Note:
Significant figures count.
Please box your final answers.
Please be neat.

1. (50 points) For the apparatus shown in the figure below, an incompressible, Newtonian fluid is made to flow under an axial pressure gradient in the gap between two concentric cylinders. The flow is steady, and the inlet pressure is P_0 and the outlet pressure is P_L. The tube is of length L and is horizontal. You may neglect gravity. The microscopic mass balance (continuity equation) and the microscopic momentum balance (Navier-Stokes equations) are shown on the next page. For each term in all four equations, cross out the terms that are zero and give a reason for each decision.
2. (50 points) Water (density=62.25 lb/ft3, viscosity=6.01 x 10$^{-4}$ lb/ft m/s) flows in an expanding bend whose geometry is shown below. The upstream pressure is 14.5 psig. The inlet velocity is 12.23 ft/s and the outlet velocity is 3.61 ft/s. What is the outlet pressure? You may neglect friction; the flow is turbulent.