

Obtaining a Good Estimate of a Quantity

Replicate error Reading error Calibration error But what do we do when we obtain a quantity from a calculation?

$$\rho = \frac{M_F - M_E}{V_{pyc}}$$

$$\mu = \rho \alpha \Delta t$$

$$Q = \dot{m}C_p(T_{out} - T_{in})$$

etc.

Answer:

Propagate the **error** through the calculation

© Faith A. Morrison, Michigan Tech U.

CM3215

Michigantech

Fundamentals of Chemical Engineering Laboratory

Statistics Lecture 4: Error Propagation

Professor Faith Morrison

Department of Chemical Engineering Michigan Technological University

- 1. Quick start—Replicate error
- 2. Reading Error
- 3. Calibration Error
- 4. Error Propagation
- 5. Least Squares Curve Fitting

Example 1:

What is the uncertainty (95% confidence interval) in $\rho_{bluefluid}$ as determined in the lab?

$$\rho_{bluefluid} = \frac{M_{full} - M_{empty}}{V_{pycnometer}}$$

- The value of density obtained is a function of three measurements
- · Each measurement has its own uncertainty

Image source: www.coleparmer.com

Image source: //en.wikipedia.org/wiki/Relative_density

© Faith A. Morrison, Michigan Tech U.

Example 1:

 $e_{\scriptscriptstyle S} \equiv$ Standard Error

What is the uncertainty (95% confidence interval) in $\rho_{bluefluid}$ as determined in the lab?

Three error sources on each measured quantity:

$$e_{\scriptscriptstyle S} = \frac{\scriptscriptstyle S}{\sqrt{n}}$$

Standard error of replicates

$$e_S = \frac{e_R}{\sqrt{3}}$$

Standard error due to Reading Error

 e_s = (as determined)

Standard error due to Calibration Error

For each variable, determine the three $e_{\rm S}$, then pick the largest (or average if they are close and you want to be less conservative)

CM3215	n g Error Workshe Fundamentals of Che th Morrison	eet emical Engineering Lab		higan Technologic artment of Chemical	
or off a dig	ital readout (yielding value	gh the calculation of the standard er X and subject to reading error). The le used in propagation of error calcu	e readi	ing-error-related	
		Reading error			
	Measured Quantity: (give symbol)				
	Representative value:	(include units)	6 3	Quantity or N o	t Applicable
	issue	contribution to error			
	Resolution	How much signal does it take to cause the reading to change?	1		
	Limitation on marked scale or digital readout	Half smallest division or decimal place	2		
Reading error, e _n :	Fluctuations with time of observation	(max-min)/2	3		
		Maximum of 1, 2 & 3:	e _R =	=	(units)
	Standard error based on reading error:	e _s =e _R /V3	e _s :	-	
		95% Confidence Interval on the reading: +/-1.96e _s			

Michigan Technological U Department of Chemical Engli	neering				Handy worksheet fo
	ror Worksheet entals of Chemical E on				calibration er
a manufacturer or for a technical specifications constant (the viscomet uncertainty. In this cas Finally, a user may take	a particular device by son s of a device may indicate ter constant α , for examp se, the method of "least s e steps to calibrate a met	meone with authority to cert e that it is accurate to a valu ble) may be provided by the significant digit" is appropria ter on site; this determinatio	etermined for a brand-new unit by ify the value. For example, the e ±2e _s . Alternatively, a value of a manufacturer with no specific te for evaluating the uncertainty. no ferror (likely to be greater than the particular unit in question.		
Quantity:	Symbol:	Representative value: (include units)			
		Estimate of e _g : (or Not Applicable)			
Method 1: Manufacturer maximum error allowable	2 e _s ≈				
Method 2: Least significant digit on provided value	Least significant digit varies by at least ±1				
Method 3: User calibration	2e₂ ≈				
				l	
	Maximum of Methods 1 - 3	e ₂ =	95% C.I.: quantity±2e _s		

Example 1: What is the uncertainty (95% confidence interval) in $\rho_{bluefluid}$ as determined in the lab?

First:

What are the uncertainties e_{x_i} for M_{full} , M_{empty} , and V_{pyc} ?

You try.

Image source: www.coleparmer.com

Image source: //en.wikipedia.org/wiki/Relative_density

Example 1: What is the uncertainty (95% confidence interval) in $\rho_{bluefluid}$ as determined in the lab?

First:

What are the uncertainties e_{x_i} for M_{full} , M_{empty} , and V_{pyc} ?

Standard errors:

M_{full} :	= 30.800 g
1/	12 410 -

 $M_{empty}: = 13.410 g$

 $V_{pycnometer} = 10.\overline{00 \ ml}$

© Faith A. Morrison, Michigan Tech U.

Example 1: What is the uncertainty (95% confidence interval) in $\rho_{bluefluid}$ as determined in the lab?

First:

What are the uncertainties e_{x_i} for M_{full} , M_{empty} , and V_{pyc} ?

Standard errors:

$$M_{full}$$
: = 30.800 g
 M_{empty} : = 13.410 g
 $V_{pycnometer}$ = 10.00 ml (calibration)

Now, how to combine? Propagation of Errors

We seek to combine the errors associated with the various quantities in a calculation

$$\rho_{bluefluid} = \frac{M_{full} - M_{empty}}{V_{pycnometer}}$$

We use an analysis based on the calculation of <u>variance</u>. We use the Taylor series expansion of a nonlinear function.

1

© Faith A. Morrison, Michigan Tech U.

Error Propagation

We use an analysis based on the Taylor series expansion of a nonlinear function.

Taylor series:

(higher order terms)

$$f(x_1, x_2, x_3) = f^0 + \frac{\partial f}{\partial x_1} x_1 + \frac{\partial f}{\partial x_2} x_2 + \frac{\partial f}{\partial x_3} x_3 + h.o.t.$$

A calculation of the function $f(x_1, x_2, x_3)$ from uncertain values of x_1, x_2, x_3 is a random variable of mean \bar{f} and variance σ_f^2 :

$$\sigma_f^2 = \left(\frac{\partial f}{\partial x_1}\right)^2 \sigma_{x_1}^2 + \left(\frac{\partial f}{\partial x_2}\right)^2 \sigma_{x_2}^2 + \left(\frac{\partial f}{\partial x_3}\right)^2 \sigma_{x_3}^2 + \text{Covariance terms, if } x_i \text{ are correlated}$$

16

We use an analysis based on the Taylor series expansion of a nonlinear function.

Taylor series:

(higher order

$$f(x_1, x_2, x_3) = f^0 + \frac{\partial f}{\partial x_1} x_1 + \frac{\partial f}{\partial x_2} x_2 + \frac{\partial f}{\partial x_3} x_3 + h. o. t.$$

A calculation of the function $f(x_1, x_2, x_3)$ from uncertain values of x_1, x_2, x_3 is a random variable of mean \bar{f} and variance σ_f^2 :

$$\sigma_f^2 = \left(\frac{\partial f}{\partial x_1}\right)^2 \sigma_{x_1}^2 + \left(\frac{\partial f}{\partial x_2}\right)^2 \sigma_{x_2}^2 + \left(\frac{\partial f}{\partial x_3}\right)^2 \sigma_{x_3}^2 + \text{Covariance terms if } x_i \text{ are correlated}$$

Note: covariance terms are not always zero o small; but they often are. For now, this is fine

© Faith A. Morrison, Michigan Tech U.

Error Propagation

(To avoid confusion with other variances, we use e_{x_i} nomenclature for errors)

$$e_{s_f}^2 = \left(\frac{\partial f}{\partial x_1}\right)^2 e_{x_1}^2 + \left(\frac{\partial f}{\partial x_2}\right)^2 e_{x_2}^2 + \left(\frac{\partial f}{\partial x_3}\right)^2 e_{x_3}^2$$

 $\rho_{bluefluid} = f(M_{full}, M_{empty}, V_{pycnometer})$

 $e_{S_{M_{full}}}$ $e_{S_{M_{empty}}}$ $e_{S_{V_{pycnometer}}}$

We estimate these standard errors with our 3 worksheets

18

$$e_{s_f}^2 = \left(\left(\frac{\partial f}{\partial x_1}\right)^2 e_{x_1}^2 + \left(\left(\frac{\partial f}{\partial x_2}\right)^2 e_{x_2}^2 + \left(\left(\frac{\partial f}{\partial x_3}\right)^2 e_{x_3}^2\right)^2 + \left(\left(\frac{\partial f}{\partial x_3}\right)^2 e_{x$$

 $\rho_{bluefluid} = f \left(M_{full}, M_{empty}, V_{pycnometer} \right)$

These come from the formula for $\rho_{bluefluid}$

$$\rho_{BF} = \frac{M_F - M_E}{V_{pyc}}$$

19

© Faith A. Morrison, Michigan Tech U.

Error Propagation

$$e_{s_f}^2 = \left(\left(\frac{\partial f}{\partial x_1}\right)^2 e_{x_1}^2 + \left(\left(\frac{\partial f}{\partial x_2}\right)^2 e_{x_2}^2 + \left(\left(\frac{\partial f}{\partial x_3}\right)^2 e_{x_3}^2\right)\right)^2$$

$$f = \rho_{BF} = \frac{M_F - M_E}{V_{pyc}}$$

$$\frac{\partial \rho_{BF}}{\partial M_F} =$$

$$\frac{\partial \rho_{BF}}{\partial M_E} =$$

$$\frac{\partial \rho_{BF}}{\partial V_{pyc}} =$$

20

$$\left(\begin{array}{c}
e_{s_f}^2 \neq \left(\frac{\partial f}{\partial x_1}\right)^2 e_{x_1}^2 + \left(\frac{\partial f}{\partial x_2}\right)^2 e_{x_2}^2 + \left(\frac{\partial f}{\partial x_3}\right)^2 e_{x_3}^2
\end{array}\right)$$

We seek this, the standard error of the calculated property,

 $f = \rho_{bluefluid}$

$$\rho_{bluefluid} = f(M_{full}, M_{empty}, V_{pycnometer})$$

$$\rho_{BF} = \frac{M_F - M_E}{V_{pyc}}$$

Think of the squared partial derivatives as the weighting functions for the individual squared standard errors

21

Error Propagation Worksheet CM3215 Fundamentals of Chemical Engiperof. Faith Morrison $f(x_1, x_2, x_3, x_4, x_5):$ Formula for $f:$			neering Lab	determine e_{s_f} using the relatement e_{s_f} using the relatement e_{s_f} using the relative value of f : (include units)				ed to	Handy worksheet error propagation	
Measured quantities, x_i			ar		Н	. 25. 2				
xi	Symbol	Representative value		$\frac{\partial f}{\partial x_i}$	$\begin{array}{c} e_{x_i} = \\ \frac{s_i}{\sqrt{N}} \ or \ \frac{e_{R_i}}{\sqrt{3}} \ o \end{array}$	re_{s_i}	$\left(\frac{\partial f}{\partial x_i}\right)^2 e_{x_i}^2$			
<i>x</i> ₁										
<i>x</i> ₂										
<i>x</i> ₃										
<i>x</i> ₄										
x ₅										
	$e_{s_f}^2 = \left(\frac{\partial f}{\partial x_1}\right)^2$	$e_{x_1}^2 + \left(\frac{\partial f}{\partial x_2}\right)^2 e_{x_2}^2 +$	$+\left(\frac{\partial f}{\partial x_3}\right)^2 e_{x_3}^2$	$+\left(\frac{\partial f}{\partial x_4}\right)^2 e_{x_4}^2$	$+\left(\frac{\partial f}{\partial x_5}\right)^2 e_{x_5}^2$		$e_{s_f}^2 = egin{array}{c} e_{s_f} = & \end{array}$	en	andard ror of Iculated	

What is the uncertainty (95% confidence interval) in $\rho_{bluefluid}$ as determined in the lab?

Data:

 $M_F = 30.800 g$

 $M_E = 13.410 g$ $V_{pyc} = 10.00 ml$

Formula:

 $\rho_{BF} = \frac{M_F - M_E}{V}$

Image source: www.coleparmer.com Image source: //en.wikipedia.org/wiki/Relative_density

23

© Faith A. Morrison, Michigan Tech U.

© Faith A. Morrison, Michigan Tech U.

Example 1: What is the uncertainty (95% confidence interval) in $\rho_{bluefluid}$ as determined in the lab?

$f(x_1)$	(x_2, x_3, x_4, x_5)	Formula for $f: M_F$ $\rho_{BF} = \frac{M_F}{V}$	$\frac{-M_E}{p_{yc}}$	Representative valu (include units)	ue of <i>f</i> :		C.I. of f : $\left(f\pm 2e_{sf} ight)$ ide units)		
	Measured qua	ntities, x_i		$\frac{\partial f}{\partial x_i}$	$e_{x_i} =$		$(\partial f)^2$	2	
x_i	Symbol	Representative value		$\overline{\partial x_i}$	$\frac{s_i}{\sqrt{N}}$ or $\frac{e_{R_i}}{\sqrt{3}}$ or	re_{s_i}	$\left(\frac{\partial f}{\partial x_i}\right)^2 e^{-\frac{2}{3}}$	\hat{z}_{x_i}	
<i>x</i> ₁									
<i>x</i> ₂									
<i>x</i> ₃									
<i>x</i> ₄									
<i>x</i> ₅									
	$e_{s_f}^2 = \left(\frac{\partial f}{\partial x_1}\right)^2 e_{x_1}^2 + \left(\frac{\partial f}{\partial x_2}\right)^2 e_{x_2}^2 + \left(\frac{\partial f}{\partial x_3}\right)^2 e_{x_3}^2 + \left(\frac{\partial f}{\partial x_4}\right)^2 e_{x_4}^2 + \left(\frac{\partial f}{\partial x_5}\right)^2 e_{x_5}^2 = \frac{e_{s_f}^2}{e_{x_5}^2} = \frac{e_{s_f}^2}{e_{x_5}^2} = \frac{e_{s_f}^2}{e_{x_5}^2} = \frac{e_{x_5}^2}{e_{x_5}^2} = $								
	$e_{s_f}^2 = \left(\frac{\partial}{\partial x_1}\right) \epsilon$	$e_{x_1}^2 + \left(\frac{}{\partial x_2}\right) e_{x_2}^2 +$	$\left(\frac{\dot{\partial x_3}}{\partial x_3}\right) e_{x_3}^2$	$+\left(\frac{}{\partial x_4}\right) e_{x_4}^2 + \left(\frac{}{\partial x_4}\right) e_{x_4}^2 + \left(\frac$	$\left(\frac{\partial}{\partial x_5}\right) e_{x_5}^2$		$e_{s_f} =$	units	error of calculate
								-	quantity

12

Example 1:

What is the uncertainty (95% confidence interval) in $\rho_{bluefluid}$ as determined in the lab?

Answer from error propagation:

29

© Faith A. Morrison, Michigan Tech U.

Summary: Error Analysis with Real Numbers

• To understand the accuracy of our numbers, we need to determine a *confidence interval*.

 $ar{x}\pm 2e_{\scriptscriptstyle S}$ with 95.0% confidence

For replicate data with n < 7 , replace "2" with $t_{0.025, n-1}\,$

- The Standard error e_s for a measured quantity is the largest of:
 - e_{S} determined by $replicates e_{S} = s/\sqrt{n}$ or
 - e_s by estimate of reading error $e_s = e_R/\sqrt{3}$ or
 - e_s by estimate of *calibration error* $e_s = \max error/2$
- Standard error e_f for derived quantities (arrived at from equations), is obtained at through error propagation, which is a combination of variances.

30

Example 2: Replicates revisited

In Example 1, we calculated a value of ρ_{BF} along with its uncertainty from a single determination of density using error propagation. In lab, we have replicates of density measurements. How does the result from the single value compare to the result determined from replicates?

i	ρ_{BFi}
	g/cm
1	1.7162
2	1.7162
3	1.69942
4	1.7110
5	1.7152
6	1.70616
7	1.73097
8	1.73746
9	1.727

3

© Faith A. Morrison, Michigan Tech U.

Example 2: Replicates revisited

In Example 1, we calculated a value of ρ_{BF} along with its uncertainty from a single determination of density using error propagation. In lab, we have replicates of density measurements. How does the result from the single value compare to the result determined from replicates?

Re	eplicate W			
i	ρ_{BFi}	n=	9	
	g/cm	mean ρ=	1.718	g ² /ml ²
1	1.7162	s ² =	0.00015	g^2/ml^2
2	1.7162	s=	0.0121	g/cm
3	1.69942	s/sqrt(n)=	0.0040	g/cm
4	1.7110	2e _s =	0.008	g/cm
5	1.7152	te _s =	0.009	g/cm
6	1.70616			
7	1.73097			
8	1.73746			
9	1.727			

32

Summary: Error Analysis with Real Numbers

• To understand the accuracy of our numbers, we need to determine a *confidence interval*.

 $ar{x}\pm 2e_s$ with 95.0% confidence For replicate data with n<7 , replace "2" with $t_{0.025,n-1}$

- The Standard error e_s for a measured quantity is the largest of:
 - e_s determined by <u>replicates</u> $e_s = s/\sqrt{n}$ or
 - e_s by estimate of <u>reading error</u> $e_s = e_R/\sqrt{3}$ or
 - e_s by estimate of <u>calibration error</u> $e_s = \max error/2$
- Standard error e_f for derived quantities (arrived at from equations), is obtained through
 error propagation, which is a combination of variances.
- Replication always improves the estimation of the mean.

The answer from replicates is more reliable than single values.

• The prediction interval of the next value of x should encompass 95% of all measured values.

95% PI: $\bar{x}\pm 2s$ or $\bar{x}\pm t_{0.025,n-1}s$ if n<7

- The weighting values $\left(\frac{\partial f}{\partial x_i}\right)^2 e_{x_i}^2$ indicate the **impact** of individual errors on the final value.
- Estimates for e_s (particularly those obtained through e_R) may need to be re-evaluated, if unreasonably narrow confidence intervals are identified.

43

CM3215

MichiganTech

Fundamentals of Chemical Engineering Laboratory

Error Analysis for Laboratory Data

- 1. Quick start—Replicate error
- 2. Reading Error
- 3. Calibration Error
- 4. Error Propagation

Professor Faith Morrison

Department of Chemical Engineering Michigan Technological University

Final takeaway:

- 1. You must know the uncertainty in your numbers
- 2. The 3 worksheets help you assess: replicate, reading, and calibration error
- 3. Final worksheet helps you carry out error propagation
- 4. These are the tools you need to determine the uncertainty in your numbers.

44

