{1}{\hat{C}_pm}\right)\right]dx$$

$$\Phi \equiv T' - T 
\alpha_0 \equiv 2\pi R U \left( \frac{1}{\hat{C}_p' m'} - \frac{1}{\hat{C}_p m} \right)$$
 (we'll assume   
 $U$  is constant)

$$\frac{d\Phi}{\Phi} = \alpha_0 dx$$
$$\int \frac{d\Phi}{\Phi} = \alpha_0 \int dx$$

$$\ln \Phi = \alpha_0 x + \text{constant}$$
  
$$\Phi = \Phi_0 e^{\alpha_0 x}$$

B.C: 
$$x = 0, T - T' = T_1 - T_1'$$





Analysis of double-pipe heat exchanger

## Temperature profile in a double-pipe heat exchanger:

$$\frac{T'-T}{T_1'-T_1}=e^{\alpha_0x}$$

$$\frac{T'-T}{T_1'-T_1} = e^{\alpha_0 x} \qquad \alpha_0 = 2\pi R U \left( \frac{1}{\hat{C}_p'm'} - \frac{1}{\hat{C}_p m} \right)$$

Useful result, but what we **REALLY** want is an easy way to relate  $Q_{in\ overall}$  to inlet and outlet temperatures.

At the exit: x = L,  $(T - T') = (T_2 - T'_2)$ 

$$\ln\left(\frac{T_{2}'-T_{2}}{T_{1}'-T_{1}}\right) = U\left(2\pi RL\right)\left(\frac{1}{\hat{C}_{p}'m'}-\frac{1}{\hat{C}_{p}m}\right)$$

© Faith A. Morrison, Michigan Tech U.

Analysis of double-pipe heat exchanger  $\ln\left(\frac{T_2'-T_2}{T_1'-T_1}\right) = U\left(2\pi RL\right)\left(\frac{1}{\hat{C}_p'm'} - \frac{1}{\hat{C}_pm}\right)$  $Q_{in} = m\hat{C}_p(T_2 - T_1)$   $\Rightarrow \frac{1}{m\hat{C}_n} = \frac{T_2 - T_1}{Q_{in}}$ The  $m\hat{C}_n$  terms appear in the overall macroscopic energy balances. We can therefore rearrange this equation by  $\begin{aligned} -Q_{in} &= m\hat{C}_p'(T_1' - T_2') \\ \Rightarrow \frac{1}{m\hat{C}_p'} &= \frac{-(T_1' - T_2')}{Q_{in}} \end{aligned}$ replacing the  $m\hat{C}_p$  terms with  $Q_{in}$ : total heat transferred in average temperature exchanger driving force © Faith A. Morrison, Michigan Tech U.





Analysis of double-pipe heat exchanger

# Example: Heat Transfer in a Double-Pipe Heat Exchanger: Geankoplis 4th ed. 4.5-4

Water flowing at a rate of 13.85 kg/s is to be heated from 54.5 to 87.8°C in a double-pipe heat exchanger by 54,430 kg/h of hot gas flowing counterflow and entering at 427°C ( $\hat{C}_{pm}=1.005~kJ/kg~K$ ). The overall heat-transfer coefficient based on the outer surface is U<sub>o</sub> =69.1 W/m² K. Calculate the exit-gas temperature and the heat transfer area needed.











# And other more complex arrangements: 2 shell 4 tube







## Heat Exchanger Design

# **Example Problem:**How will this heat exchanger perform?

Water flowing at a rate of 0.723~kg/s enters the inside of a countercurrent, double-pipe heat exchanger at 300.K and is heated by an oil stream that enters at 385~K at a rate of 3.2~kg/s. The heat capacity of the oil is 1.89~kJ/kgK, and the average heat capacity of the water of the temperature range of interest is 4.192~kJ/kgK. The overall heat-transfer coefficient of the exchanger is  $300.~W/m^2K$ , and the area for heat transfer is  $15.4~m^2$ . What is the total amount of heat transferred?



# Example Problem:

How will this heat exchanger perform?

Heat Exchanger Design

To calculate unknown outlet temperatures:

## Procedure:

- 1. Guess Q
- 2. Calculate outlet temperatures
- 3. Calculate  $\Delta T_{lm}$
- 4. Calculate Q
- 5. Compare, adjust, repeat

| W       | ill this           | heat  | exch         | ar | nger p      | erforr | n?   |   |             |       |      |   |  |
|---------|--------------------|-------|--------------|----|-------------|--------|------|---|-------------|-------|------|---|--|
| ••      |                    | mout  | OXOTI        | ٠. | .go. p      | 0      |      |   |             |       |      |   |  |
| _       |                    |       |              |    |             |        |      |   |             |       |      |   |  |
| $\perp$ | U                  |       | kW/m^2K      |    |             |        |      | _ |             |       |      |   |  |
| +       | А                  |       | m^2          |    |             |        |      |   |             |       |      |   |  |
| +       | T_1                | 300   |              |    |             |        |      |   |             |       |      |   |  |
| +       | Tprime_2           | 385   |              |    |             |        |      |   |             |       |      |   |  |
| +       | m_water<br>m' oil  | 0.723 | kg/s<br>kg/s |    |             |        |      | - |             |       |      |   |  |
| +       | cp water           |       | kJ/kgK       |    |             |        |      | - |             |       |      |   |  |
| +       | cp_water<br>cp_oil |       | kg/kgK       |    |             |        |      |   |             |       |      |   |  |
| +       | ср_оп              | 1.09  | Kg/ KgK      |    |             |        |      |   |             |       |      |   |  |
| 1       | Guess Q            | 100   | kJ/s         | 2  | Guess Q     | 200    | kJ/s | 3 | Guess Q     | 150   | kJ/s |   |  |
|         | T_2                | 333   | K            |    | T_2         | 366    | K    |   | T_2         | 349   | K    | ĺ |  |
|         | Tprime_1           | 368   | K            |    | Tprime_1    | 352    | K    |   | Tprime_1    | 360   | K    |   |  |
|         | Delta left         | 68    |              |    | Delta left  | 52     | K    |   | Delta left  | 60    |      |   |  |
| [       | Delta Right        | 52    | K            |    | Delta Right | 19     | K    |   | Delta Right | 36    | K    |   |  |
| L       | DeltaTlm           | 60    |              |    | DeltaTlm    | 33     |      |   | DeltaTlm    | 47    |      | l |  |
| L       | Q_new              | 276.5 | kW           |    | Q_new       | 151.4  | kW   |   | Q_new       | 216.1 | kW   | ı |  |
| _       |                    |       |              |    |             |        |      |   |             |       |      |   |  |
| 4       | Guess Q            | 170   | kJ/s         | 5  | Guess Q     | 180    | kJ/s | 6 | Guess Q     | 178.6 | kJ/s |   |  |
| Г       | T_2                | 356   | K            |    | T_2         | 359    | K    |   | T_2         | 359   | K    | ĺ |  |
|         | Tprime_1           | 357   | K            |    | Tprime_1    | 355    | K    |   | Tprime_1    | 355   | K    | ĺ |  |
|         | Delta left         | 57    | K            |    | Delta left  | 55     | K    |   | Delta left  | 55    |      | ĺ |  |
| [       | Delta Right        | 29    |              |    | Delta Right | 26     |      |   | Delta Right | 26    |      | ! |  |
| L       | DeltaTlm           | 41    |              |    | DeltaTlm    | 39     |      |   | DeltaTlm    | 39    |      | l |  |
|         | Q_new              | 191.0 | kW           |    | Q_new       | 178.1  | kW   |   | Q_new       | 179.9 | kW   | j |  |





## Heat Exchanger Effectiveness

**Energy balance cold side:** 

$$Q_{in,cold} = Q = (mC_p)_{cold} (T_{co} - T_{ci})$$

**Energy balance hot side:** 

$$Q_{in,hot} = -Q = (mC_p)_{hot}(T_{ho} - T_{hi})$$

**Equate:** 

$$\left(m\hat{C}_{p}\right)_{cold}(T_{co}-T_{ci})=-\left(m\hat{C}_{p}\right)_{hot}(T_{ho}-T_{hi})$$

$$\frac{\left(mC_{p}\right)_{hot}}{\left(mC_{p}\right)_{cold}} = \frac{\left(T_{co} - T_{ci}\right)}{-\left(T_{ho} - T_{hi}\right)} = \frac{\Delta T_{c}}{\Delta T_{h}}$$





Heat Exchanger Effectiveness

Heat Exchanger Effectiveness,  $\boldsymbol{\epsilon}$ 

$$\varepsilon \equiv \frac{Q}{Q_{A=\infty}}$$

$$\Rightarrow Q = \varepsilon \left( mC_p \right)_{cold} \left( T_{hi} - T_{ci} \right)$$

cold fluid = minimum fluid

if ε is known, we can calculate Q without iterations





## Heat Exchanger Effectiveness

# Heat Exchanger Effectiveness

$$\varepsilon \equiv \frac{Q}{Q_{A=\infty}}$$

$$\Rightarrow Q = \varepsilon \left( mC_p \right)_{hot} \left( T_{hi} - T_{ci} \right)$$

hot fluid = minimum fluid

in general,

$$Q = \varepsilon \left( mC_p \right)_{\min} \left( T_{hi} - T_{ci} \right)$$

if  $\epsilon$  is known, we can calculate Q without iterations

© Faith A. Morrison, Michigan Tech U.

Heat Exchanger Effectiveness

## But where do we get $\varepsilon$ ?

The same equations we use in the trial-and-error solution can be combined algebraically to give  $\varepsilon$  as a function of  $(mC_p)_{min}$ ,  $(mC_p)_{max}$ .

countercurrent flow:

$$\varepsilon = \left(\frac{1 - e^{\frac{-UA}{(mC_p)_{\min}} \left(1 - \frac{(mC_p)_{\min}}{(mC_p)_{\min}}\right)}}{1 - \frac{(mC_p)_{\min}}{(mC_p)_{\min}} e^{\frac{-UA}{(mC_p)_{\min}} \left(1 - \frac{(mC_p)_{\min}}{(mC_p)_{\min}}\right)}}\right)$$

This relation is plotted in Geankoplis, as is the relation for co-current flow.











