

Measurements are affected by errors

(uncertainty)

There are two general categories of errors (uncertainties) in experimental measurements:

- Systematic errors
- Random errors

3

© Faith A. Morrison, Michigan Tech U.

Measurements are affected by errors

Systematic errors

(uncertainty)

- 1. Has same sign and magnitude for identical conditions
- 2. Must be checked for, identified, eliminated, randomized

Sources:

- Calibration of instruments
- Reading error (resolution, coarse scale)
- Consistent operator error
- Failure to produce experimental conditions assumed in an analysis (e.g. steady state, isothermal, well mixed, pure component, etc.)

Solutions:

- Recalibrate
- Improve instrument resolution
- Apply correction for identified error
- Improve procedures, experimental design
- Shift to other methods
- Take data in random order; rotate operators

© Faith A. Morrison, Michigan Tech U.

•

Measurements are affected by errors

Random errors

(uncertainty)

- 1. Varies in sign and magnitude for identical conditions
- 2. May be due to the instrument or the process being measured
- 3. Must be understood and communicated with results

Sources:

- Random process, instrument fluctuations
- Randomized systematic trends (e.g. operator identity, thermal drift)
- Rare events

Solutions:

- Replicate and average
- Improve measurement methods, practices
- · Isolate from rare events

5

© Faith A. Morrison, Michigan Tech U.

Measurements are affected by errors

(uncertainty)

- We never stop looking for and fixing random and systematic errors in real experimental data.
- We use **statistical methods** to *measure*, *reduce*, and *communicate* the random errors that we cannot eliminate.

6

Obtaining a Good Estimate of a Quantity

- Measure the quantity several times replicates
- The average value is a good estimate of the quantity we are measuring

$$x_1, x_2, x_3, x_4, x_5 \dots x_n$$
 Replicates

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$
 Sample mean

 \bar{x} is a Good* Estimate of x

*small print: This is true if we take enough replicates and if only random errors are present; see sources on statistics

EXAMPLE 1.1 Based on the following seven data points we have on Blue Fluid 175 density, what is the density and the 95% confidence interval based on replicate error?

i	X_i
1	1.7348
2	1.7465
3	1.7359
4	1.83
5	1.74688
6	1.74412
7	1.73173

ρ	
1.7348	g/cm ³
1.7465	g/cm ³
1.7359	g/cm ³
1.83	g/cm ³
1.74688	g/cm ³
1.74412	g/cm ³
1.73173	g/cm ³
1.752847	g/cm ³
0.001194	(g/cm ³) ²
0.034553	g/cm ³
0.013060	g/cm ³
	1.7348 1.7465 1.7359 1.83 1.74688 1.74412 1.73173 1.752847 0.001194 0.034553

Excel: AVERAGE() VAR.S() STDEV.S()

What is the answer for $\rho =? \pm?$ with 95% confidence (replicate)?

© Faith A. Morrison, Michigan Tech U.

EXAMPLE 1.1 Based on the following seven data points we have on Blue Fluid 175 density, what is the density and the 95% confidence interval based on replicate error?

Answer:

Excel: AVERAGE() VAR.S() STDEV.S()

	ρ	
1	1.7348	g/cm ³
2	1.7465	g/cm ³
3	1.7359	g/cm ³
4	1.83	g/cm ³
5	1.74688	g/cm ³
6	1.74412	g/cm ³
7	1.73173	g/cm ³
mean	1.752847	g/cm ³
variance	0.001194	$(g/cm^3)^2$
std dev	0.034553	g/cm ³
std err	0.013060	g/cm ³

EXAMPLE 1.1 Based on the following seven data points we have on Blue Fluid 175 density, what is the density and the 95% confidence interval based on replicate error?

Answer:

 $\rho = 1.75 \pm 0.03 g/cm^3$ (95%CI)

1 1.7348 g/cm³
2 1.7465 g/cm³
3 1.7359 g/cm³
4 1.83 g/cm³
5 1.74688 g/cm³
6 1.74412 g/cm³
7 1.73173 g/cm³
mean 1.752847 g/cm³
variance 0.001194 (g/cm³)²
std dev 0.034553 g/cm³
std err 0.013060 g/cm³

Excel: AVERAGE() VAR.S() STDEV.S()

© Faith A. Morrison, Michigan Tech U.

Significant Figures on Error

Common rules:

Usually use one significant figure on error

$$\rho_A = 1.722 \pm 0.005 g/cm^3$$

 If the digit is 1 or 2, you may include two digits (to avoid round-off error)

$$\rho_B = 1.9431 \pm 0.00 (15)g/cm^3$$

Note: do not truncate numbers used in intermediate calculations.

Significant Figures on Error

Common rules:

· Usually use one significant figure on error

$$\rho_A = 1.722 \pm 0.005 g/cm^3$$

Once you know the uncertainty, truncate the expected value appropriately:

 If the digit is 1 or 2, you may include two digits (to avoid round-off error)

$$\rho_B = 1.9431 \pm 0.0015 g/cm^3$$

Note: do not truncate numbers used in intermediate calculations.

© Faith A. Morrison, Michigan Tech U.

EXAMPLE 1.1 Based on the following seven data points we have on Blue Fluid 175 density, what is the density and the 95% confidence interval based on replicate error?

Answer:

$$ho = 1.75 \pm 0.03 g/cm^3$$
 (95%CI)

With 95% confidence, using $\pm 2.45e_s$ (N = 7) or $\pm 2e_s$

Excel: AVERAGE() VAR.S() STDEV.S()

	ρ	
1	1.7348	g/cm ³
2	1.7465	g/cm ³
3	1.7359	g/cm ³
4	1.83	g/cm ³
5	1.74688	g/cm ³
6	1.74412	g/cm ³
7	1.73173	g/cm ³
mean	1.752847	g/cm ³
variance	0.001194	(g/cm ³) ²
std dev	0.034553	g/cm ³
std err	0.013060	g/cm ³

 $\mbox{\em @}$ Faith A. Morrison, Michigan Tech U.

Replicate Erro CM3215 Fundar Prof. Faith Morr This worksheet guid n times (replicated), quantities.	nentals of Chemi ison es the user through t	ical Engineering	Lab Depa		gineering erval on a	quantity tha	t has been measured lations of derived	
Replicated Va	riable, Y:				Units:			
Measured values $Y_1, Y_2,, Y_n$	Sample Mean, \overline{Y}	nple Mean, Sample	Sample Standard Deviation, s	Standard Error, $e_{\rm g} = \frac{s}{\sqrt{n}}$	95% Confidence Interval based on 11 replicates (Student's t distribution)			
Y ₁					n = 1	n/a	(include units)	
Y ₂					n = 2	±12.7es	±	
<i>Y</i> ₃					n = 3	±4.30es		
Y4					n = 4	±3.18e _s		
Υ ₅					n = 5	±2.78e _s		
Y ₆					n = 6	±2.57e ₃		
Y ₇					n ≥ 7	±2e _s		
					00	±1.96e _s		
$\overline{Y} \equiv \frac{1}{n} \sum_{i=1}^{n} Y_{i}$	$s^2 \equiv \frac{1}{(n-1)}$	$\sum_{i=1}^{n} (Y_i - \bar{Y})^2$					11-Sep-14	
		orriso/cm32					2:	1

Measurements are affected by errors

Summary:

(uncertainty)

- Taking replicate measurements is a good way to estimate the value of a quantity affected by random errors
- \bar{x} is a Good Estimate of x
- $E(x) = \bar{x} \pm t_{0.025, n-1}e_s$ with 95% confidence (see table)
- The standard error e_s is obtained from considering:
 - 1. Replicate errors $(e_s = s/\sqrt{n})$
 - 2. Reading errors $(e_s = ?)$
 - 3. Calibration errors $(e_s = ?)$
- In this Quick Start section, we have only considered replicate errors;
 we consider the reading and calibration errors in subsequent lectures
 and activities
- Use one significant figure on error limits (unless the digit is 1 or 2)
- When parameters are obtained from a fit, use error propagation to calculate $e_{\rm S}$ (Excel's LINEST)

© Faith A. Morrison, Michigan Tech U.

CM3215 Fundamentals of Chemical Engineering Laboratory

Next, on to Statistics 2: Reading Error

