




# Measurements are affected by errors

(uncertainty)

There are two general categories of errors (uncertainties) in experimental measurements:

- Systematic errors
- Random errors

3

© Faith A. Morrison, Michigan Tech U.

# Measurements are affected by errors

#### **Systematic errors**

(uncertainty)

- 1. Has same sign and magnitude for identical conditions
- 2. Must be checked for, identified, eliminated, randomized

### Sources:

- Calibration of instruments
- Reading error (resolution, coarse scale)
- Consistent operator error
- Failure to produce experimentally conditions assumed in an analysis (e.g. steady state, isothermal, well mixed, pure component, etc.)

#### **Solutions:**

- Recalibrate
- Improve instrument resolution
- Apply correction for identified error
- Improve procedures, experimental design
- Shift to other methods
- Take data in random order; rotate operators

© Faith A. Morrison, Michigan Tech U.

2

# Measurements are affected by errors

#### **Random errors**

### (uncertainty)

- 1. Varies in sign and magnitude for identical conditions
- 2. May be due to the instrument or the process being measured
- 3. Must be understood and communicated with results

#### Sources:

- Random process, instrument fluctuations
- Randomized systematic trends (e.g. operator identity, thermal drift)
- Rare events

#### **Solutions:**

- Replicate and average
- Improve measurement methods, practices
- Isolate from rare events

5

© Faith A. Morrison, Michigan Tech U.

# Measurements are affected by errors

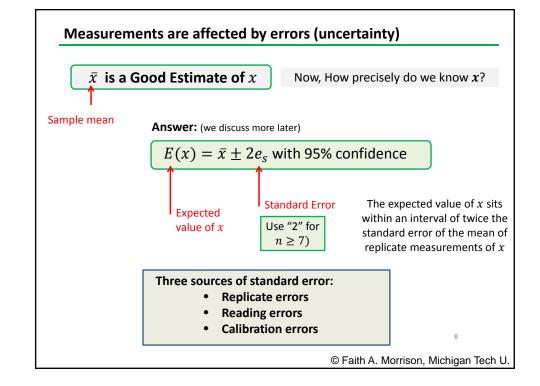
(uncertainty)

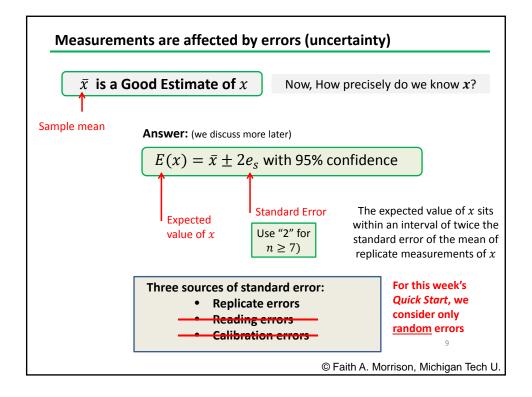
We never stop looking for and fixing random and systematic errors in real experimental data.

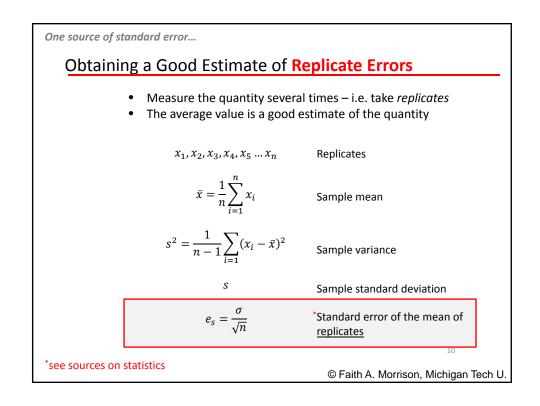
We use **statistical methods** to *measure*, *reduce*, and *communicate* the random errors that we cannot eliminate.

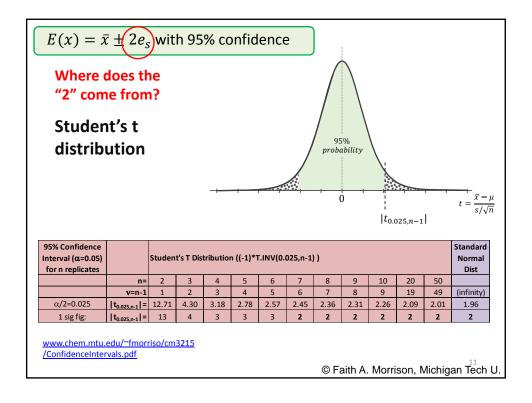
6

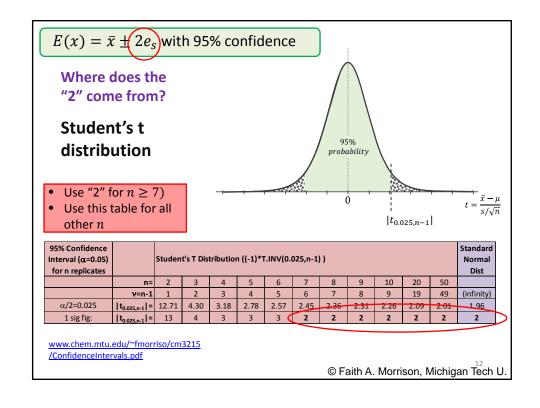
## **Obtaining a Good Estimate of a Quantity**


- Measure the quantity several times replicates
- The average value is a good estimate of the quantity we are measuring


$$x_1, x_2, x_3, x_4, x_5 \dots x_n$$
 Replicates


$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$
 Sample mean


 $\bar{x}$  is a Good\* Estimate of x


\*small print: if we take enough replicates and if only random errors are present; see sources on statistics











EXAMPLE 1.1 Based on the following seven data points we have on Blue Fluid 175 density, what is the density  $\rho$  and the 95% confidence interval based on replicate error?

| i | X_i     |
|---|---------|
| 1 | 1.7348  |
| 2 | 1.7465  |
| 3 | 1.7359  |
| 4 | 1.83    |
| 5 | 1.74688 |
| 6 | 1.74412 |
| 7 | 1.73173 |

You try.

© Faith A. Morrison, Michigan Tech U.

EXAMPLE 1.1 Based on the following seven data points we have on Blue Fluid 175 density, what is the density and the 95% confidence interval based on replicate error?

| i | X_i     |
|---|---------|
| 1 | 1.7348  |
| 2 | 1.7465  |
| 3 | 1.7359  |
| 4 | 1.83    |
| 5 | 1.74688 |
| 6 | 1.74412 |
| 7 | 1.73173 |

|          | ρ        |                                   |
|----------|----------|-----------------------------------|
| 1        | 1.7348   | g/cm <sup>3</sup>                 |
| 2        | 1.7465   | g/cm <sup>3</sup>                 |
| 3        | 1.7359   | g/cm <sup>3</sup>                 |
| 4        | 1.83     | g/cm <sup>3</sup>                 |
| 5        | 1.74688  | g/cm <sup>3</sup>                 |
| 6        | 1.74412  | g/cm <sup>3</sup>                 |
| 7        | 1.73173  | g/cm <sup>3</sup>                 |
| mean     | 1.752847 | g/cm <sup>3</sup>                 |
| variance | 0.001194 | (g/cm <sup>3</sup> ) <sup>2</sup> |
| std dev  | 0.034553 | g/cm <sup>3</sup>                 |
| std err  | 0.013060 | g/cm <sup>3</sup>                 |

Excel: AVERAGE() VAR.S() STDEV.S()

What is the answer for  $\rho =? \pm?$  with 95% confidence (replicate)?

 $\hbox{@}$  Faith A. Morrison, Michigan Tech U.

EXAMPLE 1.1 Based on the following seven data points we have on Blue Fluid 175 density, what is the density and the 95% confidence interval based on replicate error? 1.7348 g/cm<sup>3</sup> Answer: 1.7465 g/cm<sup>3</sup> 1.7359 g/cm<sup>3</sup> 1.83 g/cm<sup>3</sup> 1.74688 g/cm<sup>3</sup> g/cm<sup>3</sup> g/cm<sup>3</sup> 1.752847 g/cm<sup>3</sup> 0.001194 (g/cm<sup>3</sup>)<sup>2</sup> Excel: std dev 0.034553 g/cm<sup>3</sup> AVERAGE() std err 0.013060 g/cm<sup>3</sup> VAR.S() STDEV.S() © Faith A. Morrison, Michigan Tech U.

# **Significant Figures on Error**

### **Common rules:**

· Usually use one significant figure on error

$$\rho_A = 1.722 \pm 0.005 g/cm^3$$

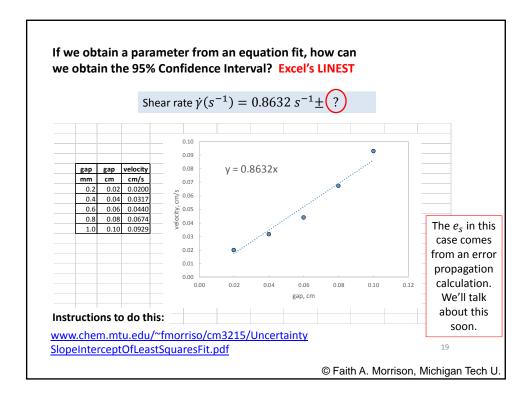
 If the digit is 1 or 2, you may include two digits (to avoid round-off error)

$$\rho_B = 1.9431 \pm 0.0015 g/cm^3$$

Note: do not truncate numbers used in intermediate calculations.

EXAMPLE 1.1 Based on the following seven data points we have on Blue Fluid 175 density, what is the density and the 95% confidence interval based on replicate error?

## Answer:

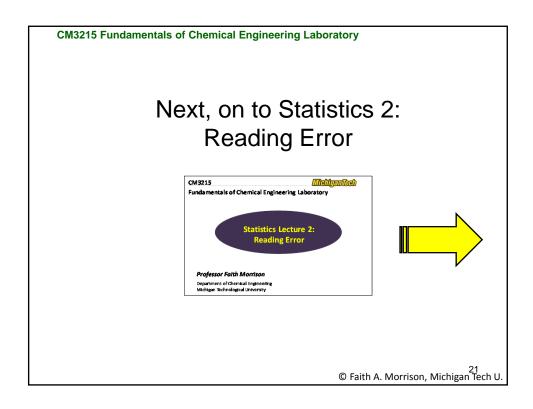

 $ho = 1.75 \pm 0.03 g/cm^3$  (95%CI)

With 95% confidence, using  $\pm 2.45e_s$  (N = 7) or  $\pm 2e_s$ 

Excel: AVERAGE() VAR.S() STDEV.S()

|          | ρ        |                                   |
|----------|----------|-----------------------------------|
| 1        | 1.7348   | g/cm <sup>3</sup>                 |
| 2        | 1.7465   | g/cm <sup>3</sup>                 |
| 3        | 1.7359   | g/cm <sup>3</sup>                 |
| 4        | 1.83     | g/cm <sup>3</sup>                 |
| 5        | 1.74688  | g/cm <sup>3</sup>                 |
| 6        | 1.74412  | g/cm <sup>3</sup>                 |
| 7        | 1.73173  | g/cm <sup>3</sup>                 |
| mean     | 1.752847 | g/cm <sup>3</sup>                 |
| variance | 0.001194 | (g/cm <sup>3</sup> ) <sup>2</sup> |
| std dev  | 0.034553 | g/cm <sup>3</sup>                 |
| std err  | 0.013060 | g/cm <sup>3</sup>                 |

|                                                 |                                                | the calculation of the<br>or-related standard er |                              |                                                |                                                                          |                     |                 |
|-------------------------------------------------|------------------------------------------------|--------------------------------------------------|------------------------------|------------------------------------------------|--------------------------------------------------------------------------|---------------------|-----------------|
| Replicated Variable, Y:                         |                                                |                                                  |                              | Units:                                         |                                                                          |                     |                 |
| Measured values $Y_1, Y_2,, Y_N$                | Mean, $ar{Y}$                                  | Variance, $\sigma^2$                             | Standard Deviation, $\sigma$ | Standard Error, $e_{s}=rac{\sigma}{\sqrt{N}}$ | 95% Confidence Interval based on N replicates (Student's t distribution) |                     |                 |
| Y <sub>1</sub>                                  |                                                |                                                  |                              |                                                | N = 1                                                                    | n/a                 | (include units) |
| Y <sub>2</sub>                                  |                                                |                                                  |                              |                                                | N = 2                                                                    | ±12.7es             | ±               |
| Y <sub>3</sub>                                  |                                                |                                                  |                              |                                                | N = 3                                                                    | ±4.30e <sub>s</sub> |                 |
| Y <sub>4</sub>                                  |                                                |                                                  |                              |                                                | N = 4                                                                    | ±3.18e <sub>s</sub> |                 |
| Y <sub>5</sub>                                  |                                                |                                                  |                              |                                                | N = 5                                                                    | $\pm 2.78e_s$       |                 |
| Y <sub>6</sub>                                  |                                                |                                                  |                              |                                                | N = 6                                                                    | ±2.57e <sub>3</sub> |                 |
| Y <sub>7</sub>                                  |                                                |                                                  |                              |                                                | N ≥ 7                                                                    | ±2e <sub>s</sub>    |                 |
|                                                 |                                                |                                                  |                              |                                                | 00                                                                       | ±1.96es             |                 |
| $\bar{Y} \equiv \frac{1}{N} \sum_{i=1}^{N} Y_i$ | $\sigma^2 \equiv \frac{1}{N^2} \sum_{i=1}^{N}$ | ,                                                |                              |                                                |                                                                          |                     |                 |




### Measurements are affected by errors

### **Summary:**

(uncertainty)

- Taking replicate measurements is a good way to estimate the value of a quantity affected by random errors
- $\bar{x}$  is a Good Estimate of x
- $E(x) = \bar{x} \pm t_{0.025,n-1}e_s$  with 95% confidence (see table)
- The standard error  $e_s$  is obtained from considering:
  - 1. Replicate errors  $(e_s = s/\sqrt{n})$
  - 2. Reading errors
  - 3. Calibration errors
- In this Quick Start section, we have only considered replicate errors;
  we consider the reading and calibration errors in subsequent lectures
  and activities
- Use one significant figure on error limits (unless the digit is 1 or 2)
- When parameters are obtained from a fit, use error propagation to calculate  $e_{\rm S}$  (Excel's LINEST)

