1. (50 points) Oil (thermal conductivity = 0.185 W/m K, mean heat capacity = 7.43 kJ/kg K, viscosity = 132 cP) is heated from 25°C to 65°C by liquid water in a counter-current, double-pipe heat exchanger. The inlet water temperature is 95°C and the outlet water temperature is 85°C (for water thermal conductivity = 0.68W/m K, mean heat capacity = 4.2kJ/kg K, viscosity = 1.000cP, and latent heat of vaporization of water is 2270.14 kJ/kg at 95°C and 2296.00 kJ/kg at 85°C). The area for heat transfer is 6.91m² and the overall heat transfer coefficient for this apparatus is 1200 W/m²K. If the heat exchanger is adiabatic (no overall heat loss), what is the flow rate (in kg/s) of the water stream?

2. (50 points) An oven wall made of material with thermal conductivity $k_1=0.151 \text{ W/mK}$ is insulated with a material of thermal conductivity $k_2=0.0433 \text{ W/mK}$. The temperature of the left face of the wall is held at 100.0°C. The right face of the wall is measured to be 98°C, see figure below. The wall is 1.0 cm thick. What is the thickness in cm of the insulation needed if the outside surface temperature should be no more than 85°C?

![Diagram of oven wall with temperatures and insulation]
3. **Fluid mechanics bonus problem (12 points):** Calculate the velocity profile v_x for steady, pressure-driven flow in a long, wide, tilted slit of an incompressible, Newtonian fluid (see figure below). The pressure at the inlet is p_0 and the pressure at the outlet, which is a distance L away, is p_L. The gap between the plates is H and the slit is tilted at an angle β. You must derive your solution in the coordinate system shown. Please indicate all of your assumptions. Detailed work is required for partial credit.