Obtaining a Good Estimate of a Quantity **Replicate error Reading error Calibration error** But what do we do when we obtain a quantity from a calculation? $$\rho = \frac{M_F - M_E}{V_{pyc}}$$ $$\mu = \rho \alpha \Delta t$$ $$Q = \dot{m}C_p(T_{out} - T_{in})$$ etc. # **Answer:** **Propagate** the **error** through the calculation © Faith A. Morrison, Michigan Tech U. ## CM3215 # Michigantech **Fundamentals of Chemical Engineering Laboratory** **Statistics Lecture 4: Error Propagation** ## **Professor Faith Morrison** Department of Chemical Engineering Michigan Technological University - 1. Quick start—Replicate error - 2. Reading Error - 3. Calibration Error - 4. Error Propagation - 5. Least Squares Curve Fitting # **Example 1:** What is the uncertainty (95% confidence interval) in $\rho_{bluefluid}$ as determined in the lab? $$\rho_{bluefluid} = \frac{M_{full} - M_{empty}}{V_{pycnometer}}$$ - The value of density obtained is a function of three measurements - · Each measurement has its own uncertainty Image source: www.coleparmer.com Image source: //en.wikipedia.org/wiki/Relative_density © Faith A. Morrison, Michigan Tech U. ## **Example 1:** $e_{\scriptscriptstyle S} \equiv$ Standard Error What is the uncertainty (95% confidence interval) in $\rho_{bluefluid}$ as determined in the lab? Three error sources on each measured quantity: $$e_{\scriptscriptstyle S} = \frac{\scriptscriptstyle S}{\sqrt{n}}$$ Standard error of replicates $$e_S = \frac{e_R}{\sqrt{3}}$$ Standard error due to Reading Error e_s = (as determined) Standard error due to Calibration Error For each variable, determine the three $e_{\rm S}$, then pick the largest (or average if they are close and you want to be less conservative) | CM3215 | n g Error Workshe
Fundamentals of Che
th Morrison | eet
emical Engineering Lab | | higan Technologic
artment of Chemical | | |---------------------------------|--|--|------------------|--|--------------| | or off a dig | ital readout (yielding value | gh the calculation of the standard er X and subject to reading error). The le used in propagation of error calcu | e readi | ing-error-related | | | | | Reading error | | | | | | Measured Quantity:
(give symbol) | | | | | | | Representative value: | (include units) | 6 3 | Quantity or N o | t Applicable | | | issue | contribution to error | | | | | | Resolution | How much signal does it take to cause the reading to change? | 1 | | | | | Limitation on marked scale or digital readout | Half smallest division or decimal place | 2 | | | | Reading error, e _n : | Fluctuations with time of observation | (max-min)/2 | 3 | | | | | | Maximum of 1, 2 & 3: | e _R = | = | (units) | | | Standard error based on reading error: | e _s =e _R /V3 | e _s : | - | | | | | 95% Confidence Interval on the reading: +/-1.96e _s | | | | | Michigan Technological U
Department of Chemical Engli | neering | | | | Handy
worksheet fo | |---|---|---|---|---|-----------------------| | | ror Worksheet
entals of Chemical E
on | | | | calibration er | | a manufacturer or for a
technical specifications
constant (the viscomet
uncertainty. In this cas
Finally, a user may take | a particular device by son
s of a device may indicate
ter constant α , for examp
se, the method of "least s
e steps to calibrate a met | meone with authority to cert
e that it is accurate to a valu
ble) may be provided by the
significant digit" is appropria
ter on site; this determinatio | etermined for a brand-new unit by
ify the value. For example, the
e ±2e _s . Alternatively, a value of a
manufacturer with no specific
te for evaluating the uncertainty.
no ferror (likely to be greater than
the particular unit in question. | | | | Quantity: | Symbol: | Representative value:
(include units) | | | | | | | Estimate of e _g :
(or Not Applicable) | | | | | Method 1:
Manufacturer
maximum error
allowable | 2 e _s ≈ | | | | | | Method 2:
Least significant digit
on provided value | Least significant digit varies by at least ±1 | | | | | | Method 3:
User calibration | 2e₂ ≈ | | | | | | | | | | l | | | | Maximum of
Methods 1 - 3 | e ₂ = | 95% C.I.: quantity±2e _s | | | # **Example 1:** What is the uncertainty (95% confidence interval) in $\rho_{bluefluid}$ as determined in the lab? ## First: What are the uncertainties e_{x_i} for M_{full} , M_{empty} , and V_{pyc} ? You try. Image source: www.coleparmer.com Image source: //en.wikipedia.org/wiki/Relative_density # **Example 1:** What is the uncertainty (95% confidence interval) in $\rho_{bluefluid}$ as determined in the lab? ## First: What are the uncertainties e_{x_i} for M_{full} , M_{empty} , and V_{pyc} ? #### Standard errors: | M_{full} : | = 30.800 g | |--------------|------------| | 1/ | 12 410 - | $M_{empty}: = 13.410 g$ $V_{pycnometer} = 10.\overline{00 \ ml}$ © Faith A. Morrison, Michigan Tech U. # **Example 1:** What is the uncertainty (95% confidence interval) in $\rho_{bluefluid}$ as determined in the lab? ## First: What are the uncertainties e_{x_i} for M_{full} , M_{empty} , and V_{pyc} ? ## Standard errors: $$M_{full}$$: = 30.800 g M_{empty} : = 13.410 g $V_{pycnometer}$ = 10.00 ml (calibration) Now, how to combine? Propagation of Errors We seek to combine the errors associated with the various quantities in a calculation $$\rho_{bluefluid} = \frac{M_{full} - M_{empty}}{V_{pycnometer}}$$ We use an analysis based on the calculation of <u>variance</u>. We use the Taylor series expansion of a nonlinear function. 1 © Faith A. Morrison, Michigan Tech U. # **Error Propagation** We use an analysis based on the Taylor series expansion of a nonlinear function. Taylor series: (higher order terms) $$f(x_1, x_2, x_3) = f^0 + \frac{\partial f}{\partial x_1} x_1 + \frac{\partial f}{\partial x_2} x_2 + \frac{\partial f}{\partial x_3} x_3 + h.o.t.$$ A calculation of the function $f(x_1, x_2, x_3)$ from uncertain values of x_1, x_2, x_3 is a random variable of mean \bar{f} and variance σ_f^2 : $$\sigma_f^2 = \left(\frac{\partial f}{\partial x_1}\right)^2 \sigma_{x_1}^2 + \left(\frac{\partial f}{\partial x_2}\right)^2 \sigma_{x_2}^2 + \left(\frac{\partial f}{\partial x_3}\right)^2 \sigma_{x_3}^2 + \text{Covariance terms, if } x_i \text{ are correlated}$$ 16 We use an analysis based on the Taylor series expansion of a nonlinear function. Taylor series: (higher order $$f(x_1, x_2, x_3) = f^0 + \frac{\partial f}{\partial x_1} x_1 + \frac{\partial f}{\partial x_2} x_2 + \frac{\partial f}{\partial x_3} x_3 + h. o. t.$$ A calculation of the function $f(x_1, x_2, x_3)$ from uncertain values of x_1, x_2, x_3 is a random variable of mean \bar{f} and variance σ_f^2 : $$\sigma_f^2 = \left(\frac{\partial f}{\partial x_1}\right)^2 \sigma_{x_1}^2 + \left(\frac{\partial f}{\partial x_2}\right)^2 \sigma_{x_2}^2 + \left(\frac{\partial f}{\partial x_3}\right)^2 \sigma_{x_3}^2 + \text{Covariance terms if } x_i \text{ are correlated}$$ Note: covariance terms are not always zero o small; but they often are. For now, this is fine © Faith A. Morrison, Michigan Tech U. # **Error Propagation** (To avoid confusion with other variances, we use e_{x_i} nomenclature for errors) $$e_{s_f}^2 = \left(\frac{\partial f}{\partial x_1}\right)^2 e_{x_1}^2 + \left(\frac{\partial f}{\partial x_2}\right)^2 e_{x_2}^2 + \left(\frac{\partial f}{\partial x_3}\right)^2 e_{x_3}^2$$ $\rho_{bluefluid} = f(M_{full}, M_{empty}, V_{pycnometer})$ $e_{S_{M_{full}}}$ $e_{S_{M_{empty}}}$ $e_{S_{V_{pycnometer}}}$ We estimate these standard errors with our 3 worksheets 18 $$e_{s_f}^2 = \left(\left(\frac{\partial f}{\partial x_1}\right)^2 e_{x_1}^2 + \left(\left(\frac{\partial f}{\partial x_2}\right)^2 e_{x_2}^2 + \left(\left(\frac{\partial f}{\partial x_3}\right)^2 e_{x_3}^2\right)^2 e_{x$$ $\rho_{bluefluid} = f \left(M_{full}, M_{empty}, V_{pycnometer} \right)$ These come from the formula for $\rho_{bluefluid}$ $$\rho_{BF} = \frac{M_F - M_E}{V_{pyc}}$$ 19 © Faith A. Morrison, Michigan Tech U. # **Error Propagation** $$e_{s_f}^2 = \left(\left(\frac{\partial f}{\partial x_1}\right)^2 e_{x_1}^2 + \left(\left(\frac{\partial f}{\partial x_2}\right)^2 e_{x_2}^2 + \left(\left(\frac{\partial f}{\partial x_3}\right)^2 e_{x_3}^2\right)\right)^2$$ $$f = \rho_{BF} = \frac{M_F - M_E}{V_{pyc}}$$ $$\frac{\partial \rho_{BF}}{\partial M_F} =$$ $$\frac{\partial \rho_{BF}}{\partial M_E} =$$ $$\frac{\partial \rho_{BF}}{\partial V_{pyc}} =$$ 20 $$\left(\begin{array}{c} e_{s_f}^2 \neq \left(\frac{\partial f}{\partial x_1}\right)^2 e_{x_1}^2 + \left(\frac{\partial f}{\partial x_2}\right)^2 e_{x_2}^2 + \left(\frac{\partial f}{\partial x_3}\right)^2 e_{x_3}^2 \end{array}\right)$$ We seek this, the standard error of the calculated property, $f = \rho_{bluefluid}$ $$\rho_{bluefluid} = f(M_{full}, M_{empty}, V_{pycnometer})$$ $$\rho_{BF} = \frac{M_F - M_E}{V_{pyc}}$$ Think of the squared partial derivatives as the weighting functions for the individual squared standard errors 21 | Error Propagation Worksheet CM3215 Fundamentals of Chemical Engiperof. Faith Morrison $f(x_1, x_2, x_3, x_4, x_5):$ Formula for $f:$ | | | neering Lab | determine e_{s_f} using the relatement e_{s_f} using the relatement e_{s_f} using the relative value of f : (include units) | | | | ed to | Handy
worksheet
error
propagation | | |--|--|--|---|---|--|------------|--|-------|--|--| | Measured quantities, x_i | | | ar | | Н | . 25. 2 | | | | | | xi | Symbol | Representative value | | $\frac{\partial f}{\partial x_i}$ | $\begin{array}{c} e_{x_i} = \\ \frac{s_i}{\sqrt{N}} \ or \ \frac{e_{R_i}}{\sqrt{3}} \ o \end{array}$ | re_{s_i} | $\left(\frac{\partial f}{\partial x_i}\right)^2 e_{x_i}^2$ | | | | | <i>x</i> ₁ | | | | | | | | | | | | <i>x</i> ₂ | | | | | | | | | | | | <i>x</i> ₃ | | | | | | | | | | | | <i>x</i> ₄ | | | | | | | | | | | | x ₅ | | | | | | | | | | | | | $e_{s_f}^2 = \left(\frac{\partial f}{\partial x_1}\right)^2$ | $e_{x_1}^2 + \left(\frac{\partial f}{\partial x_2}\right)^2 e_{x_2}^2 +$ | $+\left(\frac{\partial f}{\partial x_3}\right)^2 e_{x_3}^2$ | $+\left(\frac{\partial f}{\partial x_4}\right)^2 e_{x_4}^2$ | $+\left(\frac{\partial f}{\partial x_5}\right)^2 e_{x_5}^2$ | | $e_{s_f}^2 = egin{array}{c} e_{s_f} = & \end{array}$ | en | andard
ror of
Iculated | | What is the uncertainty (95% confidence interval) in $\rho_{bluefluid}$ as determined in the lab? ## Data: $M_F = 30.800 g$ $M_E = 13.410 g$ $V_{pyc} = 10.00 ml$ Formula: $\rho_{BF} = \frac{M_F - M_E}{V}$ Image source: www.coleparmer.com Image source: //en.wikipedia.org/wiki/Relative_density 23 © Faith A. Morrison, Michigan Tech U. © Faith A. Morrison, Michigan Tech U. # **Example 1:** What is the uncertainty (95% confidence interval) in $\rho_{bluefluid}$ as determined in the lab? | $f(x_1)$ | (x_2, x_3, x_4, x_5) | Formula for $f: M_F$ $\rho_{BF} = \frac{M_F}{V}$ | $\frac{-M_E}{p_{yc}}$ | Representative valu
(include units) | ue of <i>f</i> : | | C.I. of f : $\left(f\pm 2e_{sf} ight)$ ide units) | | | |-----------------------|---|--|--|--|---|------------|---|-----------------|-----------------------| | | Measured qua | ntities, x_i | | $\frac{\partial f}{\partial x_i}$ | $e_{x_i} =$ | | $(\partial f)^2$ | 2 | | | x_i | Symbol | Representative value | | $\overline{\partial x_i}$ | $\frac{s_i}{\sqrt{N}}$ or $\frac{e_{R_i}}{\sqrt{3}}$ or | re_{s_i} | $\left(\frac{\partial f}{\partial x_i}\right)^2 e^{-\frac{2}{3}}$ | \hat{z}_{x_i} | | | <i>x</i> ₁ | | | | | | | | | | | <i>x</i> ₂ | | | | | | | | | | | <i>x</i> ₃ | | | | | | | | | | | <i>x</i> ₄ | | | | | | | | | | | <i>x</i> ₅ | | | | | | | | | | | | $e_{s_f}^2 = \left(\frac{\partial f}{\partial x_1}\right)^2 e_{x_1}^2 + \left(\frac{\partial f}{\partial x_2}\right)^2 e_{x_2}^2 + \left(\frac{\partial f}{\partial x_3}\right)^2 e_{x_3}^2 + \left(\frac{\partial f}{\partial x_4}\right)^2 e_{x_4}^2 + \left(\frac{\partial f}{\partial x_5}\right)^2 e_{x_5}^2 = \frac{e_{s_f}^2}{e_{x_5}^2} = \frac{e_{s_f}^2}{e_{x_5}^2} = \frac{e_{s_f}^2}{e_{x_5}^2} = \frac{e_{x_5}^2}{e_{x_5}^2} $ | | | | | | | | | | | $e_{s_f}^2 = \left(\frac{\partial}{\partial x_1}\right) \epsilon$ | $e_{x_1}^2 + \left(\frac{}{\partial x_2}\right) e_{x_2}^2 +$ | $\left(\frac{\dot{\partial x_3}}{\partial x_3}\right) e_{x_3}^2$ | $+\left(\frac{}{\partial x_4}\right) e_{x_4}^2 + \left(\frac{}{\partial \left(\frac$ | $\left(\frac{\partial}{\partial x_5}\right) e_{x_5}^2$ | | $e_{s_f} =$ | units | error of
calculate | | | | | | | | | | - | quantity | 12 # **Example 1:** What is the uncertainty (95% confidence interval) in $\rho_{bluefluid}$ as determined in the lab? # Answer from error propagation: 29 © Faith A. Morrison, Michigan Tech U. # **Summary: Error Analysis with Real Numbers** • To understand the accuracy of our numbers, we need to determine a *confidence interval*. $ar{x}\pm 2e_{\scriptscriptstyle S}$ with 95.0% confidence For replicate data with n < 7 , replace "2" with $t_{0.025, n-1}\,$ - The Standard error e_s for a measured quantity is the largest of: - e_{S} determined by $replicates e_{S} = s/\sqrt{n}$ or - e_s by estimate of reading error $e_s = e_R/\sqrt{3}$ or - e_s by estimate of *calibration error* $e_s = \max error/2$ - Standard error e_f for derived quantities (arrived at from equations), is obtained at through error propagation, which is a combination of variances. 30 # **Example 2: Replicates revisited** In Example 1, we calculated a value of ρ_{BF} along with its uncertainty from a single determination of density using error propagation. In lab, we have replicates of density measurements. How does the result from the single value compare to the result determined from replicates? | i | ρ_{BFi} | |---|--------------| | | g/cm | | 1 | 1.7162 | | 2 | 1.7162 | | 3 | 1.69942 | | 4 | 1.7110 | | 5 | 1.7152 | | 6 | 1.70616 | | 7 | 1.73097 | | 8 | 1.73746 | | 9 | 1.727 | 3 © Faith A. Morrison, Michigan Tech U. # **Example 2: Replicates revisited** In Example 1, we calculated a value of ρ_{BF} along with its uncertainty from a single determination of density using error propagation. In lab, we have replicates of density measurements. How does the result from the single value compare to the result determined from replicates? | Re | eplicate W | | | | |----|--------------|-------------------|---------|---------------------------------| | | | | | | | i | ρ_{BFi} | n= | 9 | | | | g/cm | mean ρ= | 1.718 | g ² /ml ² | | 1 | 1.7162 | s ² = | 0.00015 | g^2/ml^2 | | 2 | 1.7162 | s= | 0.0121 | g/cm | | 3 | 1.69942 | s/sqrt(n)= | 0.0040 | g/cm | | 4 | 1.7110 | 2e _s = | 0.008 | g/cm | | 5 | 1.7152 | te _s = | 0.009 | g/cm | | 6 | 1.70616 | | | | | 7 | 1.73097 | | | | | 8 | 1.73746 | | | | | 9 | 1.727 | | | | 32 # **Summary: Error Analysis with Real Numbers** • To understand the accuracy of our numbers, we need to determine a *confidence interval*. $ar{x}\pm 2e_s$ with 95.0% confidence For replicate data with n<7 , replace "2" with $t_{0.025,n-1}$ - The Standard error e_s for a measured quantity is the largest of: - e_s determined by <u>replicates</u> $e_s = s/\sqrt{n}$ or - e_s by estimate of <u>reading error</u> $e_s = e_R/\sqrt{3}$ or - e_s by estimate of <u>calibration error</u> $e_s = \max error/2$ - Standard error e_f for derived quantities (arrived at from equations), is obtained through error propagation, which is a combination of variances. - Replication always improves the estimation of the mean. The answer from replicates is more reliable than single values. • The prediction interval of the next value of x should encompass 95% of all measured values. 95% PI: $\bar{x}\pm 2s$ or $\bar{x}\pm t_{0.025,n-1}s$ if n<7 - The weighting values $\left(\frac{\partial f}{\partial x_i}\right)^2 e_{x_i}^2$ indicate the **impact** of individual errors on the final value. - Estimates for e_s (particularly those obtained through e_R) may need to be re-evaluated, if unreasonably narrow confidence intervals are identified. 43 ## CM3215 # MichiganTech ## **Fundamentals of Chemical Engineering Laboratory** **Error Analysis for Laboratory Data** - 1. Quick start—Replicate error - 2. Reading Error - 3. Calibration Error - 4. Error Propagation #### **Professor Faith Morrison** Department of Chemical Engineering Michigan Technological University #### Final takeaway: - 1. You must know the uncertainty in your numbers - 2. The 3 worksheets help you assess: replicate, reading, and calibration error - 3. Final worksheet helps you carry out error propagation - 4. These are the tools you need to determine the uncertainty in your numbers. 44