

Measurements are affected by errors

(uncertainty)

There are two general categories of errors
(uncertainties) in experimental measurements:

Systematic errors
Random errors

Paint A. Morrison, Michigan Tech U.

From Lecture 1: Quick Start, Replicate Errors:

Measurements are affected by errors

Random errors

(uncertainty)

- 1. Varies in sign and magnitude for identical conditions
- 2. May be due to the instrument or the process being measured
- 3. Must be understood and communicated with results

Sources:

Always present (need to minimize)

- Random process, instrument fluctuations
- Randomized systematic trends (e.g. operator identity, thermal drift)
- Rare events

Solutions:

Do:

- Replicate and average
- Always an option
- Improve measurement methods, practices
- Isolate from rare events

© Faith A. Morrison, Michigan Tech U.

From Lecture 1: Quick Start, Replicate Errors:

Measurements are affected by errors (uncertainty)

We have identified three sources of standard error:

- Random errors (replicate error)
- Reading errors
- Calibration errors

Averaging replicates allows us to calculate a standard error due to random error

 $e_{\scriptscriptstyle S} = \frac{{\scriptscriptstyle S}}{\sqrt{n}}$

Standard error of replicates

 $e_s = \frac{e_R}{\sqrt{3}}$

Standard <u>reading</u> error

 $e_s = ?$

Standard calibration error

For all three types of errors, we write a **variance**.

4

From Lecture 2: Reading Error: Measurements are affected by errors (uncertainty) We have identified three sources of standard error: Random errors (replicate error) **Reading errors Calibration errors** Standard error of replicates Standard <u>reading</u> error Now we consider systematic Standard calibration error calibration error. For all three types of errors, we write a variance. © Faith A. Morrison, Michigan Tech U.

Michigan Technological U Department of Chemical Engi	Iniversity Ineering	Handy worksheet fo		
	ror Worksheet entals of Chemical E on	calibration er		
a manufacturer or for a technical specifications constant (the viscomet uncertainty. In this cas Finally, a user may take	a particular device by sor s of a device may indicate ter constant α , for examp se, the method of "least" e steps to calibrate a me	meone with authority to cert e that it is accurate to a valu ple) may be provided by the significant digit" is appropria ter on site; this determinatio	etermined for a brand-new unit by ifly the value. For example, the e±2e ₂ . Alternatively, a value of a manufacturer with to specific te for evaluating the uncertainty, n of error (likely to be greater than the particular unit in question.	
Quantity:	Symbol:	Representative value: (include units)		
Method 1: Manufacturer maximum error allowable	2 € 8	Estimate of e _g : (or Not Applicable)		
Method 2: Least significant digit on provided value	Least significant digit varies by at least ±1			
Method 3: User calibration	2e ₂ ≈			
	Maximum of	e ₂ =	95% C.I.: quantity±2e _s	
	Methods 1 - 3	2e ₅ =		

Measurements are affected by errors

Systematic errors

- 1. Has same sign and magnitude for identical conditions
- 2. Must be checked for, identified, eliminated, randomized

Sources:

- Miscalibration of instruments
- Consistent operator error (e.g. parallax)
- Failure to produce experimentally conditions assumed in an analysis (e.g. steady state, isothermal, well mixed, pure component, etc.)

Solutions:

- Recalibrate
- Apply correction for identified error
- Improve procedures, experimental design
- · Shift to other methods
- Take data in random order; rotate operators

1

© Faith A. Morrison, Michigan Tech U.

Measurements are affected by errors

Systematic errors

- 1. Has same sign and magnitude for identical conditions
- 2. Must be checked for, identified, eliminated, randomized

Sources:

- Miscalibration of instruments
- Consistent operator error (e.g. parallax)
- Failure to produce experimentally conditions assumed in an analysis (e.g. steady state, isothermal, well mixed, pure component, etc.)

Solutions:

- Recalibrate
- Apply correction for identified error
- Improve procedures, experimental design
- Shift to other methods
- Take data in random order; rotate operators

2

Calibration

What is calibration?

Calibration is a step made to establish the correctness and utility of a device.

- A <u>standard</u> is used (a device or material whose correctness or properties are known.
- 2. The <u>unit under test</u> and the standard are both made to make a measurement.
- 3. The performance of the unit under test is assigned based on the comparison to the standard we say that the unit under test is *calibrated* against the standard.

13

© Faith A. Morrison, Michigan Tech U.

Factory Calibration

- Many devices come to us calibrated by the manufacturers
- How do we know the accuracy of these devices?

$$T = 39.8 \pm ?$$

14

Factory Calibration

- Many devices come to us calibrated by the manufacturers
- How do we know the accuracy of these devices?

$$T = 39.8 \pm ?$$

We check with the manufacturer.

15

Factory Calibration

- Many devices come to us calibrated by the manufacturers
- How do we know the accuracy of these devices?

According to the manufacturer:

$$T = 39.8 \pm 1.1^{\circ}C$$

 $38.7 \le T \le 40.9^{\circ}C$

(note that at higher temperatures the uncertainty is even higher, 0.4%)

19

© Faith A. Morrison, Michigan Tech U.

Factory Calibration

- Many devices come to us calibrated by the manufacturers
- How do we know the accuracy of these devices?

According to the manufacturer:

$$T = 39.8 \pm 1.1^{\circ} C$$

 $38.7 \le T \le 40.9^{\circ} C$

Let's check.

20

EXAMPLE 3: For the temperature indicators in the lab, what is the standard error and 95% confidence interval for the measurement? Consider replicate error, reading error, and calibration error.

Let's try.

© Faith A. Morrison, Michigan Tech U.

Replicate Error

- Test 11 meters
- Calculate standard error $e_{s} = \frac{s}{\sqrt{n}}$

Replicate Error

- 11 thermocouples, 11 temperature indicators
- Indicators in service for various amounts of time
- · Factory calibrated
- All measuring the temperature of a bath thermostated to 40.0^{o} C
- Record temperatures

Y=			mean	variance	std dev	std error		95% CI	
	Т	N		s ²	S	e _s	$2e_s$	lower	upper
	°C	11	39.2	1.1	1.1	0.3	0.6	38.6	39.9
Y ₁	39.3		°C	°C	°C	°C	°C	°C	°C
Y ₂	40.0								
Y ₃	36.7								
Y ₄	39.9								
Y ₅	39.8								
Y ₆	39				S	$=\frac{1.1}{\sqrt{1}}$			
Y ₇	38			e_c =	= —	= —	= = 0	$.3^{\circ}C$	
Y ₈	39.9			-3	\sqrt{n}	$\sqrt{1}$	1		
Y ₉	39				V	V -	_		
Y ₁₀	40.1								
Y ₁₁	40.0								

2

© Faith A. Morrison, Michigan Tech U.

Reading Error

Issues:

- Sensitivity
- Resolution
- Fluctuations

24

Summary of Errors

Standard Errors, e_x :

- Replicate standard error is $\frac{s}{\sqrt{n}} = 0.3^{o} C$
- Reading standard error is $\frac{e_R}{\sqrt{3}} = 0.06^o C$
- Calibration error?

27

© Faith A. Morrison, Michigan Tech U.

Calibration Error

Issues

- Manufacturer maximum error allowable
- Least significant digit on provided value
- User calibration

28

Summary of Errors

Standard Errors, e_x :

- Replicate standard error is $\frac{s}{\sqrt{n}} = 0.3^{o}C$
- Reading standard error is $\frac{e_R}{\sqrt{3}} = 0.06^o C$
- Calibration error is $e_s = 0.55^{\circ}C$

31

© Faith A. Morrison, Michigan Tech U.

Summary of Errors

Standard Errors, e_x :

- Replicate standard error is $\frac{s}{\sqrt{n}} = 0.3^{\circ}C$
- Reading standard error is $\frac{e_R}{\sqrt{3}} = 0.06^o C$
- Calibration error is $e_s = 0.55^{\circ}C$

Calibration error

32

Obtaining a Good Estimate of a Quantity Summary: Replicate error: Measure the quantity several times - replicates The average value is a good estimate of the quantity we are measuring if only random errors are The 95% confidence interval comes from $\pm (**)e_s$ (**) = 2 if the number of replicates is 7 or higher (**) comes from the Student's t distribution if N < 7Report one sig fig on error (unless that digit is 1 or 2) Reading error: Determine signal needed to change reading Determine half smallest division or decimal place Determine average of fluctuations Max of those $/\sqrt{3}$ =reading error use $\pm 2e_s$ for 95% confidence interval **Calibration error:** Determine manufacturer maximum error allowable Assume least significant digit varies by ± 1 Calibrate in-house Use largest uncertainty as determined above Replication cannot reduce calibration error © Faith A. Morrison, Michigan Tech U.

Obtaining a Good Estimate of a Quantity Summary: Replicate error: Measure the quantity several times - replicates The average value is a good estimate of the quantity we are measuring if only random errors are present The 95% confidence interval comes from $\pm (**)e_s$ (**) = 2 if the number of replicates is 7 or higher (**) comes from the Student's t distribution if N < 7 Report one sig fig on error (unless that digit is 1 or 2) Reading error: Determine signal needed to change reading Determine half smallest division or decimal place Determine average of fluctuations Max of those $\sqrt{3}$ = reading error use $\pm 2e_s$ for 95% confidence interval **Calibration error:** Determine manufacturer maximum error allowable Assume least significant digit varies by ± 1 Calibrate in-house Use largest uncertainty as determined above

Replication cannot reduce calibration error

