1. (50 points) A countercurrent, double-pipe heat exchanger is used to heat the feed to a reactor. The reactants pass through the inside of the double-pipe heat exchanger, and a heat-transfer fluid flows through the outside of the double-pipe heat exchanger. Both streams are in turbulent flow (see figure below).

A decision is made to double the flow rate $m=2.1 \text{ kg/s}$ of the inside stream (the reactor feed stream that is being heated) to become $m_{\text{new}}=4.2 \text{ kg/s}$. The inlet temperature of the inside stream $T_1=21^\circ \text{C}$ is not changed and the inlet temperature $T'_2=95^\circ \text{C}$ and flow rate of the heat-transfer fluid $m'=3.07 \text{ kg/s}$ are not changed either. The system is allowed to come to steady state. Please answer the following.

a) Is the new value of the inner-stream outlet temperature (T_2) higher, lower, or is it the same as it was before this change in flow rate is made? Please explain briefly (provide one or two sentences with the appropriate equations).

b) **Bonus 5 points** Is the new value of the overall heat transfer coefficient of the heat exchanger (U) higher, lower, or is it the same as it was before this change in flow rate is made? Please explain briefly (provide one or two sentences with the appropriate equations).
2. (50 points) A 1-2 shell-and-tube heat exchanger is installed in a process as shown below. The overall heat transfer coefficient for this unit is \(U = 270 \, \text{W/m}^2 \, \text{K} \) and \(Q = 36,000 \, \text{W} \) of heat are transferred to the cooler stream at steady state. To obtain the desired operating temperatures shown below the figure, what does the heat-transfer area need to be?

\[
\begin{align*}
T_{ci} &= 25^\circ C \\
T_{co} &= 105^\circ C \\
T_{hi} &= 201^\circ C \\
T_{ho} &= 153^\circ C
\end{align*}
\]